Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Путь к сути вещей: Как понять мир с помощью математики - Давид Бессис на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Первая ошибка – все преувеличивать. Вам создали комплексы на пустом месте. Да, ваша интуиция иногда ошибается – но не всегда. Зачастую она права. И вы можете сделать так, чтобы она как можно реже ошибалась. Вы можете научить ее видеть яснее и точнее. Начиная на том же уровне, что и вы, математики создают себе сильную и надежную интуицию. Они делают это с помощью простых методов, таких как те, что описаны в этой книге.

Вторая ошибка школы – вам рассказали о недостатках интуиции, но забыли напомнить о ее сильных сторонах. Вы усвоили посыл, что интуиция несовершенна. Но школа забыла передать вам куда более важный посыл: интуиция – ваш самый могущественный интеллектуальный ресурс. В каком-то смысле это ваш единственный интеллектуальный ресурс.

Это не пустые слова. У меня нет цели польстить вам, рассказывая небылицы.

За всем этим кроется глубинная биологическая истина, к которой мы еще вернемся. А еще это вполне познаваемая на практике реальность, и вы испытывали это тысячи раз. Вы прекрасно знаете, что учить наизусть, применять готовые методики или следовать рассуждениям строчка за строчкой не значит действительно понимать. Вы никогда полностью не доверяете логическим аргументам, вам гораздо проще с тем, что вы понимаете интуитивно.

Дар воображения

Ваша интуиция могущественна – вы это знаете уже давно. Несомненно, вы не осмеливаетесь заявить об этом громко и уверенно, но втайне вы доверяете именно интуиции.

А вот чего вы, возможно, не знали: за величайшими научными революциями и целыми областями математики, которые считаются самыми сложными, всегда стоят проблески интуиции, и они так же просты, как и у вас.

Придумать теорию относительности Эйнштейну позволил мысленный мультфильм, ненамного сложнее того, который позволяет вам увидеть, что прямая линия не может пересекать окружность в трех точках.

Когда Эйнштейн говорил, что верит в интуицию, он имел в виду не какую-то особую интуицию, полученную в дар от небес, которая радикально отличалась бы от вашей. Если бы он так думал, то не говорил бы, что у него «нет какого-то особого таланта».

Это сбивает с толку, но нужно принять эту правду. Эйнштейн говорит о наивной интуиции, о той, которая есть у всех нас, которую так часто считают глуповатой, а в школе учат ее презирать.

Эйнштейн говорил всего лишь о нашей способности воображать разные предметы. Это дар, который мы все получили в равной степени. Может, это и немного, но это само по себе удивительно, ведь ни у кого нет исключительного таланта в этой сфере.

Если бы вы, как и Эйнштейн, научились использовать собственное глупое детское воображение, чтобы стать величайшим физиком своего времени, вы бы сказали, как и он, что великие научные открытия – это всего лишь вопрос любопытства (и вас бы тоже не приняли всерьез).

Даже если вы не изобрели теорию относительности, вам уже есть чем восхититься.

Вы можете увидеть круг у себя в голове.

Вы можете мысленно им манипулировать.

Вы можете зрительно убедиться, что прямая не может пересекать окружность в трех точках.

И все это вы можете проделать, закрыв глаза и не двигаясь с места.

Вы можете проделать это буквально силой мысли.

Насколько нам сейчас известно, это биологическое достижение свойственно исключительно людям. Если гиппопотамы тоже так умеют, они хорошо шифруются.

Если вам это удается, не сомневайтесь – у вас подходящий генетический потенциал и умственные способности, чтобы достичь больших успехов в математике. С биологической точки зрения это все, что вам надо. Остальные ингредиенты не генетические, и они также вам доступны. Речь об искренности, терпении, смелости и желании.

Как создавать мощные и ясные образы

Великие идеи всегда интуитивны и всегда просты. Более того, они до смешного просты. На самом деле мы умеем понимать только очевидные вещи. Если что-то неочевидно, значит, мы не до конца это поняли.

Этот вселенский закон – человеческий закон. Он гласит, что наша наука придумана людьми, а люди, на самом глубинном уровне, все сделаны по одному образцу.

Великие открытия совершены людьми, которые просто пытаются что-то понять. Они просто хотят, чтобы это было очевидно. Если они не понимают, то они не притворяются, что понимают. Они продолжают искать подходящий путь, подходящие мысленные образы, подходящий взгляд на вещи – пока все не станет для них очевидным.

Хорошая новость: с помощью этого метода они могут открыть только очевидные вещи. И то, что стало очевидным для них, может стать очевидным и для вас.

А значит, у вас нет никаких оснований бояться.

Это касается всех областей интеллектуального творчества и тем более – математики. Математическое знание не опирается на экспериментальные данные. Для него не нужно накапливать энциклопедические познания. В частности, учебники математики не содержат вообще ничего, кроме очевидных фактов.

Парадокс в том, что, чтобы понять очевидность очевидного, нужно предварительно выстроить мысленные представления, позволяющие это сделать. Стоит один раз создать эти образы – и они позволят видеть суть мгновенно и без усилий. Но для их построения нужно много времени и труда.

Сами того не осознавая, вы уже построили вполне неплохой мысленный образ круга. То, что удалось вам с кругом, нужно будет воспроизвести с другими объектами, строить другие мысленные образы и комбинировать их, чтобы создать еще много других.

Никто не рождается с готовыми образами. Никто не умеет создавать их мгновенно. Процесс их построения занимает гораздо больше времени, чем можно представить. И у всех он состоит из сомнений, продвижения наощупь, тупиков и возвращения к началу. На самом деле он длится всю жизнь.

Занимаетесь вы математикой или нет, ваше видение мира и мысленные образы постоянно эволюционируют.

Вот здесь и начинается устная традиция математиков. Речь идет не о чудотворных рецептах, как стать сверхчеловеком, а о вполне простых принципах, помогающих лучше строить мысленные образы.

На кону – ни много ни мало власть над тем, как вы строите собственный взгляд на мир.

Вы знаете, что для хорошего здоровья надо заниматься спортом, есть фрукты и овощи, избегать наркотиков и высыпаться. Но сможете ли вы назвать несколько базовых принципов, позволяющих создавать мощные и ясные мысленные образы?

Все то время, пока вас пытались убедить, что надо мыслить логически, а вы втайне решали по-настоящему доверять лишь интуиции, никто не рассматривал эту тему всерьез.

Вы как-то справлялись без методики и с ложным убеждением, что ваша интуиция в чем-то хороша, а в чем-то плоха, но, по сути, у вас нет никакой возможности ее развить.

В таких условиях просто чудо, что вы вообще чему-то научились.

И все же, как мы увидим в следующей главе, вам уже удалось развить надежную математическую интуицию. Возможно, вы считаете себя неспособными к математике, но вы прекрасно усвоили математические понятия, которые на протяжении 99 % истории человечества считались уделом исключительно гениев.

Вы уже построили отличные мысленные образы и пользуетесь ими изо дня в день.

Глава 4

Настоящая магия

Возьмите миллиард. Отнимите 1. Сколько осталось?

Вам незачем размышлять, результат тут же появляется у вас в голове: 999 999 999. Его даже проще представить, чем произнести.

Это кажется вам очевидным – но это не для всех так. Жителю Древнего Рима это было бы совершенно неочевидно.

В классической латыни нет слова «миллиард» (как и «миллион»). Чтобы передать это понятие, проще всего выразить его как произведение: «тысячу умножить на тысячу умножить на тысячу». Пожалуй, римлянин эпохи Юлия Цезаря смог бы это понять, хотя от такого у него бы уже слегка разболелась голова. Но если бы вы сказали ему, что способны взять это число, вычесть из него 1 и немедленно увидеть у себя в голове результат, он бы вас больше не слушал.

Он принял бы вас за сошедшего с ума ученого.

Попробуйте написать 999 999 999 римскими цифрами – у вас будут большие проблемы. Для того, кто знает только римские цифры, 999 999 999 не просто большое число, оторванное от повседневной жизни. Это число, которое сложно написать. Головокружительное, ужасающее число, которому невозможно взглянуть в лицо. Сама мысль, что кто-то может мгновенно «увидеть» его в точности и без усилий, нелепа.

И римляне не самый экстремальный случай. Они как раз уже весьма продвинулись в понимании чисел.

Традиционная система счета у некоторых племен австралийских аборигенов основана на частях тела. От одного до пяти считают на пальцах, потом поднимаются выше по руке. Шесть – это запястье. Семь – предплечье. Восемь – локоть, а девять – бицепс. Дойдя до десяти, то есть до плеча, продолжают считать, поднимаясь еще выше. Число двенадцать – это мочка уха.

Если каждому числу должна соответствовать часть тела, хватит ли вам смелости дойти до миллиарда?

У других народов охотников-собирателей системы счисления еще более просты. Некоторым известны только числа один, два, три, четыре, пять и универсальное число, означающее «много». В языке Амазонии пирахан есть слово, чтобы сказать «один», и слово, чтобы сказать «два», но не существует слова, чтобы сказать «три». Три – это уже много.

Если человек, который так видит мир, обнаружит, что существует разница между 25 и 26 и ее можно точно выразить, – это должно стать для него очень мощным духовным опытом, сравнимым с ощущениями студента-математика, узнавшего, что существует несколько уровней бесконечности, о которых можно вполне точно рассуждать.

Обман?

А вот житель Древнего Рима сразу увидел бы различие между XXV и XXVI. Но ваша ловкость в обращении с большими числами создала бы у него впечатление, что у вас сверхъестественные способности к вычислениям.

Вы улыбаетесь при этой мысли, так как в глубине души прекрасно знаете, что это обман: никаких сверхъестественных способностей у вас нет.

А вы уверены?

Если вы представляете себе талантливых вычислителей мутантами, наделенными волшебными способностями, и думаете, что в голове у них компьютер, позволяющий сверхбыстро считать с помощью известных вам методов, вы ошибаетесь.

По сути, одаренные вычислители – это что-то вроде волшебников и Деда Мороза: на самом деле их не существует.

Когда вы думаете, что видите Деда Мороза, – это не настоящий Дед Мороз, а просто какой-то человек, переодетый Дедом Морозом.

Когда вы думаете, что видите волшебника, – это не настоящий волшебник, а просто иллюзионист, то есть человек, который знает разные штуки, способные создать иллюзию, будто он наделен магическими способностями.

Когда вы думаете, что видите уникально одаренного вычислителя, – это никакой не одаренный вычислитель, а просто человек, который умеет так видеть числа, что операции, которые для вас сложны и практически немыслимы, становятся для него простыми и даже очевидными.

Истина в том, что по природе мы все совершенно не умеем считать в уме, если только не владеем интуитивным способом радикально упростить счет и «увидеть» результат.

Десятичная запись, основанная на арабских цифрах, и есть тот фокус, который позволяет вам считать определенные результаты очевидными. Основное отличие между одаренными вычислителями и вами в том, что их арсенал фокусов обширнее вашего и они более привычны к играм с ним.

Как понять по-настоящему

Система десятичной записи чисел кажется вам настолько очевидной, что вы уже не помните, что вам пришлось ее изучать. Всё как с ложкой. Вы пользуетесь ею не задумываясь, словно это продолжение вашего тела. Когда вы видите 999 999 999, то считаете, что видите непосредственно число, и даже не отдаете себе отчета в том, что видите его с помощью инструмента.

А ведь десятичная запись – чисто человеческое изобретение. Это больше, чем система записи, – это дверь в состояние сознания, где целые числа, как бы велики они ни были, становятся конкретными и точными объектами. А заодно становится очевидностью сама бесконечность целых чисел.

Что-то ранее немыслимое вдруг становится очевидным – вот то самое действие, которое математика производит с вашим мозгом. Это восхитительное ощущение и сильнейшее удовольствие.

В детстве вы гордились, что умеете считать до 10, затем до 20, затем до 100. Это позволяло вам от души повоображать во дворе. Чтобы повыпендриваться еще больше, вы хотели бы узнать самое большое число на свете.

По сути, ваше представление о числах было не очень далеко от представления охотников-собирателей, которые умеют считать только до двух или до пяти и твердо убеждены, что следующее число – «много» – и есть самое большое число на свете.

Однажды вы поняли, что ни одно число не может быть самым большим. Даже если вы могли бы прийти к этому выводу другим путем, десятичная запись показала вам короткую дорогу. Вы знаете, что за каждым числом следует другое. Вы можете видеть последовательность чисел в виде крутящегося счетчика и знаете, что этот счетчик может крутиться бесконечно. Нет предела, нет какого-то особого числа, после которого счетчик остановится.

На протяжении 99 % истории человечества никто не научился видеть у себя в голове крутящийся счетчик чисел.

Счетчик, крутящийся у вас в голове, – коллективное творчество великих математиков, которые с доисторических времен до Средневековья формировали образ чисел, знакомый нам сегодня.

Этот образ не от природы. Он не был записан в вашем теле при рождении. В какой-то степени он произволен – мы могли бы выбрать другую систему для записи чисел, и вы видели бы их иначе.

Более 4000 лет назад вавилоняне придумали шестидесятеричную систему: они записывали числа при основании 60, а не 10. Вавилонская математика была самой продвинутой для своего времени. И ваше мысленное представление о часах, минутах и секундах носит очень глубокий отпечаток их понимания чисел.

А вот что действительно от природы – так это ваша способность усваивать абстрактную математику и понимать ее по-настоящему, то есть перестраивать свой мозг так, чтобы эта самая математика действительно стала частью вас.

Вы думаете, что видите число 999 999 999. В реальности вы расшифровываете абстрактное и сложное математическое понятие. Вы расшифровываете его с безупречной легкостью, мгновенно, не осознавая этого. Целые числа не были вашим родным языком, но вы стали билингвом.

Вот как выглядит удачное усвоение математического понятия. И если пример кажется вам идиотским – это именно потому, что вы действительно его поняли.

Настоящей магии не существует

В начале карьеры молодые математики часто чувствуют себя самозванцами.

Мне прекрасно знакомо это чувство, и в моем случае оно казалось полностью оправданным. Расчеты в моей диссертации были настолько очевидны, что это граничило с мошенничеством. Мои теоремы всегда были наивными, и их доказательство никогда не создавало реальных сложностей.

Меня окружали толпы очень умных людей, занимавшихся очень трудной математикой, в которой я не понимал ничего. Глубокие и сложные статьи мне так и не удавалось прочесть. А если какие-то и удавалось, то лишь потому, что по сути они были проще других.

Мне хотелось уметь заниматься настоящей математикой – по-настоящему сложной. Все, что мне удавалось понять, было простой математикой, математикой для чайников.

В моем изложении это звучит по-дурацки, но мне реально понадобились годы, прежде чем я осознал, что это лишь оптическая иллюзия. Линия горизонта перемещалась вместе со мной. Она всегда соответствовала моему уровню.

Настоящей магии не существует. Стоит вам научиться волшебному трюку, как он перестает быть волшебным. Это, возможно, печально, но придется привыкнуть.

Если математика, которую вы понимаете, кажется вам слишком легкой – это не потому, что она легкая, а потому, что вы ее понимаете.

Глава 5

Невидимые действия

Великим математиком становится, допустим, человек, родившийся в культуре, где все умеют считать только до пяти, и однажды осознавший, что можно пойти дальше.

Никто не изобретает сразу всю бесконечность чисел. Вначале математические идеи расплывчаты и неполны. Возникает ощущение, что можно дойти до 6 или даже 7, но его не удается высказать, так как мы не знаем слов, чтобы выразить 6 и 7. Более того, складывается впечатление, что можно продвинуться и еще дальше, но оно мимолетно, в него не верится до конца, кажется, что где-то что-то идет не так.

Вот что происходит, когда мы натыкаемся на ограничения языка.

Чтобы выразить то, что мы чувствуем, нужно придумать новые слова или по-новому использовать те, что уже есть. Облекая в слова наши мимолетные впечатления, мы можем зафиксировать мысль. Это необходимо, но для этого нужно время. Слова приходят нелегко и не сразу.

Начальная стадия открытия – это духовный опыт. Вы мыслите вне пределов языка. Мир озаряется. Вас посещают откровения. Вы видите то, что до сих пор было скрыто. Это настолько ново, что еще не имеет имени.

Это чудесное ощущение прекрасно вам знакомо. Вы уже испытывали его. Вспомните: впервые это случилось в день вашего первого великого математического открытия.

Когда вы были совсем малышом, еще не умеющим говорить, вы, вероятно, играли с примерно такой игрушкой:


Родители показали вам пример. Взяли фигурку и поместили в отверстие. Вам захотелось сделать так же. Вы взяли фигурку и захотели поместить в отверстие. Но у вас не получилось. Вы давили изо всех сил, но она не влезала.

Это вывело вас из себя. Родители сказали, что незачем так напрягаться, достаточно внимательно посмотреть: круглую фигурку в круглое отверстие, квадратную – в квадратное. Смотри, все же совсем просто, правда?

Вот только вы ничего не поняли в их объяснениях. У вас не было никаких шансов это понять. Слова «круглый» и «квадратный» ничего для вас не значили. Вам не хватало не словарного запаса, хуже – вам не хватало самих форм. Вы не умели их видеть. Круги и квадраты были для вас невидимы.

Все, что вы видели: родителям удавалось поместить фигурки в отверстия, а вам нет. Хотя вы были уверены, что совершаете точно те же действия, что и они. У них эти действия работали, а у вас нет.

Так происходило десятки раз. Это длилось месяцами, это было худшее разочарование в вашей жизни. Ваши родители были волшебниками, а вы нет. Это было несправедливо и жестоко. Вы часто приходили в ярость.



Поделиться книгой:

На главную
Назад