Всё же некоторые свойства криптона уникальны. При ионизации газообразный криптон испускает яркий белый свет, что позволяет использовать содержащие криптон лампы для вспышек в высокоскоростной фотографии. Способность криптона образовывать устойчивые фториды дала возможность создания криптон-фторидных лазеров. С 1960 по 1983 год криптон, точнее его нуклид 86Kr, был очень важен для измерений и метрологии – в то время в СИ метр определялся через длину волны оранжевой линии в спектре этого атома. Ну и, конечно, криптоном заполняют «неоновые» лампы (см. главу про неон). В отличие от газоразрядных ламп, заполненных неоном, лампы с криптоном дают бледно-розовое излучение.
37. Рубидий
История рубидия началась в 1859 году, когда Роберт Бунзен и Густав Кирхгоф скомбинировали в одном устройстве горелку Бунзена и призму Ньютона, расщепляющую пламя горелки на составляющие, создав устройство под названием «спектроскоп», и в аналитической химии началась новая эпоха.
Рубидий был одним из элементов, открытых непосредственно Бунзеном и Кирхгофом – при внесении в пламя горелки спектроскопа образца минерала лепидолита в спектре были обнаружены не соответствовавшие ни одному из известных элементов ярко-красные спектральные линии, что позволило дуэту немецких химиков предположить наличие в породе неизвестного элемента, после чего они выделили его из руды. Название рубидий происходит от латинского слова
С одной стороны, рубидий нельзя назвать «химической экзотикой» – это шестнадцатый по распространённости в земной коре химический элемент, его примерно столько же, сколько меди. С другой, в отличие от той же меди, рубидий не относится к минералообразующим элементам – он не образует собственных месторождений, а встречается только как примесь в минералах щелочных металлов. Большую часть сырья для производства рубидия извлекают из лепидолита, в котором он был обнаружен, хотя основная причина разработки лепидолитовых руд добыча не рубидия, а лития. Металлический рубидий получают из хлорида, восстанавливая металлическим кальцием при 750 °C и пониженном давлении.
Рубидий представляет собой один из щелочных металлов, населяющих первую группу Периодической системы. У всех щелочных металлов на внешнем (определяющем химические свойства) электронном уровне находится по одному электрону, который очень легко оторвать. Это делает щелочные металлы лёгкой добычей таких окислителей, как кислород, галогены или вода. Чем тяжелее щелочной металл, тем дальше единственный электрон внешнего слоя удалён от ядра, тем меньше электростатическое взаимодействие ядро атома – электрон и тем проще его оторвать, то есть рубидий гораздо активнее лития и натрия и заметно активнее калия. Так, если натрий и калий, контактируя с воздухом, просто медленно окисляются, образуя на своей поверхности плёнку, являющуюся смесью пероксидов, гидроксидов и карбонатов, от контакта с воздухом рубидий может самопроизвольно возгораться, горя ярко-красным пламенем. Хранить металлический рубидий еще сложнее, чем натрий или калий.
Рубидий – элемент чрезвычайно ценный для геологов. Рубидий в земной коре состоит из двух изотопов – стабильного 85Rb, на который приходится около 72%, и радиоактивного 87Rb, период полураспада которого составляет 49,2 миллиарда лет (это примерно в 11 раз больше геологического возраста Земли или в 3,5 раза больше возраста нашей Вселенной). Радиоактивный 87Rb претерпевает β-распад с образованием стабильного нуклида 87Sr. Этот процесс позволяет геологам проводить датировку минералов и горных пород, измеряя соотношение радиоактивного рубидия и продукта его распада.
Рубидий можно назвать «металлом-брахманом», его практически невозможно найти в повседневно окружающих нас технологиях, однако в исследованиях, в особенности в получении знаний чистой теоретической физики, он незаменим. Рубидий используется в атомных часах (хотя атомные цезиевые часы точнее, рубидиевые компактнее и проще устроены). Работа рубидиевых атомных часов основана на переходе между двумя сверхтонкими энергетическими уровнями нуклида 87Rb. За год ошибка хода рубидиевых атомных часов составляет не более 50 миллисекунд.
Рубидий также применяется для изучения необычных свойств такого агрегатного состояния материи, как конденсат Бозе-Эйнштейна. В этом состоянии материал охлажден до температур, близких к абсолютному нулю. Сильное охлаждение приводит к тому, что достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне. Теоретически существование такой формы материи было предсказано в 1925 году Альбертом Эйнштейном на основе работ индийского физика Шатьендраната Бозе. До конца ХХ века проверить теорию не было возможности – не существовало технологий, способных охладить вещество до таких температур. Первый конденсат Бозе-Эйнштейна был получен в 1985 году Эриком Корнеллом и Карлом Виманом из Университета Колорадо. Исследователи использовали газ из атомов рубидия 87Rb, охлаждённый до 1,7×10−7 К. За этот прорыв им была присуждена Нобелевская премия по физике 2001 года.
Рубидий не представляет особой опасности для человека – все его соединения хорошо растворимы и быстро выводятся. Хлорид рубидия применяли для изучения транспорта ионов калия по организму человека – при его введении в органы обмен веществ пускает его по тем же дорожкам, что и калий, и, отслеживая перемещения ионов рубидия, можно было составить представление о том, как перемещается калий. Тенденция накопления ионов калия опухолевыми клетками позволила разработать способ локализации опухолей мозга с помощью радиоактивного нуклида 82Rb. В 1970-е годы проводились исследования на тему, можно ли использовать хлорид рубидия как антидепрессант для человека (на обезьян он действовал именно так), однако единственное, что удалось выяснить, – то, что 23 грамма рубидия (в составе хлорида), которые принимали добровольные участники эксперимента в течение 75 дней, не вызвали в их организме никаких побочных эффектов.
38. Стронций
Моё близкое знакомство с соединениями стронция состоялось в 2011 году, когда я заживлял перелом лодыжки. Хирург, который вёл меня, сказал примерно то, что я знал и сам, – стронций будут включать в состав растущей костной ткани так же успешно, как кальций, но, не подходя по размеру кальциевым клеточным каналам, он не станет причиной развития некоторых побочных эффектов. Теоретически про возможность встраивания стронция в костную ткань и чем это может грозить, я знал где-то с 1986 года.
В 1787 в Университет Эдинбурга был доставлен необычный минерал из свинцовой шахты, расположенной около маленькой деревушки на берегах озера Санарт на западе Шотландии. Первоначально предполагалось, что эта руда содержит барий. Спустя три года Эдэр Кроуфорд опубликовал статью, что в руде содержатся вещества, образованные новым химическим элементом. Другой химик из Эдинбурга, Томас Хоуп, позже получил целый ряд соединений этого элемента, еще раз показав, что это не барий – соединения бария окрашивали пламя свечи в жёлто-зелёный цвет, в то время как вещества, выделенные из минерала, заставляли свечу гореть красным цветом. Наконец, в 1808 году руда попала в Лондон, где Хэмфри Дэви с помощью электролиза выделил из неё тот самый элемент – активный серебристый металл. Деревушка в Шотландии называлась Стронтиан, обнаруженный около неё минерал получил название «стронтианит», и элемент стал называться стронцием.
В наши дни красные вспышки салюта или красные сигнальные огни обязаны своим появлением переходам электронов между уровнями атома стронция в составе нитрата или карбоната – именно производные стронция чаще всего применяют для получения горящих красным цветом пиротехнических составов. Химические черты стронция очень похожи на свойства его соседей по группе, щелочноземельных металлов – кальция и бария. Блестящая серебристая поверхность стронция быстро тускнеет и желтеет при контакте с воздухом из-за быстрых реакций с кислородом. Естественно, высокая химическая активность стронция позволяет ему существовать в земной коре только в виде соединений. Кроме стронтианита (карбоната стронция), известной стронциевой рудой является голубой целестин, сульфат стронция, который некоторые жители сельской области в английском графстве Глостер использовали, чтобы обозначить дорожки в садах.
Если не считать применения в пиротехнических составах, практических областей применения у стронция немного – карбонат стронция можно было найти в кинескопах телевизоров с электронно-лучевыми трубками, из ферритов стронция можно изготавливать постоянные магниты, а металлический стронций применяют в получении урана. Один из нуклидов стронция – радиоактивный 90Sr имеет дурную репутацию. Период полураспада этого атома составляет 29 лет, и он относится к тем радионуклидам, которые особенно опасны для человека (радиоактивные атомы с большими периодами полураспада дают малоинтенсивное излучение, которое не опасно для живых организмов, короткий период полураспада способствует быстрому разрушению радиоактивных частиц, а вот нуклиды, период полураспада которых соотносим со временем жизни человека, наиболее опасны). Образовавшийся в результате ядерных испытаний с 1945 по 1970-е годы, 90Sr по системе пищевых цепей: трава – домашние травоядные – молочные продукты попадал в организм людей, и уже исследования 1950-х годов нашли этот радионуклид в молочных зубах. Стронций может накапливаться и в костях, и если стабильные изотопы стронция заживляют сломанную кость без последствий, применяются в лечении остеопороза, то внедрение в костную ткань 90Sr обеспечивает человека «внутренним» источником радиоактивного излучения, что, конечно, печально. В 1986 году после аварии на Чернобыльской АЭС в окружающую среду попало значительное количество 90Sr.
У стронция есть и ещё одно интересное применение – измерение изотопного состава стронция, накопленного в костях, и информация о том, что в растительной пище содержание стронция выше, чем в пище животного происхождения, позволяет антропологам и археологам делать выводы об особенностях питания наших предков. Например, в 2014 году австрийские антропологи, определив соотношение кальция и стронция в костях гладиаторов, предположили, что труженики арены, крови и песка были вегетарианцами, потреблявшими только ячмень, бобы и сушёные фрукты (
39. Иттрий
Ещё три десятка лет назад даже немногие химики могли рассказать что-то интересное про иттрий. Глядя на Периодическую систему, можно было сказать, что иттрий находится в побочной подгруппе третьей группы между скандием и лантаном. Кто-то мог вспомнить, что иттрий наряду с иттербием, эрбием и тербием назван в честь небольшого шведского города Иттербю, в окрестностях которого была обнаружена руда иттербит (помимо прочего из неё выделили скандий, о чем речь шла выше).
Кто-то мог припомнить историю открытия иттрия – то, как финский химик Юхан Гадолин выделил из иттербита оксид элемента, который, как показал позже Карл Мосандер, являлся смесью оксидов иттрия, эрбия и тербия. Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, впервые был получен в 1828 году Фридрихом Велером. Близость свойств и истекающая из этого сложность разделения редкоземельных элементов и была причиной того, что долгое время эти элементы практически не привлекали внимания учёных.
Ситуация изменилась в 1986 году, когда работавшие в IBM Георг Бердноц и Карл Мюллер обнаружили, что оксид лантана-бария-меди (La5−xCu5O5(3−y)) становится сверхпроводимым при рекордно высокой температуре – 35 Кельвинах (
В 1987 году Мо-Куен Ву и Пол Чу, объединив усилия своих исследовательских групп из Университетов Алабамы и Хьюстона, выяснили, что оксид иттрия-бария-меди (YBa2Cu3O7, часто его упоминают просто как YBCO) становится сверхпроводимым ещё при более высокой температуре – 95 Кельвинах (–178 °C) (
С общежитейской точки зрения и –238°C, и –178°C сложно назвать высокими температурами, однако открытие Ву и Чу означало, что для поддержания сверхпроводящего состояния YBCO достаточно охлаждать его жидким азотом, в то время как для перевода оксида лантана-бария-меди в сверхпроводящее состояние нужно было охлаждать его более дорогим жидкими гелием. Конечно, главная цель всех исследователей, занимающихся поиском сверхпроводящих материалов, – вещество, которое сохраняло бы сверхпроводящее состояние хотя бы при комнатной температуре, но пока эта цель недостижима.
Применение YBCO могло бы значительно удешевить ряд современных технологий, основанных на применении сверхпроводимых материалов, например, магниты МРТ можно было бы охлаждать жидким азотом, что понизило бы расходы на эксплуатацию этих аппаратов, но внедрению этого соединения иттрия в повседневные технологии препятствует ряд причин. Во-первых, для того, чтобы потерять электрическое сопротивление при 95 K, в YBCO должно приходиться чуть меньше семи молей атомов кислорода на один моль атомов иттрия, а такое соотношение не так просто достичь. Во-вторых, YBCO жёсткий и хрупкий, а для практического применения было бы желательно его применение в виде гибких плёнок или эластичных проводов. Исследователи пытаются разработать сверхпроводящие гибкие и эластичные композиты, содержащие YBCO, но пока значительных успехов в этой области не достигнуто.
Другая область применения иттрия – синтетические минералы, наиболее известным из которых является иттрий-алюминиевый гранат (Y3Al5O12, YAG;
В настоящее время производные иттрия также применяются в топливных ячейках, вырабатывающих энергию. Небольшое количество оксида иттрия добавляют к оксиду циркония, получая керамический материал «иттрий-стабилизированный оксид циркония» (
40. Цирконий
Наверное, большая часть населения нашей страны (и других стран постсоветского пространства) узнала о существовании циркония в 1990-е годы, когда воодушевлённые рекламой, вложенной в уста любимых артистов: «
На деле изделия из циркония стали популярными в изготовлении ювелирных изделий гораздо ранее – с середины 1970-х годов. Речь, правда, не идёт о металлическом цирконии, а о синтетической кубической форме диоксида циркония (ZrO2), технология выращивания которой была разработана в Физическом институте Академии наук СССР («
Название элемента циркония происходит от персидского слова «заргун» – название золотисто-жёлтого камня, известного с античных времен как «циркон» – ортосиликата циркония ZrSiO4. Кроме золотистых цирконов известны и сероватые, и розовые, и красные, и бесцветные формы.
В Средние века интенсивно преломлявшие свет бесцветные кристаллы циркона ошибочно принимали за отличающиеся меньшей твёрдостью «алмазы второго сорта», украшали ими ювелирные изделия и даже властные регалии. То, что циркон не имеет отношения к алмазам, стало ясно в 1789 году, когда немецкий химик Мартин Клапрот проанализировал один из таких камней и сделал вывод о наличии в нём нового элемента, который и назвал «цирконием» по названию минерала. Металлический цирконий был получен спустя 35 лет Йенсом Берцелиусом. В наши дни фианиты и циркониты также применяются в ювелирном деле – их коэффициент преломления выше, чем у алмазов, и они блестят лучше обычных алмазов. От алмазов кубический диоксид циркония отличается меньшей твердостью, составляющей 8,5 единиц по шкале Мооса (у алмаза она равна 10) и большей плотностью – 6,0 г/см3 (плотность алмаза 3,52 г/см3).
В наше время цирконий применяется и в виде металла, и в виде соединений. Этот элемент можно найти в составе керамики, литейном оборудовании, стекле и сплавах. Песок из оксида циркония применяется для изготовления теплоустойчивой футеровки плавильных печей, ёмкостей для расплавленного металла и литейных форм. Добавки ванадия и празеодима к оксиду циркония позволяет получать жёлтые и синие пигменты для окраски керамики и кафельной плитки.
Термическая устойчивость материалов из оксида циркония исключительна – раскалённый до температуры красного каления тигель из оксида циркония можно резко охладить водой, не боясь, что он треснет. Оксид циркония можно найти в ультрапрочной керамике, изделия из которой можно заточить острее, чем изделия из стали, именно из неё делают уже привычные для наших кухонь керамические ножи. Ежегодное мировое производство оксида циркония составляет около 25 000 тонн, и, помимо керамики и имитации алмазов, это вещество используется в косметике, для изготовления антиперспирантов и даже для производства упаковки продуктов питания.
Поверхность металлического циркония окислена, это придаёт металлу твердость и устойчивость к химическому воздействию, что оказывается полезным не только для изготовления химических реакторов, но и для медицины. Цирконий и его сплавы применяются в протезировании тазобедренных суставов. Из сплава алюминия с цирконием, прочного и одновременно лёгкого, делают рамы для гоночных велосипедов, которые в последнее время заменяются композитными материалами. Особую популярность металлический цирконий приобрёл в конце 1940-х годов, когда стало ясно, что это идеальный металл для изготовления внутренней поверхности ядерных реакторов – этот металл не подвергается коррозии при высоких температурах, не поглощает нейтроны с образованием радиоактивных изотопов. До настоящего времени потребителем большей части произведённого металлического циркония является атомная промышленность. Руды циркония содержат незначительные примеси гафния (1-3%). Благодаря близости химических свойств циркония и гафния эти металлы чрезвычайно тяжело разделить, но для применения циркония в атомной энергетике даже мельчайшие примеси гафния должны быть удалены – гафний в отличие от циркония активно поглощает нейтроны.
Можно упомянуть еще два интересных соединения циркония – ниобий-циркониевый сплав становится сверхпроводимым при температурах ниже 35 K (—238 °C), а вольфрамат циркония (ZrW2O8) при нагревании уменьшается в объёме пока, будучи нагретым до 700 °C, не разлагается на оксид циркония и оксид вольфрама.
Кто-то после прочтения этой главы может задаться мыслью, а что же не так с циркониевыми браслетами? Всё в порядке. Выглядят они эстетично. Химическая инертность циркония и то, что этот металл ни в какой форме не играет биологической роли, не повредит вашей коже, так что его вполне можно носить. Только корректировать артериальное давление этот браслет, конечно, не может.
41. Ниобий
Ниобий назван в честь Ниобы, дочери Тантала, имя которого послужило для названия элемента, расположенного в той же группе, что и ниобий. Если кто помнит греческую мифологию, Тантал попробовал вести себя с богами-олимпийцами на равных, за что обречён в посмертии терпеть муки, которые мы называем танталовыми.
Похоже, что представители этой семьи отличались повышенным уровнем гордыни и весьма скромной способностью к обучаемости. Ниоба стала уверять, что её дети – ниобиды прекраснее и мудрее детей, рожденных от связи титанессы Лето и Зевса (Артемиды и Аполлона), после чего обитатели Олимпа, вероятно, не желая проверять, какие патологические формы гордыня примет у внуков Тантала и детей Ниобы, просто решили пресечь дерзкий род. Стрелы Аполлона перебили всех ниобидов, а Ниоба волею богов превратилась в каменный памятник самой себе (до сих пор турецкую гору Маниса, из-под которой текут ключи, известную ранее как Сигил, показывают туристам как окаменевшую дочь Тантала).
То, что в Периодической системе Ниоба и Тантал находятся в соседних клетках, неудивительно. И ниобий, и тантал совместно содержатся в минерале колумбите, смешанном оксиде, в состав которого входят также железо и марганец. Химические и физические свойства тантала и ниобия настолько близки, что до появления экстракционных методов разделения тантала и ниобия у химиков-неоргаников была шутка о том, что разгружать вагон с углём в дождь легче и продуктивнее, чем отделять тантал от ниобия.
Сначала выделенный из минерала-колумбита в 1801 году английским химиком Чарльзом Хэтчетом элемент назвали по минералу колумбием. В 1802 году швед Андерс Густав Экеберг открыл элемент, который назвал танталом. Свойства «колумбия» и тантала были идентичными, в результате чего долгое время считалось, что в обоих случаях речь идёт об одном и том же элементе. Только в 1844 году немецкий химик Генрих Розе установил, что колумбий и тантал – разные элементы, попутно и переименовав их в ниобий, лишний раз подчёркивая их сходство. В США и Великобритании ниобий назывался колумбием (символ Cb) до официального одобрения названия «ниобий» ИЮПАК, однако и далее по инерции старое название элемента некоторое время продолжало применяться. Последняя статья, в которой я обнаружил старое название ниобия, датирована 1954 годом (
В отличие от Ниобы, дочери Тантала, ниобий не ищет сомнительных приключений. В металлическом состоянии он крайне нереакционноспособен. Как и тантал, не окисляется даже действием безжалостной к золоту царской водки и сохраняет инертность по отношению к поту. Это обстоятельство наряду с тем, что помощью анодного окисления на поверхности ниобия можно создать тонкий слой оксида, который, действуя как дифракционная решётка, будет окрашивать металл в плавно переходящие друг в друга цвета, позволяет использовать ниобий для изготовления ювелирных изделий и чеканки металлических монет. C 2003 года Австрия отчеканила шестнадцать типов сувенирных монет номиналом в 25 Евро, в которых внутри серебряного диска находится окрашенный с помощью электрохимических методов ниобиевый диск.
Одно из самых известных областей применения металлического ниобия в наше время, наверное, сверхпроводящий ниобий-титановый сплав. Это сплав, точнее интерметаллид, становится сверхпроводимым при температурах ниже 10 К (–263 °С). Это свойство сплава применяется для изготовления сверхпроводящих катушек магнитов. На создание Большого адронного коллайдера было потрачено 1200 тонн кабеля из сплава ниобий-титан. Во время работы ниобийсодержащие магниты БАК охлаждаются до 1,9 K. Ниобий-титановые сверхпроводящие магниты используются и в некоторых моделях установок для МРТ.
Ниобий – полезный металл для изготовления сплавов специального назначения. Всего 0,1% ниобия, добавленного в сталь, достаточно для значительного повышения её прочности. Этот металл также часто входит в состав некоторых термостойких сплавов, применяющихся для изготовления аэрокосмической техники. Какое-то время из-за высокой температуры плавления (2468 °С) ниобий применялся в качестве материала для нитей лампочек накаливания, однако позже был заменён еще более тугоплавким вольфрамом.
Исследований, посвященных неорганической химии ниобия, не так уж много, но этот элемент крайне важен для химии органической и металлоорганической. В 1979 году Ричард Шрок издает первый обзор, посвящённый химии алкилиденовых комплексов ниобия и тантала – комплексов, в которых металлы связаны с атомом углерода двойной связью (общую структуру можно отобразить следующим образом LxM=C<;
42. Молибден
Один из моих любимых металлов – молибден. Это не только и не столько потому, что его номер в Периодической системе в соответствии с книгами Д. Адамса совпадает с ответом на главный вопрос Жизни, Вселенной и всего такого прочего. В моей исследовательской группе изучают органические и фосфорорганические производные металлов группы хрома, и с молибденом временами получаются наиболее интересные результаты. Хотя, если учесть, что молибден позволил уже трём моим ученикам защитить кандидатские диссертации, возможно, что для нас он и действительно был тем самым ответом хотя бы на вопрос о смысле научного поиска.
Молибден стоит в шестой группе между хромом и вольфрамом. В виде простого вещества молибден представляет собой серебристо-белый металл. Неожиданно, но название молибдена на греческом языке означает «свинец». Так получилось из-за того, что минерал молибденит (MoS2), из которого впервые удалось выделить оксид молибдена, путали со свинецсодержащим минералом – свинцовым блеском (PbS), а оба этих минерала, в свою очередь, не могли отличить от графита (свинцовые карандаши, которыми пользовались до карандашей с графитовым грифелем, изготавливали из свинцового блеска). В итоге какое-то время молибденитом называли и сульфид молибдена, и сульфид свинца, и графит. Как отдельный элемент молибден был открыт в 1778 году, когда Карл Шееле смог получить и молибденовую кислоту, и оксид шестивалентного молибдена. В чистом виде – в виде металла, не содержащего посторонних примесей, молибден удалось выделить Берцелиусу.