Минеральные удобрения являются основным источником загрязнения почв тяжелыми металлами и токсичными элементами. Это связано с содержанием в сырье, используемом для производства минеральных удобрений, стронция, урана, цинка, свинца, ванадия, кадмия, лантаноидов и других химических элементов. Их полное извлечение или не предусматривается вообще, или осложняется технологическими факторами [11, 226]. Поэтому они в качестве примесей частично входят в состав суперфосфатов, калийных удобрений, извести и фосфогипса. Возможное содержание сопутствующих элементов в суперфосфатах и в других видах минеральных удобрений, широко применяемых в современном земледелии, приведено в табл.6 и 7.
Примесь | Содержание | Примесь | Содержание |
Мышьяк | 1,22,2 | Свинец | 7—92 |
Кадмий | 50—170 | Никель | 7—32 |
Хром | 66—243 | Селен | 0—4,5 |
Кобальт | 0—9 | Медь | 4—79 |
Ванадий | 20—180 | Цинк | 50—143 |
В больших количествах элементы–загрязнители обнаруживаются в извести. Ее внесение в количестве 5 т/га может изменить природные уровни кадмия в почве на 8,9% от валового содержания [442].
При внесении минеральных удобрений в дозе 109 кг/га ИРК в по поступает примерно 7,87 г. меди, 10,25 — цинка, 0,21 — кадмия, 3,36 свинца, 4,22 — никеля, 4,77‑хрома [44]. По расчетам ЦИНАО, за весь период использования фосфорных удобрений в почвы бывшего СССР внесено 3200 т кадмия, 16 633 — свинца, 553 — ртути [336]. В опы проведенных на Долгопрудной агрохимической станции, применен! течение 60 лет минеральных удобрений в дозе N60-90Р80-90 К80-120 в раза повышало содержание в почве фтора и в 4 раза — подвижного стронция [450]. Большая часть химических элементов, попавши почву, находится в слабоподвижном состоянии. Период полувыведе кадмия составляет 110 лет, цинка — 510, меди — 1500, свинца — несколько тысяч лет [564].
Вид удобрения | Zn | Cu | Ni | Pb | Fe |
Хлористый калий | 3,11 | 8,67 | 4,33 | 8,67 | 680,53 |
Аммиачная селитра | 0,20 | 0,25 | 0,84 | 0,05 | 603,00 |
Известь | 10,83 | 12,67 | 26,00 | 26,50 | 4853,00 |
Загрязнение почвы тяжелыми и токсическими металлами ведет к накоплению их в растениях. Так, в Швеции концентрация кадмия в пшенице за текущее столетие увеличилась вдвое. Там же, при применении суперфосфата в суммарной дозе 1680 кг/га, внесенной частями за 5 наблюдали повышение содержания кадмия в зерне пшеницы в 3,5 [341]. По данным Ю. А. Потатуевой с соавторами, при загрязнении вы стронцием происходило трехкратное увеличение его содержал клубнях картофеля [450]. В России пока еще не уделяется необходи внимания загрязнению растениеводческой продукции химическими элементами. Имеются только разрозненные данные организаций, тролирующих качество продуктов питания. По данным Свердловской санитарно–эпидемиологической службы, в 1991 г. доля образцов овощей и бахчевых культур, не соответствующих нормам по содержанию свинца, составила 1,2, а кадмия — 7,2% [415].
Использование загрязненных растений в качестве продуктов питания или кормов является причиной возникновения у человека и сельскозяйственных животных различных заболеваний. К наиболее опасным тяжелым металлам относят ртуть, свинец и кадмий. Попадание в организмнизм человека свинца ведет к нарушениям сна, общей слабости, ухудшению настроения, нарушению памяти и снижению устойчивое бактериальным инфекциям [364, 606]. Накопление в продуктах питания кадмия, токсичность которого в 10 раз выше свинца, вызывает разрушение эритроцитов крови, нарушение работы почек, кишечника, размягчение костной ткани [340]. Парные и тройные сочетания тяжелых металлов (ТМ) усиливают их токсический эффект [606]. Определенную опасность представляют и другие элементы.
Экспертным комитетом ВОЗ разработаны нормативы поступления в человеческий организм тяжелых металлов. Предусматривается, что каждую неделю здоровый человек массой 70 кг может получать с пищевыми продуктами, без вреда для своего здоровья, не более 3,5 мг свинца, 0,625 мг кадмия и 0,35 мг ртути [640].
В связи с возрастанием загрязнения продуктов питания были приняты нормативы содержания ТМ и ряда химических элементов в продукции растениеводства (табл. 8).
Элемент | Хлебные продукты и зерно | Овощи | Фрукты | Молочные продукты |
Ртуть | 0,01 | 0,02 | 0,01 | 0,005 |
Кадмий | 0,02 | 0,03 | 0,03 | 0,01 |
Свинец | 0,2 | 0,5 | 0,4 | 0,05 |
Мышьяк | 0,2 | 0,2 | 0,2 | 0,05 |
Медь | 5 | 10 | 10 | 0,5 |
Цинк | 25 | 10 | 10 | 5,0 |
Железо | 50 | 50 | 50 | 3,0 |
Олово" | — | 200 | 100 | 100,0 |
Сурьма | 0,1 | 0,3 | 0,3 | 0,05 |
Никель | 0,5 | 0,5 | 0,5 | 0,1 |
Селен | 0,5 | 0,5 | 0,5 | 0,5 |
Хром | 0,2 | 0,2 | 0,1 | 0,1 |
Алюминий | 20 | 30 | 20 | 1,0 |
Фтор | 2,5 | 2,5 | 2,5 | 2,5 |
Йод | 1 | 1 | 1 | 0,3 |
Загрязнение растениеводческой продукции ТМ и химическими элементами опасно для человека не только при непосредственном ее употреблении, но и при использовании на кормовые цели. Например, скармливание коровам растений, выращенных на загрязненных почвах, привело к увеличению концентрации кадмия в молоке до 17—30 мг/л [645], в то время как допустимый уровень составляет 0,01 мг/л.
Для предотвращения накопления химических элементов в молоке, мясе, исключения возможности отрицательного их влияния на состояние сельскохозяйственных животных во многих странах принимаются предельно допустимые концентрации (ПДК) для химических элементов, содержащихся в кормовых растениях. По стандартам ЕЭС безопасное содержание свинца в фураже составляет 10 мг/кг сухого вещества. В Нидерландах допустимый уровень содержания кадмия в зеленых кормах равен 0,1 мг/кг сухой массы [29, 341].
Фоновое содержание химических элементов в почвах приведено в табл.9. При накоплении ТМ в почве и последующем поступлении их в растения они концентрируются в основном в вегетативных органах, что объясняется защитной реакцией растений [200]. Исключение составляет кадмий, который легко проникает как в листья и стебли, так и в генеративные части [212]. Для правильной оценки степени накопления в растениях различных элементов необходимо знать их обычное содержание — то, которое наблюдается при выращивании сельскохозяйственных культур на незагрязненных почвах. Сведения по этому вопросу довольно разноречивы. Это объясняется большими различиями в химическом составе почв. Фоновое содержание свинца в почвах равно примерно 30, а кадмия — 0,5 мг/кг [123]. Концентрация свинца в растениях, выращиваемых на чистых грунтах, составляет 0,009—0,045, а кадмия — 0,011—0,67 мг/кг сырого вещества [658].
Необходимость установления жестких норм по загрязненинию растений объясняется тем, что при выращивании их на загрязненных почвах содержание отдельных элементов может увеличиваться в десятки раз. В то же время некоторые химические элементы становятся токсич ными при трех– и даже двукратном увеличении их концентрации. Например, содержание меди в растениях обычно составляет примерно 5— 10 мг/кг в расчете на сухую массу. При концентрации 20 мг/кг растения становятся токсичными для овец, а при 15 мг/кг — для ягнят [479]. Таким образом, к загрязнению растений и почв химическими элементами следует относиться с большим вниманием.
В настоящее время проводятся исследования по определению ПДК химических элементов в почвах. В ряде стран они уже приняты к исполнению. Чаще всего ПДК по кадмию составляет 3, ртути — 2, свинцу — 100 мг/кг [640]. Превышение указанных уровней содержания химических элементов в почвах отрицательно отражается на качестве сельскохозяйственных культур. В них снижается содержание витаминов, ухудшается биологическая полноценность белка. При выращивании растений на загрязненных ТМ грунтах происходят нарушения в обмене веществ отдельных органов, угнетается рост. По сведениям Л. Г. Бондарева (цит. по: В. Г. Минеев [341]), продуктивность основных сельскохозяйственных культур при выращивании их на почвах, содержащих ТМ, снижается на 20—47%. Воздействию ТМ подвергаются и генетические структуры растений.
В результате всестороннего изучения последствий загрязнения почвы некоторые исследователи пришли к заключению, что принятые ПДК не могут полностью исключить отрицательного влияния ТМ и ряда химических элементов на урожай сельскохозяйственных культур и его качество. Оказывается, различные растения неодинаково реагируют на присутствие в почве загрязнителей. Так, фасоль в 10—15 раз чувствительнее кукурузы к кадмию [479]. Поэтому необходимо дальнейшее уточнение принятых ПДК. По мнению некоторых исследователей, ПДК по кадмию должно составлять не 3 мг/кг, а значительно меньше. Это связано с тем, что безопасный уровень для картофеля составляет только 1,5, а зеленных — 0,5 мг/кг [214]. Корректировка пороговых концентраций необходима и тогда, когда в почве присутствует не один элемент–загрязнитель, а несколько. Так, если марганец и ванадий присутствуют в почве одновременно, то их ПДК уменьшается в два раза [75]. Такой же эффект наблюдается при загрязнении почвы ртутью и свинцом. В опытах с капустой было установлено, что если в субстрате одновременно обнаруживаются оба этих элемента, то их допустимые уровни должны быть уменьшены вдвое [523].
Приведенные примеры показывают, что эффективность земледелия, его возможности в условиях продолжающегося поступления в почвы различных химических элементов неизбежно будут снижаться. И одной из причин этого является ограничение нашей свободы при выборе культур, пригодных для выращивания на загрязненных почвах. Специфичность реакции растений затруднит составление севооборота. В него уже нельзя будет включать менее устойчивые к загрязнению культуры.
Одним из последствий применения минеральных удобрений является повышение радиоактивности окружающей среды. В окультуренных почвах Германии с начала применения фосфорных удобрений содержание урана и радия возросло соответственно на 9 и 6% [149]. Это является следствием содержания в фосфорных удобрениях радиоактивных элементов. Они, концентрируясь в продуктах питания и кормах, могут повышать уровень внутреннего облучения человека и сельскохозяйственных животных.
Увеличение содержания ТМ в почве отражается и на ее химических свойствах. Прежде всего, подвергается изменению ферментативная активность. Например, при содержании в перегноино–глееватых почвах 5 мг/кг кадмия наблюдается снижение активности дегидрогеназы и инвертазы, а при концентрации 7 мг/кг происходит полное подавление этих ферментов [50].
Кроме растений, отрицательное влияние ТМ, а также токсичных элементов испытывает на себе и почвенная биота. При загрязнении почв хромом, цинком, никелем и свинцом, на уровне одного–двух кларков, уменьшается численность бактерий, сокращается видовой состав микроорганизмов, насекомых и дождевых червей. В то же время увеличивается количество грибов, то есть происходит нарушение структуры педоценоза [90, 317]. Особое беспокойство должно вызывать снижение азотфиксирующих свойств почвы, которое наблюдается при ее загрязнении различными химическими элементами.
Удвоение фонового содержания металлов в почве при интенсивном применении удобрений возможно за 80 и более лет [646, 343]. Но при этом необходимо помнить, что одновременно почва загрязняется целым комплексом элементов, присутствующих в удобрениях. Следовательно, опасный уровень загрязнения будет достигаться значительно быстрее.
Большую озабоченность вызывает загрязнение почв фтором. Он входит в состав суперфосфатов и фосфогипса в количестве 1—5%. Ежегодное использование таких удобрений способствует повышению его содержания в почве на 5% [265], а при длительном применении фосфорных удобрений (в течение 15 лет и более) содержание фтора в слое почвы 0—30 см может увеличиться в 1,7—5 раз [500].
При накоплении фтора в почве его концентрация в растениях увеличивается в несколько раз и может достигать 77,6 мг/кг [170]. Это отрицательно отражается на продуктивности растений, приводит к загрязнению продукции растениеводства и увеличивает вероятность возникновения заболеваний у человека, а также сельскохозяйственных животных. При скармливании коровам кормов с содержанием фтора более 40 мг/кг они заболевают флюорозом, а концентрация этого элемента в молоке повышается более чем в два раза [634].
По данным японских ученых, поступление фтора в организм человека с продуктами питания и водой к 1965 г., по сравнению с 1958 г., увеличилось в 2,7 раза. Усиливающееся загрязнение окружающей среды фтором даже дало основание правительству Швеции для запрещения |его использования при дезинфекции воды [121].
Наряду с фтором в кальций–, гипсосодержащих и известковых мелиорантах обнаруживается относительно большое количество (1—2%) стабильного стронция. С обычной нормой фосфогипса в почву поступает от 100 до 400 кг/га этого элемента [346]. Его опасность состоит в том, что в организме человека и сельскохозяйственных животных стронций вступает в конкурентные отношения с кальцием, замещая его в костных тканях. Избежать отрицательного влияния стронция можно только в том случае, если его содержание в продуктах питания и кормах будет в 140 раз меньше, чем кальция. Применение мелиорантов и удобрений, содержащих стронций, как правило, изменяет это соотношение. Так, в результате использования фосфогипса отношение Са:Sr снизилось у овса со 105 до 68, проса — с 64 до 61, ячменя — с 67 до 61, донника — с 60 до 46 [53].
При прогнозировании загрязнения почвы следует учитывать и возможное поступление элементов, имеющих техногенное происхождение [620, 643, 655]. Аэрозольное распространение ТМ от промышленных районов достигает 25 км. В ряде стран Западной Европы на 1 га пашни с удобрениями и аэрозольным путем ежегодно поступает около 10 г. кадмия, в том числе 3—5 г с суперфосфатом, при валовом его содержании в слое почвы 0—15 см 0,2— 2 кг/га [654, 657, 647]. Загрязнение почв соединениями тяжелых металлов в некоторых странах достигло такого уровня, что возникли трудности с использованием сельскохозяйственных угодий [649]. Аналогичная ситуация складывается вокруг крупных промышленных центров в России. На Среднем Урале почти все пахотные земли в округе Ревды, Первоуральска, Нижнего Тагила не пригодны для получения диетической продукции. Сведения о поступлении металлов в почвы с атмосферными осадками в европейской части России приведены в табл.10.
Принимая во внимание опасность накопления в почве тяжелых, токсичных и радиоактивных элементов производители удобрений в ФРГ в 1986 г. приняли решение о введении норм на содержание в них кадмия. Однако извлечение из сырья, используемого для производства фосфорных удобрений, только этого элемента не исключит загрязнения почв [657, 623]. Более радикальным шагом, хотя и не решающим все проблемы, следует считать предложение о необходимости снизить объемы применения фосфорных удобрений [627].
Поступление в почвы различных химических элементов значительно осложняет определение безопасного уровня. Установленные ПДК обеспечивают безвредность среды только тогда, когда в ней содержится один загрязняющий компонент. Если появляются другие, то они могут усиливать отрицательное воздействие друг друга. Поэтому при комплексном загрязнении среды необходимы другие подходы к установлению его безопасного уровня. Считается, что он может определяться следующим образом:
где С1 С2, …, Сn — концентрация загрязняющего элемента в среде;
ПДК1, ПДК2, …, ПДКn — предельно допустимая концентрация элемента для данной среды.
Однако приведенный порядок определения безопасного уровня загрязнения химическими элементами неприемлем для почв. Это объясняется тем, что в них всегда наблюдается определенное фоновое содержание разнообразных химических элементов. И поэтому допустимый уровень загрязнения должен устанавливаться с учетом фонового содержания химических элементов, их поступления с минеральными удобрениями, мелиорантами, атмосферными осадками, а также с учетом миграционных процессов. Для этого, по нашему мнению, в вышеприведенный порядок необходимо внести следующие изменения. Показатели С1, С2… Сп — должны определяться по следующей схеме:
С = Оф–Фк,
где Оф — общая (фактическая) концентрация элемента в почве, мг/кг;
Фк — фоновая (кларковая) концентрация элемента в почве, мг/кг.
Предложенный порядок определения безопасного уровня загрязнения почв учитывает: содержание химических элементов в почве, их привнесение, вымывание, а также установленные ПДК.
1.5. Минеральные удобрения и гигиенические проблемы, возникающие в связи с их использованием
Среди проблем, возникающих в условиях интенсивной химизации сельскохозяйственного производства, все возрастающее внимание уделяется нитратному загрязнению питьевой воды и продуктов питания. Это объясняется тем, что нитраты и вещества, образующиеся в результате их превращений, способны оказывать неблагоприятное влияние на организм человека и сельскохозяйственных животных [6].
1.5.1. Влияние нитратов на организм человека и сельскохозяйственных животных
Нитраты, попадая в желудочно–кишечный тракт человека и сельскохозяйственных животных, подвергаются многочисленным биохимическим превращениям. Один из путей их трансформации заключается в том, что под действием микрофлоры они восстанавливаются до нитритов. Токсичность образовавшихся соединений в 20 раз выше исходных [363, 567]. Нитриты, попадая в кровь, взаимодействуют с гемоглобином и превращают последний в метгемоглобин, который не способен выполнять функцию переносчика кислорода. Особенно опасно появление метгемоглобина в крови для детей раннего возраста. Это объясняется низкой кислотностью в их желудке, которая благоприятствует развитию микроорганизмов, участвующих в превращении нитратов в нитриты, отсутствием хорошо сформированных ферментных систем перевода метгемоглобина в гемоглобин и потреблением на единицу массы тела больших объемов жидкости по сравнению с взрослыми [391, 630]. Расчеты показывают, что при употреблении одних и тех же продуктов нитратно–нитритная нагрузка для детей в возрасте от 6 месяцев до 6 лет на 84,0—111,1% больше, чем для взрослых [567].
Обследование шестилетних детей с целью выяснения влияния нитратной нагрузки на физическое развитие показало, что при использовании воды с повышенным содержанием нитратов у них уменьшается мышечная сила рук, окружность грудной клетки, жизненная емкость легких, ухудшаются показатели иммунитета [412, 256].
Следствием хронической интоксикации организма человека нитратами и нитритами является изменение биотоков головного мозга, снижение умственной и физической работоспособности, ослабление иммунной системы, появление стойких аллергических реакций [372, 251]. Возникновение метгемоглобинии не всегда сопровождается внешне заметными симптомами, что усложняет диагностирование заболевания [357]. Нитриты, включаясь в обменные процессы, могут изменять активность некоторых ферментов и повышать, прямым или косвенным путем, чувствительность организма к действию канцерогенных и мутагенных факторов [215]. Эпидемиологические исследования обнаружили наличие прямой связи между содержанием нитратов в продуктах питания и смертностью от рака желудка [18].
Опасность накопления в продуктах питания нитратов и нитритов кроется и в возможности образования с их участием нитрозоаминов. Эти соединения по отношению к животным организмам, даже в ничтожных количествах, проявляют канцерогенные, мутагенные, эмбрио–токсические и тератогенные свойства [71].
Появление нитрозоаминов в растениях происходит несколькими путями. Первый заключается в образовании их в почве под действием азотсодержащих удобрений и пестицидов, а другой — в возможном синтезе в тканях растений, имеющих высокое содержание нитратов [344].
В человеческий организм нитрозоамины могут попадать как с продуктами питания, так и вследствие их образования в желудке, если в него одновременно попадают нитрит и вторичный амин. Некоторые виды микроорганизмов желудочно–кишечного тракта могут активизировать этот процесс. Обнаружены и химические катализаторы реакции нитрозирования. Например, у курящих людей в слюне содержится тиоционат, обладающий такими свойствами [71].
Образование нитрозоаминов в организме человека возможно в ротовой полости, кишечнике и инфицированном мочевом пузыре [18]. Некоторые лекарственные препараты (пирамидон, тетрациклин), реагируя с нитратами, также образуют нитрозоамины [71].
Аналогичное действие нитраты и их производные оказывают на сельскохозяйственных животных. Длительное поступление нитратов в организм крупного рогатого скота в дозах, обычно не оказывающих отрицательного влияния, но на фоне йодного голодания и недостаточности в рационе белка создает условия для более тяжелого течения микроэлементной недостаточности [72, 171]. При хроническом отравлении животных соединениями минерального азота ухудшается усвоение каротина, ингибируются ферментные процессы в рубце, ограничивается продукция летучих жирных кислот с изменением их соотношения, нарушаются воспроизводительные способности [92, 629]. Содержание нитратов в сухом веществе рационов сельскохозяйственных животных не должно превышать 0,2% или 5—6 г на 1 кг живой массы. Летальная доза нитратов для коров массой 500 кг соответствует 250 г. в сутки [120].
1.5.2. Причины появления нитратов в питьевой воде и продуктах питания
Увеличение содержания минеральных форм азота в грунтовых и подземных водах усугубляет санитарно–гигиеническую обстановку среди населения, пользующегося этими источниками. Особую остроту эта проблема имеет в тех регионах, где из–за загрязнения или недостаточности ресурсов поверхностных вод переходят на эксплуатацию подземных бассейнов. Например, во Франции 63% общей потребности в питьевой воде удовлетворяется за счет подземных вод. В то же время в этой стране за последние 15 лет рост содержания нитратов в подземных водах составляет 1—6 мг/л в год [652]. Подобные данные получены при обследовании грунтовых вод на территории Германии. Там около 3 млн. человек потребляет воду, содержащую повышенные концентрации нитратов. Она в некоторых источниках достигает 90 мг/л, что почти в два раза больше допустимой [651, 499]. В бывшей ЧССР в районах интенсивного применения удобрений содержание нитратов в воде достигло 120—240 мг/г [437].
В настоящее время проводится работа по уточнению предельно допустимых концентраций (ПДК) нитратов в питьевой воде. Если ранее их значения были более высокими, то в последние годы они ужесточаются. Так, с 1976 г. содержание нитратов в питьевой воде в ФРГ ограничивалось 90 мг/л, а с 1986 г. — 50 мг/л. Но и этот уровень, видимо, не исключает их отрицательного влияния на здоровье населения. Поэтому комиссия ЕЭС предлагает снизить допустимые уровни содержания нитратов в воде до 25 мг/л и ниже [637].
По рекомендациям ВОЗ, которым соответствуют требования ГОСТа "Питьевая вода", содержание нитратов не должно превышать 10 мг/л по азоту или 45 мг/л по кислотному остатку [391]. Принимая во внимание высокую чувствительность детей к нитратам, для них этот показатель не должен превышать 15 мг/л [436]. Более жесткие нормы содержания минеральных соединений азота, по сравнению с общепринятыми, очевидно, должны быть предусмотрены для профессиональных спортсменов и лиц, активно занимающихся физическими упражнениями. У этих групп населения потребность в питьевой воде обычно увеличена на 1,0—1,5 л/сутки. Поэтому содержание нитратов в воде на уровне общепринятых ПДК не может служить полной гарантией ее безвредности.
Сравнение установленных ПДК по нитратам с уровнем их реального содержания указывает на необходимость безотлагательных мер по предотвращению загрязнения питьевых водоисточников. При проверке 86 тыс. колодцев, расположенных на территории бывшей ФРГ, в 36 тыс. содержание нитратов превышало 50 мг/л [638]. В США и Нидерландах загрязненность питьевой воды нитратами на уровне 45—50 мг/л встречается в 30—50% анализов [250]. Не являются исключением и страны СНГ. Половина источников водоснабжения в Молдове содержат нитраты в количествах, превосходящих гигиенические нормы [612]. В питьевых колодцах Ленинградской, Московской и других областей уровень нитратов достигает 70—100 мг/л [336].
Содержание нитратов в растениеводческой продукции зависит от ряда факторов: сбалансированности питания макро– и микроэлементами, освещенности, влаго– и теплообеспеченности, а также биологических особенностей растений. Но решающим условием является использование азотных удобрений. В наших исследованиях, проведенных в УралНИИСХозе, увеличение дозы азота с 90 до 270 кг/га вызывало повышение содержания нитратов в кормовой свекле при ее выращивании в неорошаемых условиях со 150— 450 до 610—940 мг/кг [395]. В качестве примера можно привести и данные о влиянии удобрений на содержание нитратов в овощах (табл. 11).
Основной причиной увеличения содержания нитратов в растениеводческой продукции при внесении азотных удобрений является разбалансировка азотного обмена и процессов фотосинтеза. Накопление белкового азота при улучшении минерального питания следует считать нормальной приспособительной реакцией, предотвращающей нарушения внутреннего гомеостаза. Но это свойство растений ограничено метаболическими возможностями, и при исчерпании адаптивного потенциала происходит накопление нитратов. Поэтому их появление выше определенной точки следует считать первым признаком нарушений обмена веществ и, очевидно, должно быть использовано для установления оптимального уровня азотного питания.
Согласно гигиеническим нормам, предельно допустимые концентрации нитратов в овощах, принятые в бывшем СССР до 1988 г., соответствовали следующим уровням: капуста — 300, морковь — 300, свекла — 1400, картофель — 80, томат — 60 мг/кг сырой массы [436]. В дальнейшем они были пересмотрены и по отдельным культурам увеличены. На сегодняшний день Министерством здравоохранения установлены следующие ПДК (по N03): капуста — 500, морковь — 250, свекла — 1400, картофель — 250, томат — 150 мг/кг сырой массы [590]. Однако некоторые специалисты считают ослабление требований на ограничение содержания нитратов необоснованным, совершенным под давлением производителей растениеводческой продукции. Анализ растениеводческой продукции, поступающей в магазины и столовые Свердловска, показал, что из 8 видов овощей и фруктов только в яблоках содержание нитратов не превышало ПДК [105]. В Ленинградской области 31% проверенных образцов содержали нитраты выше допустимых норм [185].
В Эстонии в период с 1984 по 1987 г. на содержание нитратов было проверено свыше 161 500 проб. Превышение допустимых уровней было отмечено в 68% проб столовой свеклы, 66 — капусты и 41 — картофеля. На Украине за этот же период содержание нитратов в овощах увеличилось в 1,7—3 раза. В 13% проанализированных образцов выявлено превышение допустимых норм [99, 47, 477]. В 1988 г. из 303 292 образцов растениеводческой продукции, проверенных санэпидслужбами в бывшем СССР, 14,4% овощей и фруктов было забраковано [163]. В 90‑х годах из–за снижения объемов применения минеральных удобрений содержание нитратов в сельскохозяйственной продукции снизилось. В 1997 г. в России было проанализировано 17136 образцов. В 1146 содержание нитратов превысило допустимые уровни [394].
Суммарная максимально допустимая суточная доза нитратов (с продуктами питания и водой), не оказывающая отрицательного влияния на организм человека, соответствует 200—220 мг NO3 или 3,6 мг NОз на 1 кг массы тела. Однако эти цифры нуждаются в уточнении, так как при их определении не учитывалась возможность образования из нитратов более токсичных веществ. Кроме того, было установлено, что поступление нитратов и нитритов в дозах на уровне рекомендованных ПДК, но в течение длительного периода ведет к возникновению нарушений в живых организмах [437, 266].
В настоящее время ежесуточная нитратная нагрузка только с продуктами питания (без воды) составляет в Швейцарии 108, Нидерландах — 135, Японии — от 240 до 400 мг [437]. В ряде стран повышенное содержание нитратов стало причиной 20% всех пищевых отравлений [116]. Поступление нитратов с продуктами питания и водой в человеческий организм в России в конце 80‑х годов составляло 150—350 мг, а в некоторых районах — 500 мг в сутки [18, 612].
С целью выявления агротехнических приемов, снижающих содержание нитратов в сельскохозяйственных растениях, проведено много исследований. Изучалось локальное и дробное внесение удобрений, различные формы азотных удобрений, ингибиторы нитрификации, сбалансированность минерального питания по отдельным элементам. Все перечисленные приемы позволяли только в небольшой степени снизить накопление нитратов.
В наших исследованиях, проведенных совместно с Н. М. Данько, изучалась возможность снижения содержания нитратов в кормовых культурах. Для этого часть азотных удобрений вносилась не в почву, а путем некорневой подкормки растений кормовой свеклы (табл. 12).
Из данных таблицы видно, что только в варианте без внесения удобрений содержание нитратов не превышало допустимый уровень, установленный для кормов (0,2% от сухого вещества). Уменьшение доз азота и внесение его части при некорневой подкормке хотя и снижало содержание нитратов, но не давало полной гарантии получения качественной продукции.
Самым эффективным способом является снижение доз вносимого технического азота. Как правило, использование удобрений в количестве 60— 100 кг/га не вызывает превышения допустимых уровней содержания нитратов. Но это не гарантирует достижение результата во всех случаях, что и подтверждается нашими исследованиями. В настоящее время известны примеры высокого содержания нитратов и при внесении небольших количеств азотных удобрений вследствие воздействия на растения каких–либо неблагоприятных условий [437].
1.6. Влияние удобрений на качество продуктов растениеводства и животноводства
Повышая урожайность сельскохозяйственных культур, минеральные удобрения в значительной степени влияют на их качество. Биохимические исследования показывают, что существенные изменения происходят в содержании белков, углеводов, витаминов и микроэлементов. Большинство специалистов, изучавших этот вопрос, указывают на нежелательную перестройку в биохимическом составе только при внесении высоких или средних доз. Но имеются данные об ухудшении биологической полноценности растениеводческой продукции и при использовании небольших количеств минеральных удобрений, что не должно оставаться без внимания.
На повышение содержания в растениях сырого протеина под действием азотных удобрений чаще всего обращается внимание в кормопроизводстве. Большинство специалистов считают это положительным моментом и используют в качестве одного из аргументов, подтверждающих необходимость внесения технического азота. И с этим нельзя не согласиться. Но, вместе с тем, такое утверждение не всегда полностью оправдывается при более глубоком рассмотрении наблюдаемого явления. Прежде всего это относится к изменению соотношения между белковыми и небелковыми формами азота, обнаруживаемого в растениях. Оказывается, азотные удобрения увеличивают в растениях содержание, главным образом, простых азотистых соединений. Белковость растений повышается в меньшей степени, а в ряде случаев даже снижается. Из нижеприведенных данных видно (табл. 13), что содержание белкового азота в райграсе по мере повышения доз азотных удобрений уменьшается, а нитратного — увеличивается. Следовательно, учитывая возможность ухудшения здоровья сельскохозяйственных животных или снижения их продуктивности при накоплении в кормах простых соединений азота, факт увеличения содержания сырого протеина в растениях можно толковать и с другой стороны.
Доза азота, кг/га | Белковый | Нитратный | Аммиачный | Амидный |
0 | 91,0 | 3,0 | 5,0 | 1,0 |
50 | 90,5 | 4,5 | 4,2 | 0,8 |
100 | 85,1 | 7,0 | 6,8 | 1,1 |
200 | 88,6 | 6,2 | 3,8 | 1,4 |
400 | 87,3 | 7,2 | 4,0 | 1,5 |
Взвешивая положительные и отрицательные моменты увеличения содержания азотистых веществ в растениях, не следует оставлять без внимания и другие изменения, возникновение которых находится в прямой зависимости от рассматриваемого явления. Практически все исследователи, изучавшие влияние азотных удобрений на биохимический состав растений, отмечают наличие отрицательной связи между содержанием сырого протеина и углеводов. Это объясняется тем, что синтез азотсодержащих веществ происходит за счет углеводистых соединений. Но присутствие последних в рационах сельскохозяйственных животных, как основного энергетического материала, имеет не меньшее значение.
Сбалансированность кормов по обеспеченности углеводами оценивается по сахаропротеиновому отношению. Оптимальное его значение для молочного скота соответствует 1:1,0—1,5. Внесение минеральных удобрений ведет к его нарушению (табл. 14).
Уменьшение содержания углеводов в растениях вызывает неполное извлечение из кормов питательных веществ и в том числе азотсодержащих. Таким образом, повышение насыщенности рационов сельскохозяйственных животных сырым протеином на фоне недостаточного обеспечения углеводами может стать причиной увеличения расхода кормов на единицу производимой животноводческой продукции.
К сельскохозяйственным растениям, подверженным очень сильному изменению биохимического состава под влиянием минеральных удобрений, следует отнести картофель. Качество этой культуры во многом определяется уровнем содержания крахмала. В опытах польских ученых установлено, что крахмалистость клубней при внесении N60РбоKбо, по сравнению с неудобренным фоном, снижалась с 21,3 до 20,0% [182]. В других исследованиях даже в два раза меньшие дозы применяемых удобрений уменьшали содержание крахмала в картофеле с 16,5 до 14,4—15,3% [132].
Под влиянием минеральных удобрений в растениях происходят и более глубокие биохимические изменения. В частности, возможно ухудшение аминокислотного состава. Так, в белке зерна кукурузы при ее выращивании без удобрений на долю лизина и триптофана приходилось 3,06 и 0,574%. Внесение азотных удобрений вызывало снижение содержания этих аминокислот соответственно до 2,41 и 0,476% [131]. В опыте, проведенном на кафедре агрохимии УрСХА, при внесении минеральных удобрений в дозе \ Р8 К8 на фоне повышения белковости зерна озимой пшеницы отмечено заметное снижение всех без исключения незаменимых аминокислот [310]. Аналогичные закономерности проявились и при изучении биохимического состава зерна озимой ржи [289]. Значит, питательная ценность белка растений, выращенных с применением минеральных удобрений, может ухудшиться в результате изменения в неблагоприятную сторону соотношения между заменимыми и незаменимыми аминокислотами. Это подтверждается опытами, проведенными на лабораторных животных [301].
В некоторых исследованиях под влиянием технического азота (N30,60,90) наблюдалось уменьшение содержания витамина С в картофеле и каротина в моркови [496, 490, 590]. Далее приведены данные о воздействии минеральных удобрений на качество капусты (табл. 15).