Ещё один, но куда более совершенный метод, позволяющий увидеть молекулу, появился в 30-х годах прошлого века. Это был электронный микроскоп. Его создатели, немецкие физики Макс Кнолл и Эрнст Руска в 1931 году случайно заметили, что если поток электронов проходит сквозь тончайший слой вещества и попадает на чувствительный экран, то на этом экране можно увидеть тени составляющих его молекул. Вот вам ещё одно доказательство существования молекул. Вы можете поглядеть на первый российский электронный микроскоп, если не поленитесь и сходите в Политехнический музей в Москве, где он выставлен на всеобщее обозрение.
Сегодня прогресс науки и техники достиг таких невероятных высот. что появились приборы, позволяющие увидеть атомы! Это — сканирующие зондовые микроскопы, первую модель которых изобрели Герд Бинниг и Генрих Рорер в 1981 году. А в 1986-м за это изобретение, позволяющее исследователям заглянуть в самую глубь материи, им была присуждена Нобелевская премия по физике. И компанию им составил Эрнст Руска. Долго же ему пришлось ждать этой награды, целых 55 лет, но справедливость всё-таки восторжествовала.
В этом микроскопе нового поколения тончайшая игла, заостренная со одного атома, как будто ощупывает поверхность вещества или материала и передаёт его изображение на экран. Так впервые удалось рассмотреть атомы золота на золотой пластинке, которые, как и предполагали химики, расположены плотными рядами, шарик к шарику. А ещё удалось рассмотреть самую главную молекулу жизни — молекулу ДНК, на которой записана вся наследственная информация и которая управляет всеми процессами, происходящими в нашем организме. Так учёные воочию убедились, что молекула ДНК выглядит как длинная цепочка, точнее — как спираль.
Ну что ж, кажется, пора остановиться. Ведь главное мы уже поняли. Всё вокруг нас, включая нас самих, сделано из веществ, вещества — из атомов, атомы — из элементарных частиц. А вот откуда взялись все эти элементарные частицы, из которых сделаны атомы, из которых сделаны вещества, из которых сделано всё, включая нас самих?
Глава 2. Откуда взялись вещества?
Чтобы понять, откуда взялся строительный материал для материи — элементарные частицы, надо отправиться в далёкое прошлое. «Но ведь машины времени существуют только в фантастических романах и фильмах!» — скажете вы. И нет, и да. Пока что, действительно, не создано никакого транспортного средства, которое могло бы физически перенести нас в прошлое. Разве что в фильмах, таких как «Назад в будущее» (США). А было бы здорово: сел в мягкое кресло, пристегнул ремни, установил на дисплее «−2000 лет», нажал кнопку «Поехали», и через считанные минуты ты уже в древнем Риме, в Колизее, наблюдаешь бой гладиаторов. Возможно, созданием такой машины будете заниматься вы, когда станете исследователями. А между тем астрофизикам, изучающим Вселенную, каждый день удаётся заглянуть в далёкое прошлое и узнать о событиях, которые там происходили. На этот случай у них есть свои машины времени — телескопы.
Всё дело в свете. Когда мы смотрим на любой объект или человека, чаще всего на маму, то видим свет, который отражают её лицо, волосы, очки, костюм, маникюр и морщинки возле глаз, когда она улыбается. Отражённый свет попадает в наши глаза, на специальное приёмное устройство — сетчатку. Она, в свою очередь, передаёт сигнал в мозг, и мозг сам строит изображение того, что мы видим. Отражённый свет несёт информацию о мельчайших деталях объекта, его форме, цвете, фактуре — обо всем. Ничто от него не ускользнёт — ни пятнышко на рукаве, ни грязные ботинки, которые вы забыли почистить перед школой, ни обкусанные ногти. Просто идеальный копировщик.
Свет летит с невообразимой скоростью — 300 000 километров в секунду. Ничто во Вселенной не движется быстрее. Но эта скорость всё-таки конечна. И если свету, несущему информацию об объекте, надо преодолеть расстояние в миллионы или миллиарды километров, то на это требуется уже заметное время. Вот мы смотрим на Луну. И что же мы видим? Красивый белый диск на ночном небе, покрытый тёмными пятнами. Иногда нам кажется, что эти пятна складываются в изображение женского лица. Но вряд ли вы задумывались, что, глядя на Луну, мы смотрим в прошлое, на несколько секунд назад. Именно столько времени требуется свету, чтобы преодолеть расстояние от Луны до Земли. А если мы рассматриваем Солнце, то мы ещё больше удаляемся в прошлое — на несколько минут. Они необходимы свету, чтобы добраться от Солнца до Земли, ведь Солнце расположено от нашей планеты значительно дальше.
Что уж говорить, например, об упомянутой звёздной системе Альфа Центавра! В тёмную ясную ночь её можно увидеть на небе, особенно самую яркую её звезду — Альфа Центавра А. Наш взгляд на эту звезду — это бросок в прошлое почти на четыре с половиной года: столько времени добирается свет от звезды до наших глаз. Если обозначить это расстояние в километрах, то получится длиннющее число со множеством нулей. Оперировать такими числами трудно. Поэтому для космических расстояний астрофизики придумали свою меру длины — световой год. Он равен тому расстоянию, которое проходит свет за год, приблизительно 9 460 000 000 000 (9 триллионов 460 миллиардов) километров.
Самая мощная машина времени сегодня — это американский телескоп «Хаббл» (Hubble Space Telescope), который вращается на земной орбите уже 20 лет. Оптические глаза этого телескопа удивительно зоркие. Они видят почти в десять раз лучше, чем его собратья на Земле. Почему, спросите вы? Да всё дело в атмосфере, окружающей нашу Землю, в том воздухе, которым мы дышим. Нам-то он кажется совершенно «пустым» и потому прозрачным. Но на деле всё не так.
Воздух и атмосфера содержат огромное количество разных веществ — кислород, азот, углекислый газ, пары воды и многое другое. Эти вещества летают над нами и вокруг нас в виде одиночных молекул. А мы-то уже знаем, что одиночные молекулы невидимы нашему глазу. Вот нам и кажется, что прозрачный воздух — это сплошная пустота. Однако свет очень чувствителен к той среде, через которую летит. Да и человек тоже: одно дело нестись по берегу вдоль реки, а другое — бежать по мелководью по пояс в воде. Догадайтесь, кто движется быстрее? В атмосфере Земли свет сталкивается с невидимыми молекулами, рассеивается и немного замедляется. Вот поэтому астрофизики и решили поместить телескоп на орбиту Земли, поднять его над атмосферой, расположить в космическом вакууме, где содержание веществ ничтожно и потому нет никаких препятствий для света, нет помех.
Ожидания астрофизиков оправдались, и теперь у нас есть супертелескоп «Хаббл», который ловит свет далёкого прошлого и посылает на Землю фантастические по красоте снимки разных уголков Вселенной. Кстати, вы тоже можете посмотреть на эту красоту — в Интернете. Снимки доступны для всех.
Но зачем нам свет, если мы хотим узнать, откуда взялось вещество? Оказывается, свет может рассказать не только о внешнем виде. Любое сильно нагретое тело излучает энергию. Разогретая печка излучает тепло, раскалённые угли пышут жаром и мерцают красным огнём, а летнее солнце слепит глаза и жжёт кожу. Таково свойство всех веществ и его составных частей, атомов, — возбуждаться и излучать при нагревании.
Возьмите щепотку обыкновенной поваренной соли на кончик ножа (химики для этого используют фарфоровую ложечку) и внесите в открытый огонь. Пламя, охватывающее соль, будет окрашено в яркий жёлтый цвет. Именно такой свет испускают при сильном нагревании атомы элемента натрия, входящего в состав соли. А если вы возьмёте другое вещество, которое содержит элемент калий, то пламя будет сине-фиолетовое. Кстати, этот незамысловатый метод до сих пор используют химики, чтобы определить присутствие того или иного элемента в неизвестном веществе или смеси веществ. А пиротехники — для создания разноцветных праздничных фейерверков.
Астрофизики, поймавшие свет далёкой звезды, могут разложить его на составные части — это называется спектром. Природа тоже умеет это делать. Вы наверняка не раз видели, как после дождя в небе вдруг появляется восхитительная радуга. Это капельки воды, висящие в воздухе, раскладывают видимый свет на составные части. И вы точно знаете, как в этом полосатом чуде будут чередоваться цвета: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. А если не знаете, то запомните фразу-подсказку: каждый охотник желает знать, где сидит фазан. Или вот ещё такой шутливый «французский» вариант: как однажды Жак-звонарь головой сломал фонарь Вы уже догадались, что первая буква в каждом слове — это первая буква в названии цвета радуги.
Но вернёмся к астрофизикам. Астрофизики умеют разложить свет далёких звёзд на гораздо более тонкие составные части, причём даже увидеть с помощью специальных приборов те части светового спектра, которые невидимы глазу, — инфракрасную и ультрафиолетовую. Тот, кто умеет читать эти спектры, многое узнаёт о звезде. Например — какая у неё температура, какие элементы входят в её состав, какие процессы протекают на этой звезде и как далеко она расположена от Земли.
Если посмотреть на Солнце сквозь такие спектральные очки, то окажется что на Солнце присутствует около 80 элементов таблицы Менделеева. Больше всего — водорода (почти три четверти по массе) и гелия (почти четверть), и совсем чуть-чуть (2%) остальных элементов.
Однако главный вопрос остаётся — откуда эти элементы взялись на Солнце? Чтобы узнать это, нам придётся вернуться к нашей машине времени.
Сегодня телескоп «Хаббл» позволяет заглянуть на двенадцать миллиардов лет назад! Излучение, пришедшее из невообразимо далёкого прошлого и пойманное «Хабблом», тщательно изучают астрофизики. Так им удаётся воссоздать те космические события, которые разворачивались на протяжении этого гигантского отрезка времени. Они как будто смотрят фильм, прокручиваемый назад, от конца к началу. К тому, с чего всё началось.
А всё началось с Большого взрыва. Именно так назвал момент зарождения Вселенной бельгийский священник и астроном Жорж Леметр в 1931 году. Уже тогда, в начале XX века, астрономы сумели с помощью наземных телескопов разглядеть и понять, что части Вселенной находятся в постоянном движении. И не просто в движении: они словно разбегаются в разные стороны, удаляясь друг от друга, — точно так, как разлетаются осколки гранаты или искры фейерверка. В конце 20-х годов прошлого века Жорж Леметр посетил своего друга, астронома Эдвина Хаббла (в его честь назван телескоп) в Маунт-Вилсоновской астрономической обсерватории в Калифорнии (США) и узнал об этих последних наблюдениях. А дальше он просто подумал и представил, что будет, если разлетающиеся осколки гранаты обратить вспять, то есть заставить лететь в обратном направлении. Этот мысленный эксперимент привел его к тому исходному моменту, когда граната взорвалась и породила разлетающиеся осколки. Так появилась на свет теория Большого взрыва.
Сегодня астрофизики подсчитали, что Большой взрыв случился около 14 миллиардов лет назад. Взорвалось нечто очень маленькое и невероятно плотное. Жорж Леметр называл это первоатомом, а современные физики — точкой сингулярности. И в момент этого исторического для нашего мира взрыва родились материя, пространство и время. Большой взрыв был невероятно мощным: на его фоне взрыв атомной бомбы — просто комариный писк. Раскалённый шарик с гигантской температурой начал стремительно раздуваться, создавая внутри себя всё больше пространства. По мере расширения температура внутри раскалённой сферы падала, и начала рождаться будущая материя.
Я просто вижу, как вы недоумённо трясёте головой: «Ничего не понимаю! Как это ничего не было, ни материи, ни пространства, ни времени?!» Понять и представить это действительно трудно. Я сама ломала над этим голову многие годы. И вот какая аналогия пришла мне на ум, надеюсь, она поможет и вам. Вас ведь тоже когда-то не было, и для вас не было ни пространства, ни времени. Но вот вы появились на свет, и в этот миг для вас распахнулось пространство и пошёл отсчет времени. Ваше пространство было вначале очень маленьким и ограничивалось вашей кроваткой. Но вы росли, и оно росло, расширялось, вместе с вами. Чем дальше, тем больше будет становиться это пространство, которое вы узнаете и освоите. И пределов вашему познанию нет. Вам открыт весь этот мир — прекрасный и бесконечный.
Но вернёмся к рождению Вселенной. Мы с вами уже знаем, что всё состоит из трех элементарных частиц — протона, нейтрона и электрона. Они-то и появились в самом начале первой секунды после Большого взрыва. Секунда ещё не прошла, а температура уже упала до 300 миллионов градусов, и начали формироваться первые ядра будущих атомов, самых маленьких и простых — тяжелого водорода (один протон, один нейтрон) и гелия (два протона, два нейтрона). Не случайно эти элементы занимают два первых места в таблице Менделеева. Они действительно были первыми! Через тысячу лет стало «прохладно» — всего-то 30 тысяч градусов. Но это была именно та температура, при которой ядра гелия и водорода смогли притянуть к себе электроны. Так появились первые атомы.
А потом, ещё через 200 миллионов лет, во Вселенной стало просто чудовищно холодно — минус 272 градуса по Цельсию, или всего около одного градуса по абсолютной шкале температур. При таких условиях газ Вселенной, состоящий из водорода и гелия, стал конденсироваться, то есть объединяться в газовые шары вроде нашего Солнца и других звезд. Силы гравитации всё сильнее сжимали их. Из-за выделяющейся при этом энергии начала расти температура. И вот в недрах звёзд создались условия, при которых началась реакция термоядерного синтеза — слияние ядер водорода и гелия, порождающее ядра всё более тяжелых элементов, всех химических элементов таблицы Менделеева. Так звёзды превращались в гигантские фабрики материи. А ещё в результате этих реакций выделялось много энергии, которая распространялась во Вселенной, в том числе в виде света. Именно поэтому мы видим на небе звёзды, которые удалены от нас на сотни миллионов световых лет.
А потом всё «топливо» в недрах звезды сгорало, и звезда взрывалась, раскидывая по Вселенной наработанную материю. Образовывалась межзвёздная пыль, из неё — пылевые облака, а уже из них — планеты, напичканные самыми разными веществами. Вот так рождалась материя, из которой сформировались все объекты во Вселенной.
Наша Солнечная система, в которой мы живём, входит в состав нашей Галактики Млечный Путь. В этой Галактике, как и в других, больше 100 миллиардов звёзд. А всего во Вселенной 100 миллиардов галактик вроде нашей. Гигантский, необозримый, загадочный мир! И весь он соткан из материи, то есть вещества, порождённого Большим взрывом.
Хотя на самом деле никто не может утверждать этого наверняка, ведь никто же не видел Большого взрыва. Это всего лишь теория, предположение. Но сегодня все наблюдаемые данные, полученные астрофизиками с помощью «Хаббла» и других телескопов, подтверждают, что сценарий зарождения и развития Вселенной, именуемый «Большим взрывом», очень похож на правду. Впрочем, остаётся много вопросов: а что было до Большого взрыва? Есть ли другие Вселенные, кроме нашей? Будет ли Вселенная расширяться до бесконечности? А если нет, то что с ней в конце концов произойдёт? Возможно, эти вопросы ждут вас, уважаемый читатель. И если вы посвятите свою жизнь исследованию вселенной, то, очень может быть, найдете на них ответы и осчастливите человечество.
Давайте подведём итог. Протоны, нейтроны и электроны, из которых созданы все элементы и вещества, или материя, появились на свет в момент рождения Вселенной, сразу после Большого взрыва. Из них сформировались атомы первых веществ — водорода и гелия, которые по-прежнему остаются самыми распространёнными веществами во Вселенной. А весь остальной набор химических элементов из таблицы Менделеева рождался и продолжает рождаться в звёздах. Здесь при огромных температурах безостановочно протекают реакции распада и синтеза ядер и атомов, здесь рождаются химические элементы, поставляемые, как сырьё, во Вселенную.
Физики утверждают, что количество электронов во Вселенной не менялось с момента Большого взрыва. Это означает, что и количество разных веществ в этом удивительном мире конечно.
Глава 3. Разберём Землю по кусочкам?
Ничего нельзя сделать из ничего, разве что глупость. Вы уже поняли — чтобы собрать молекулу, нужны атомы, а чтобы сконструировать атомы, нужны протоны, нейтроны и электроны. Но ведь нет такого склада, где протоны, электроны и нейтроны разложены по ящичкам, а ящички — по полочкам: приходи и бери, что нужно. И где, спрашивается, всё это взять? Всё это можно получить из других веществ, которые уже существуют. Физики-атомщики умеют разгонять в ускорителях разные атомы до безумных скоростей, сталкивать их и в результате столкновения получать другие атомы и элементарные частицы. А химики, которые неустанно изучают все мыслимые вещества на свете, умеют из одних веществ получать другие с помощью разных химических реакций.
Но вопрос остается — где взять эти самые исходные вещества? Черпать водород, гелий и космическую пыль гигантскими ложками из космического пространства мы ещё не научились. Но пока нам этого и не надо. Ведь у нас есть свой гигантский склад химических реактивов возрастом 4,5 миллиарда лет и весом миллиард триллионов тонн (6*1021 тонн) — наша замечательная планета Земля, которая сплошь состоит из самых разных веществ.
А давайте-ка пробурим гигантский туннель к центру Земли, пустим по нему прозрачный лифт и посмотрим, что там, на этом складе, припасено. Конечно, это чисто умозрительный эксперимент. Самая большая глубина, на которую удалось человеку вгрызться в Землю, пока составляет всего двенадцать с небольшим километров — это наша сверхглубокая скважина на Кольском полуострове. Вроде бы и много. Но для Земли это всё равно, что елочная иголка, впившаяся в кожу слона. Нам-то нужен туннель длиной 6 371 километр, именно таков радиус Земли. Иными словами, надо пробурить подряд 530 скважин таких, как Кольская, чтобы добраться до центра планеты.
И всё же ничто не мешает нам пуститься в мысленное путешествие. Картина, которая должна открыться нашему взору за прозрачными стенками лифта, сегодня подробно описана геофизиками, изучающими строение Земли. И хотя никто из них не щупал содержимого нашей планеты на глубинах больше двенадцати километров и уж тем более не видел сердца Земли — её ядра, внутреннее устройство нашей планеты довольно хорошо известно.
Но как же можно описать то, чего не видел, спросите вы? А ведь мы с вами уже знаем ответ на этот вопрос — по косвенным наблюдениям.
Учёные прослушивают, зондируют и просвечивают нашу планету — ну совсем как врачи, изучающие наш организм. С помощью рентгена, ультразвука и разных зондов, которые порой приходится глотать или пускать в путешествие по кровяному руслу, доктора рассматривают наши внутренности. А с помощью звука, доносящегося из холодного фонендоскопа, который врач прикладывает к нашей груди, — прослушивают лёгкие и бронхи: уж не началось ли там, тьфу-тьфу, какое-нибудь воспаление. Так и геофизики воздействуют на Землю — разными электромагнитными излучениями и сейсмическими волнами. Потом прислушиваются к эху, изучают отклик и делают выводы о том, в каком состоянии находится вещество на той или иной глубине — жидкое оно или твёрдое, каковы его плотность и температура.
Ну вот, мы уже в лифте. Светящийся экран, вмонтированный в пол, отсчитывает километры нашего погружения. Первый и самый короткий участок нашего пути — около 40 километров на равнинных участках Земли — пролегает через слой, который называется земная кора. Земля покрыта корой, как дерево.
Если крутить головой налево и направо, то, честно говоря, всё равно ничего не будет видно — под землёй кромешная тьма. Впрочем, у нас же в лифте есть мощные прожекторы, они нам немного помогут.
После тончайшего слоя почвы и глины мы погружаемся в каменный туннель с гранитными и базальтовыми стенками. Правда, иногда лифт проскакивает через водные, нефтяные и газовые слои, или горизонты, как их называют учёные, поэтому картина за стенами лифта всё же разнообразная. А тем временем становится всё жарче. На десятикилометровой глубине температура уже под двести градусов! А дальше — ещё горячее. Хорошо, что мы предусмотрительно, пусть и мысленно, надели теплозащитные костюмы.
Резкий звук сирены отвлекает нас от разглядывания содержимого земли. На экране под ногами высвечивается надпись: «Всем сесть в кресла и пристегнуть ремни. Через десять минут проходим границу Мохо!» Этим указанием пренебрегать нельзя. На границе Мохо, открытой в 1909 году хорватским геофизиком и сейсмологом Андреем Мохоровичичем, будет трясти как при хорошем землетрясении. Эта зона высокой активности сейсмических волн опоясывает всю Землю на глубине от пяти (под дном океана) до семидесяти километров. Она отделяет земную кору от самой большой части Земли — мантии, на долю которой приходится 67% всей массы и около 83% всего объёма нашей планеты.
Путешествие сквозь мантию долгое и неинтересное — всё тот же гранитоподобный камень, только ещё более плотный и тяжёлый. Можно сказать, что в земной коре сосредоточены относительно легкоплавкие вещества, а в мантии — тугоплавкие. Так считают геофизики. Хотя на самом деле всё может быть и не так, ведь учёные добывают всё новые и новые данные и создают новые теории. Тем временем наш лифт проходит путь длиной более 2800 километров — всё равно что дважды съездить из Москвы в Санкт-Петербург и обратно.
На глубине 2900 километров мы подходим к границе мантии и ядра Земли. Дальше лифт отказывается ехать даже мысленно, потому что это смерти подобно. Ведь лифту придётся погрузиться в расплавленный металл, составляющий внешнюю оболочку ядра, пройти 2200 километров в этой раскалённой жиже и уткнуться в твёрдое ядро Земли. По мнению учёных, оно состоит из сплава железа и никеля с добавкой других элементов. Похоже, это «шарик» из сверхпрочной нержавеющей стали, из которой делают подшипники, только очень большой. Температура здесь адская — 5000 градусов, почти как на поверхности Солнца. Но ядро остаётся твердым из-за огромного давления. И очень плотным, так что пробурить через него туннель, даже гипотетически, невозможно.
А как же «Путешествие к центру Земли» Жюля Верна? Действительно, писатели-фантасты в своих романах не раз путешествовали к ядру нашей планеты. Но строгие геофизики не оставили нам ни малейшего шанса увидеть тот удивительный и красочный мир, который открылся под землёй героям романа Жюля Верна.
Впрочем, мы уже поняли, что нам с вами нет нужды забираться так глубоко. Ведь мы ищем нужные нам вещества, а их вполне достаточно в земной коре, которая совсем тоненькая, от пяти километров в океане до семидесяти километров в горах. И мы отлично умеем копать её и бурить.
Говорят, что в Земле можно найти почти все элементы таблицы Менделеева. Ну если не все, то девяносто уж точно. Учёные даже прикинули, сколько атомов разных элементов пошло на строительство Земли. Это число столь велико, что у него даже нет названия. Возьмите листок бумаги, напишите единицу, а к этой единичке припишите ещё 50 нулей. Получится число, которое не умещается на одной строке тетрадной странички. О чём говорит нам это длиннющее, как змея, число? О том, что атомов в Земле не просто много, а фантастически много.
Что же это за атомы? Треть из них — атомы железа, еще почти треть — кислорода, шестая часть приходится на кремний, восьмая часть — на магний, двенадцатая часть — на серу, никель, кальций и алюминий. А для остальных элементов остаётся одна сотая часть. Таков состав элементов всего содержимого нашей планеты. Но нас с вами интересует только земная кора, на долю которой приходится всего лишь одна двухсотая часть земной массы. Хотя и это очень много, учитывая гигантский вес нашей планеты.
Из чего же состоит земная кора? Здесь меню побогаче и поразнообразнее.
Восемнадцать элементов — кислород (О) и кремний (Si), алюминий (Al) и железо (Fe), кальций (Ca) и натрий (Na), калий (K) и магний (Mg), водород (H) и титан (Ti), углерод (C) и хлор (Cl), фосфор (P) и сера (S), азот (N) и марганец (Mn), фтор (F) и барий (Ba) — составляют 99,8 % массы земной коры. Больше всего кислорода (половина массы земной коры) и кремния (четверть). А где же золото, серебро и платина, столь драгоценные и любимые нами металлы? Они тоже есть. Однако на их долю вместе с остальными десятками элементов приходится всего лишь одна пятисотая часть земной коры.