Паоло Бартоломео
Достижения мозга: как этот орган стал самой сложной и влиятельной частью тела человека
Dernières nouvelles du cerveau by Paolo Bartolomeo
© Editions Flammarion, Paris, 2023
© Бондаревский Д. В., перевод на русский язык, 2023
© Оформление. ООО «Издательство «Эксмо», 2024
Введение
В течение последних тридцати лет быстрое развитие методов диагностики состояния мозга значительно развило наши представления о когнитивных функциях – способности познавать и взаимодействовать с миром. Эта эволюция также способствовала тому, что специалисты в области нейронаук проявили интерес к тем сферам, которые раньше не привлекали их внимание. Мы присутствуем при появлении таких новых междисциплинарных направлений нейронаук как нейроэстетика, нейроэтика, нейроправо и другие. К сожалению, не обошлось и без многочисленных злоупотреблений: псевдоученые используют модную приставку «нейро» по любому поводу на различных научных конференциях или в интернете.
С учетом этих злоупотреблений, необходимо учитывать ограниченность методов визуализации (методы, позволяющие рассмотреть структуры мозга). Также следует признать часто недооцениваемую значимость исследований, которые проводятся пациентам, страдающим поражениями головного мозга. Такие исследования иногда позволяют установить причинную связь между потерей когнитивных функций и областью пораженного мозга (или целой нейронной схемы, частью которого он является; имеется в виду совокупность приходящих нервов, участка мозга и отходящих нервов). И наоборот, при изучении здорового головного мозга методами нейровизуализации дело ограничивается выявлением взаимосвязей между деятельностью его отдельных участков и когнитивными функциями. Однако благодаря новым способам анализа поведения человека и методам визуализации мы способны теперь проводить более точные исследования у пациентов, страдающих поражениями головного мозга, что открывает широкие перспективы дальнейших научных изысканий.
В этом контексте, способствующем научным открытиям и прогрессу нейронаук, в рассчитанной на широкую публику литературе иногда прослеживается тенденция преувеличивать значимость результатов исследований. Такая стратегия увеличивает тиражи, но в то же время негативно влияет на их понимание. К тому же пандемия
Как практикующий невролог и нейроученый, в этой книге я предпринял попытку поделиться своим собственным видением недавних достижений в нейронауках. На следующих страницах расскажу о некоторых из этих открытий и познакомлю с базовыми представлениями о работе мозга. Так я надеюсь помочь читателям лучше разобраться в претендующих на сенсационность многочисленных публикациях в прессе и сформировать критическое отношение к информации такого рода.
Глава 1
Для чего нужен мозг?
Существует расхожее представление о том, что мозг – это самый сложный объект во Вселенной. С точки зрения науки, такое утверждение кажется довольно сомнительным. Действительно, можно ли претендовать на знание всех объектов во Вселенной? И даже если это так, то как сравнивать их сложность? Тем не менее это клише отражает огромный интерес к тайнам крайне своеобразного органа, напрямую связанного с нашей психической жизнью. Биологическое значение мозга сразу же становится очевидным при подсчете энергетических затрат: этот орган, вес которого составляет приблизительно 1,4 килограмма, то есть всего лишь 2 % от общей массы тела, потребляет 20 % всей его энергии. Даже в состоянии покоя – при полном отсутствии интеллектуальной деятельности! Можно ломать себе голову в попытках доказать сложную теорию или предоставить мыслям свободу, но количество энергии, востребованной мозгом, существенно не изменится.
Еще более энергозатратным по сравнению с мозгом взрослого человека является мозг новорожденного: он потребляет почти две трети всей энергии тела. Где же мозг находит такое количество энергии? Печень и мышцы накапливают ее в форме углеводов (имеется в виду гликоген) и в виде жировой ткани, содержащей запас жирных кислот, но мозг выбирает другое решение. Свободное пространство в черепно-мозговой коробке настолько ценное, что для таких запасов там просто нет места. Вот поэтому функцию постоянного снабжения мозга энергией берет на себя все остальное тело. Можно ли считать мозг «эгоистом»? Парадокс заключается в том, что, как мы скоро увидим, мозг сам наделяет нас способностью изучать окружающую среду в поисках источников энергии.
Инструмент взаимодействия с окружающей средой
Как понять эту напоминающую своей консистенцией желе массу, так далеко спрятавшуюся и защищенную черепной коробкой? У нас есть возможность начать все с самого начала и заняться изучением происхождения мозга в эволюции видов (речь идет о филогенезе), а также его созревания от стадии эмбриона до взрослого человека (речь идет об онтогенезе).
Первые организмы, жившие на Земле несколько миллиардов лет тому назад, были очень простыми и, разумеется, мозга у них не было, но они уже реагировали на изменения окружавшей их среды. По всей видимости, принимать решения способны даже простейшие одноклеточные организмы без мозга как, например, живущая в желудочно-кишечном тракте бактерия
В ходе эволюции появились все более разнообразные и сложные решения, связанные с необходимостью реагировать на собранную информацию об окружающей среде. У многоклеточных организмов на распознавании внешних событий и реализации двигательной реакции стали специализироваться отдельные клетки. Осуществляя начальную когнитивную обработку, эти клетки сформировали первичную нервную систему, которая была рассеяна по всему организму, как у современных медуз.
Энергетические, химические и цифровые способы передачи информации, механизмы приспособления
Между тем, с эволюционной точки зрения, на фоне усложнения нервной системы, такой подход показал свои недостатки: по мере развития организма нервные клетки все больше удаляются друг от друга. Как обеспечить их взаимодействие в условиях дистанцирования? Приблизительно 500 миллионов лет назад произошло впечатляющее «обновление», благодаря которому стал возможен быстрый и точный обмен информацией между удаленными клетками – посредством электрической связи, которая называется потенциалом действия (мы вернемся к этому явлению в другой главе). У потенциала действия есть «цифровой» формат: он присутствует или отсутствует, что соответствует двоичной системе счисления. Таким образом, передаваемая информация меньше подвержена затуханию из-за внешних помех, когда сигнал проходит большие расстояния в организме. Более того, он очень быстро перемещается по нервной системе, со скоростью до 100 м/с. Эти два важных качества для организмов, находящихся в пространстве на расстоянии друг от друга.
Появление потенциала действия создало благоприятные возможности для передачи информации в многоклеточном организме. Этот процесс послужил основой для
Объемный орган
Первые позвоночные поедали другие организмы: растительные или животные. Эти морские хищники обладали примитивным мозгом и вначале идентифицировали свою добычу главным образом с помощью обоняния. Затем они распространились на суше. Примерно 80 миллионов лет назад на Земле появились гораздо более опасные хищники – приматы, к числу которых относимся и мы. Приматы обнаруживали добычу издалека благодаря зрению. Расположенные у приматов спереди глаза связаны с более объемным и более сложно устроенным мозгом по сравнению с мозгом их биологических предков. Этот крупный мозг требует значительных затрат: помимо существенного расхода энергии, он нуждается в интенсивном развитии, продолжительность которого выходит за пределы периода внутриутробной жизни. Вот почему возникает потребность в родителях, которые должны присматривать за новорожденным и кормить его в течение длительного периода, так как он полностью зависит от них сразу же после рождения. Необходимость постнатального (после рождения) развития мозга обусловлена тем, что вмещающая полностью сформированный мозг черепная коробка была бы слишком объемной, чтобы пройти через узкий канал, предназначенный природой для рождения. Мозг также использует куда более богатый опыт, чем ограниченный опыт находившегося в матке эмбриона. Поэтому те преимущества, которые крупный мозг дает приматам, намного превосходят связанные с ним высокие затраты: несмотря на ряд корректировок, касающихся соотношения затрат и пользы, в ходе эволюции у гоминидов прослеживается тенденция к увеличению его объема (рисунок 1).
Дело в том, что после продолжавшегося в течение 2 миллионов лет роста мозг уменьшился и от объема 1 550 см³, который был у наших предков кроманьонцев, за последние 20 000 лет он сократился до нынешних 1 350 см³. Следует отметить, что самый крупный мозг, который был у живших по всей Евразии в период с 120 000 по 35 000 гг. до н. э. наших предков – неандертальцев (он доходил до 1 680 см³), не спас их от вымирания (рисунок 2). Для самых крупных мозгов
Питание – ключевой фактор в развитии мозга
Внутриматочное развитие центральной нервной системы у человека проходит через несколько основных этапов. Как и у всех позвоночных, эмбрион развивается из трех зародышевых листков (от внутреннего к наружному: эндодерма, мезодерма, эктодерма). Центральная нервная система образуется из эктодермы, которая на третьей неделе после зачатия утолщается и складывается в нервную пластинку, а та, в свою очередь, сворачиваясь, формирует нервную трубку (рисунок 3). Затем эта трубка сегментируется, и ее передняя часть образует три мозговых пузыря, которые дифференцируются для формирования структур мозга (рисунок 4). В конце этого сложного цикла мозг покрывают шесть слоев коры больших полушарий, которая есть только у млекопитающих.
У взрослого человека площадь этих слоев достигает 2,6 кв. м! Они вмещаются в черепную коробку только благодаря плотной укладке, чем и объясняются многочисленные извилистые складки головного мозга человека, именуемые мозговыми извилинами.
У большинства животных передний отдел центральной нервной системы (головной мозг позвоночных) расположен очень близко от входа в пищеварительную систему (у позвоночных животных это рот). Эта анатомическая близость подчеркивает изначальную важность мозга для выбора пищи. Итак, между мозгом и питанием существует тесная связь.
Эта связь подтверждается тем фактом, что у млекопитающих, которые едят фрукты, например, у макак-резусов, мозг обычно крупнее, чем у их близких родственников, питающихся только листьями, например, у принадлежащих к роду широконосых обезьян ревунов. В лесах фрукты встречаются реже, чем листья, поэтому плодоядным приходится проявлять больше усилий для обнаружения и распознавания еды, а также планировать сбор урожая по времени (так, например, цвет фруктов указывает на то, что они спелые по мере прошествия дней). С другой стороны, сахара спелых фруктов перевариваются легче, чем целлюлоза листьев. Вот поэтому пищеварительная система у плодоядных, как правило, меньше развита по сравнению с другими животными. Простая и небольшая пищеварительная система потребляет меньше энергии, в результате чего мозг извлекает пользу из неизрасходованной энергии. Что является наглядной иллюстрацией того, как когнитивные компетенции (здесь речь идет о внимательности и зрительном поиске с целью обнаружения фруктов, а также о мыслительной обработке формы и цветов для выбора лучших плодов) могут выгодно заменить менее «интеллектуальные» функции типа переваривания сложных углеводов.
Как считает американский нейробиолог Джон Оллман, увеличению объема нашего мозга (он увеличился приблизительно на 24 % в период между 100 000 и 50 000 гг. до нашей эры) способствовал такой фактор, как использование огня. Считается, что гоминиды могли использовать огонь 1,8 миллионов лет назад. Действительно, тепло разбивает на фрагменты белки термически обработанной пищи, и наши предки воспользовались таким образом питательными веществами, которые легче усваиваются организмом. Более того, термическая обработка создает благоприятные условия для здорового питания, разрушая растительные токсины и убивая патогенные микроорганизмы. В результате она значительно увеличила имеющиеся у мозга ресурсы. Овладение огнем также помогло решить проблему сохранения температуры тела в холодное время: в некотором смысле крупный мозг человека вполне эффективно заменил густую шерсть, которой покрыто большинство других млекопитающих!
Другой типичный элемент нашего биологического вида состоит в значительном развитии навыков общения, послуживших основой для возникновения совокупности всех взаимосвязанных отношений, которые мы обычно называем «культурой» в широком смысле. В сравнении с другими млекопитающими мозг приматов вообще и человека в частности отличается непропорциональным развитием лобных долей – участков, расположенных в передней части мозга (рисунок 5). В эволюционной линии человека такое развитие сопровождалось растущим усложнением в организации социального взаимодействия. Эта новая способность дала индивидам огромное преимущество для самозащиты и эта новая способность дала людям огромное преимущество в защите и преодолении изменений окружающей среды через совместный труд, общение и передачу знаний с помощью речи.
Орган, предсказывающий будущее
Особая важность мозга в реакции человека на изменения в окружающей среде может свидетельствовать о его принципиальной роли в
Между тем, мозг, который ограничивался бы исключительно внешними стимулами, очень плохо координировал бы наше взаимодействие с событиями. Канадский нейробиолог Патрик Каванах приводит пример теннисиста, который должен ударить ракеткой по мячу, летящему со скоростью 40 м/с. Если бы спортсмен дожидался того момента, когда мяч окажется рядом с ним, чтобы поставить руку в соответствующее положение, то он никогда бы не успевал ударить ракеткой по мячу. За десятую долю секунды, которая нужна ему, чтобы определить положение мяча и отреагировать, мяч пролетел бы на четыре метра больше и был бы слишком далеко от ракетки. Если бы рука теннисиста двигалась с целью перехватить мяч, то это значило бы, что его мозг
Для эффективного взаимодействия с окружающей средой мы должны обладать способностью предвидеть последствия как собственных движений, так и движений других людей. Это и есть главная причина появления мозга у человека! Нейробиолог Родольфо Льинас приводит яркий пример с небольшими морскими организмами – асцидиями. Благодаря своему мозгу молодая асцидия бродит по морю в поисках скалы, к которой могла бы прирасти на всю оставшуюся жизнь. Как только она прикрепляется к такой скале, мозг ей больше не нужен. В результате она… переварит его за ненадобностью! Так взрослая асцидия значительно экономит энергетические затраты по поддержанию мозга, которым она больше не пользуется.
Моделирование реальности
Представление о том, что основная роль мозга у позвоночных якобы заключается в том, чтобы предвидеть будущее, недавно получило широкое теоретическое обоснование. В соответствии с гипотезой
В историческом отношении корни этой теории могут восходить к немецкому физику Герману фон Гельмгольцу (1821–1894), который считал, что восприятие является ничем другим, как проверкой гипотез. По его мнению, мозг в той или иной мере действует как ученый, который выдвигает гипотезу (модель) и проверяет эмпирическим (посредством познания через органы чувств) путем ее состоятельность посредством контролируемого эксперимента. Так, например, когда я встречаю какого-нибудь человека, то делаю выводы о его намерениях по отношению ко мне, наблюдая за его лицом и мимикой. У него неприступное выражение лица и он нахмурил брови? По всей видимости, я ему малосимпатичен. Он широко улыбается? Скорее всего, он будет вести себя довольно доброжелательно по отношению ко мне… Взаимодействуя с человеком, я проведу эксперимент, результаты которого подтвердят или опровергнут эту гипотезу, или позволят мне скорректировать ее, чтобы затем проверить ее в новом варианте.
Так что хотя наш мозг и не является «самым сложным объектом во Вселенной», тем не менее он наделен мощной силой: благодаря только что описанным процессам, он минимизирует неприятные сюрпризы и возможные риски, возникающие в повседневной жизни.
Глава 2
Краеугольные камни мозга
В 1906 году итальянец Камилло Гольджи и испанец Сантьяго Рамон-и-Кахаль стали лауреатами Нобелевской премии по физиологии и медицине, разделив ее за работы по структуре нервной системы. Разумеется, оба ученых были на седьмом небе от счастья, но Гольджи вызвал всеобщее удивление во время своего выступления на церемонии вручения: вместо того чтобы признать вклад Кахаля, он подверг резкой критике теорию коллеги, чтобы защитить свою собственную теорию, которая между тем уже устарела. Какая же муха его укусила?
Давно известно, что все биологические ткани (печень, почки, легкие и так далее) состоят из клеток, имеющих ядро и окруженных мембраной. Между тем мозг продолжал сбивать с толку ученых: с помощью микроскопа можно было разглядеть не эти пресловутые клетки, а хаотичное и непонятное нагромождение волокон и ядер. После многих лет упорной работы Гольджи в одиночку разработал так называемую «черную реакцию» – метод окрашивания отдельных клеток с использованием нитрата серебра, позволяющий получить представление о структуре нервной ткани. В отличие от обычных красителей, проникающих во все клетки, нитрат серебра пропитывал только небольшую часть нервных клеток (от 1 % до 5 %) по причинам, которые до настоящего времени все еще остаются неразгаданными. Некоторые окрашенные клетки резко выделялись среди других, которые оставались невидимыми. В результате Гольджи удалось добиться отличного изображения нервных клеток (рисунок 7).
На этих изображениях представлены темные скопления со странными отростками. Гольджи не догадался о то, что это отдельные клетки; он думал, что их отростки сливаются в непрерывную сетку, образуя единое целое с несколькими ядрами, – так называемый синцитий. Вот эту ошибочную теорию он и защищал в Стокгольме на вручении Нобелевской премии. Что касается Кахаля, то он понял, что нервные клетки были отдельными образованиями: он пришел к этому выводу в 1880-е годы, изучая метод, открытый Гольджи, что и привело Нобелевский комитет к решению о присуждении премии обоим ученым. Вскоре после наблюдений Кахаля эти клетки получили название «нейроны».
Диалог клеток
Сегодня мы знаем о нейронах гораздо больше. Одним из фундаментальных их свойств является способность вступать в контакты между собой посредством отростков, дендритов и аксонов. Подобно ветвям дерева, дендриты нейрона разветвляются вокруг центральной части, которая называется клеточным телом, с целью установления контакта с другими нервными клетками и получения от них информации. Другой отросток, который называется аксоном, передает затем эту информацию другим нейронам. Речь идет об открытом Кахалем законе «динамической поляризации»: информационный поток проходит только в одном направлении от одного полюса нейрона (один из его дендритов или клеточное тело) к другому (аксону), откуда он передается другим нейронам (рисунок 8). Место контакта между двумя нейронами называется
Длина аксонов доходит до нескольких сантиметров, что в масштабах клетки является огромными размерами. Этот показатель даже может достигать длины один метр в случае с аксонами, управляющими работой мышц, – они идут от головного мозга к спинному мозгу. Аксоны часто собираются в большие пучки и образуют таким образом настоящие «автотрассы», обеспечивающие быструю коммуникацию между удаленными участками мозга. Такое объединение аксонов в один пучок представляет собой уникальную особенность мозга и обусловливает его поразительную способность быстрой обработки информации.
Функционирование синапсов
На идущем сверху вниз срезе мозга человека видна типичная картина: сероватая кора с многочисленными извилинами, которая покрывает другие структуры, включая беловатый слой – так называемое «белое вещество» (рисунок 9). В то время как белое вещество состоит главным образом из пучков аксонов, кору мозга образуют клеточные тела и дендриты. У человека кора мозга объединяет приблизительно 16 миллиардов нейронов. Каждый нейрон устанавливает как минимум одну тысячу контактов с другими нейронами – поэтому число синапсов в мозге человека намного превышает общее число звезд в галактике Млечный Путь.
Как эти синапсы передают информацию? Давайте изучим обмен, который происходит между аксоном первого нейрона и дендритом второго нейрона. Окончание аксона и дендрит образуют между собой крошечное пространство в несколько десятков нанометров, которое называется синаптической щелью (рисунок 10).
В окончании аксона содержатся пузырьки, наполненные молекулами –
Между возбуждением и торможением
Какую роль играет впоследствии эта разность потенциала на уровне постсинаптического нейрона (нейрон, к которому приходит сигнал)?
Одни нейромедиаторы, известные как возбуждающие типа глутаминовой кислоты, способствуют уменьшению разности потенциала (деполяризация); другие нейромедиаторы, известные как блокирующие типа гамма-аминомасляной кислоты (ГАМК), приводят к ее увеличению (гиперполяризация). Нейрон является не только ретранслятором сигнала, передаваемого через синапс, – он постоянно суммирует поступающие на его дендриты сигналы, чтобы «решить», будет ли он передавать в свою очередь разность потенциала действия дальше или нет. Когда разность потенциала падает ниже порогового уровня через несколько синапсов, то нейрон отправляет потенциал действия через свой собственный аксон и процесс начинается сначала: второй нейрон передает сигнал третьему нейрону и т. д. От одного синапса к другому нейроны образуют таким образом функциональные соединения с другими нейронами. В постоянном взаимодействии нейромедиаторов и электрических сигналов они получают и передают данные по мозговым цепям, размер которых варьируется от нескольких клеток до крупных сетей, полностью охватывающих весь мозг.
Гармоничный баланс между торможением и возбуждением
Поддержание баланса между торможением и возбуждением обеспечивает нормальное функционирование нейронных сетей.
При гиперполяризации мембраны нейрона тормозные нейромедиаторы затрудняют ее деполяризацию. В результате ингибируется функционирование постсинаптического нейрона, так как ему становится сложнее запустить активацию потенциала действия. Если процессы торможения не протекают должным образом, то возникает риск чрезмерной и неконтролируемой разрядки нейронов, что приводит в худшем случае к парциальным или общим эпилептическим припадкам.
Вот поэтому противоэпилептические препараты направлены на восстановление физиологического равновесия между возбуждением и торможением путем регулирования открытия ионных каналов, поддержания тормозного действия ГАМК или уменьшения возбуждающего действия глутаминовой кислоты. Такие антидепрессанты нового поколения, как флуоксетин или сертралин, нейтрализуют повторный захват нейромедиатора серотонина. В результате серотонин остается свободным в синаптической щели и действует дольше.
Тщательно отобранные синапсы
В отличие от других клеток нашего тела, которые беспрестанно отмирают и заменяются новыми, нейроны мозга почти никогда, за редким исключением, не восстанавливаются. Мы сохраняем одни и те же нейроны на протяжении всей жизни и теряем те из них, которые вырождаются! Однако эта утрата не столь уж катастрофична: при рождении у нас приблизительно 100 миллиардов нейронов и эта цифра уменьшается у взрослого на 15 %. Тем не менее можно задаться вопросом, как нам удается усваивать новую информацию на протяжении всей жизни, если количество нейронов постоянно снижается.
Обучение действительно является одним из самых впечатляющих феноменов когнитивной жизни. Способности к обучению у ребенка превышают возможности самых мощных компьютеров! Сейчас уже хорошо известно, что краеугольным камнем обучения является беспрерывное изменение количества синапсов и их активности. По мере того как мы учимся и взрослеем, наш опыт подкрепляет те мозговые цепи, которые оказываются наиболее эффективными, в то время как другие ослабевают и постепенно исчезают. Таким образом, сохраняются те цепи, которые лучше всего справляются с нашим взаимодействием с внешним миром. Нейроны у новорожденного отличаются незрелыми синапсами и в то время, как малыш приобретает опыт общения с внешним миром, дендритные шипики претерпевают настоящую обрезку, благодаря которой бесполезные синапсы удаляются, а другие становятся более эффективными (рисунок 11). Обрезка синапсов является важным механизмом того, что принято называть нейропластичностью – речь идет о способности мозга к перестройке своей структуры и своего функционирования в качестве ответа на внешние события.
Нарушения в созревании синапсов могут приводить к различным формам умственной отсталости. Так, например, в случае синдрома Ретта, который является причиной аутизма у девочек, плотность дендритных шипиков снижена. При других формах аутизма недостаточная обрезка, напротив, приводит к избытку синапсов. Чрезмерная обрезка во время развития также может приводить к патологическому уменьшению синапсов при некоторых формах шизофрении. По-видимому, патологическая обрезка играет свою роль и при болезни Альцгеймера, в ходе которой в мозге происходит накопление патологического белка – амилоида. Согласно недавней гипотезе, это вещество может дестабилизировать расположенные поблизости синапсы и «помечать» их с целью дальнейшего удаления. Следовательно, этот процесс способен приводить к уменьшению синаптической плотности, отмечаемой у больных.
Не только нейроны…
Хотя нейроны играют фундаментальную роль в обработке информации, выполняют эту работу не только они: мозг также состоит из других типов клеток. В частности, в нем очень много
Давайте посмотрим прежде всего на то, что уже давно известно об этих клетках. Ранее мы говорили о том, что электрические сигналы, известные как потенциалы действия, распространяются по аксону иногда на длинные расстояния. Аксон передает сигналы сам, но делает это медленно. Для более быстрой передачи этих импульсов он должен иметь очень большую толщину (скорость проведения потенциала увеличивается с квадратным корнем диаметра аксона). Этот вариант использует кальмар, обладающий гигантским аксоном, диаметр которого составляет приблизительно один миллиметр. Между тем такие аксоны заняли бы слишком много места в мозге позвоночных, несмотря на то, что эти позвоночные нуждаются в быстром передвижении так же, как и кальмар.
Но в ходе эволюции решение проблемы все же нашлось – оно заключается в покрытии аксонов несколькими слоями изолирующего вещества, которое образует так называемую
Вырабатывающие миелин клетки делятся на две основные группы: клетки периферической нервной системы –
Второй тип глиальной клетки выполняет иммунные функции – речь идет о
Новое о глиальных клетках