Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (УЛ) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

  У. как метод концентрирования, очистки и фракционирования высокодисперсных систем и многокомпонентных растворов широко применяется в лабораторной практике, медицине, промышленности. Так, посредством У. очищают от ионных и не ионных примесей воду, органические растворители, жидкие топлива и масла; разделяют сложные смеси белков, алкалоидов и др. веществ; выделяют ферменты, витамины, вирусы; стерилизуют жидкости медицинского и фармацевтического назначения. У. используют в дисперсионном анализе , микробиологическом анализе, при анализе загрязнений воздушных бассейнов и природных водоёмов промышленными и бытовыми отходами.

  Лит.: Дытнерский Ю. И., Мембранные процессы разделения жидких смесей, М., 1975.

  Л. А. Шиц.

Ультрафиолетовая микроскопия

Ультрафиоле'товая микроскопи'я, метод микроскопического исследования в ультрафиолетовых лучах. Подробнее см. в ст. Микроскоп .

Ультрафиолетовая спектроскопия

Ультрафиоле'товая спектроскопи'я, УФ-спектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в УФ-области спектра от 400 нм до 10 нм. Исследованием спектров в области 200—10 нм занимается вакуумная спектроскопия (см. Ультрафиолетовое излучение ). В области спектра 400—200 нм используют приборы, построенные по тем же оптическим схемам, что и для видимой области спектра; отличие состоит лишь в замене стеклянных призм, линз и др. оптических деталей на кварцевые. При измерении интенсивности УФ-излучения в качестве эталонных применяют источники, имеющие в УФ-области спектра известное распределение спектральной яркости (ленточная вольфрамовая лампа, угольная дуга, а также синхротронное излучение ); стандартными приёмниками в этой области спектра являются термопара и градуированные фотоэлементы.

  У. с. применяется при исследовании атомов, ионов, молекул и твёрдых тел для изучения их уровней энергии, вероятностей переходов и др. характеристик. В УФ-области спектра лежат резонансные линии нейтральных, одно- и двукратно ионизованных атомов, а также спектральные линии, испускаемые возбуждёнными конфигурациями высокоионизованных атомов. Электронно-колебательно-вращательные полосы молекул в основном также располагаются в ближней УФ-области спектра. Здесь же сосредоточены полосы поглощения в спектрах большинства полупроводников, возникающие при прямых переходах из валентной зоны в зону проводимости. Многие химические соединения дают сильные полосы поглощения в УФ-области, что создаёт преимущества использования У. с. в спектральном анализе. У. с. имеет большое значение для внеатмосферной астрофизики при изучении Солнца, звёзд, туманностей и др.

  Лит.: Taffе' Н. Н., Orehin М., Theory and applications of ultraviolet spectroscopy, N. Y., [1962]. см. также лит. при ст. Ультрафиолетовое излучение .

  А. Н. Рябцев.

Ультрафиолетовое излучение

Ультрафиоле'товое излуче'ние (от ультра... и фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн l 400—10 нм. Вся область У. и. условно делится на ближнюю (400—200 нм ) и далёкую, или вакуумную (200—10 нм ); последнее название обусловлено тем, что У. и. этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

  Ближнее У. и. открыто в 1801 немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное У. и. обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885—1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал У. и. с длиной волны до 25 нм (1924). К 1927 был изучен весь промежуток между вакуумным У. и. и рентгеновским излучением.

  Спектр У. и. может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника У. и. (см. Спектры оптические ). Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H2 ). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры ). Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение ).

  Оптические свойства веществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при l < 320 нм;   в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые др. материалы. Наиболее далёкую границу прозрачности (105 нм ) имеет фтористый литий. Для l <105 нм прозрачных материалов практически нет. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала . Самую коротковолновую границу прозрачности имеет гелий — 50,4 нм. Воздух непрозрачен практически при l < 185 нм из-за поглощения кислородом.

  Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Например, коэффициент отражения свеженапылённого алюминия, одного из лучших материалов для отражающих покрытий в видимой области спектра, резко уменьшается при l < 90 нм (рис. 1 ). Отражение алюминия значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области l < 80 нм   некоторые материалы имеют коэффициент отражения 10—30% (золото, платина, радий, вольфрам и др.), однако при l < 40 нм   и их коэффициент отражения снижается до 1% и меньше.

  Источники У. и. Излучение накалённых до 3000 К твёрдых тел содержит заметную долю У. и. непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное У. и. испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений У. и. промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для У. и. материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником У. и. Интенсивное У. и. непрерывного спектра испускают электроны, ускоренные в синхротроне (синхротронное излучение ). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (лазеры ). Наименьшую длину волны имеет водородный лазер (109,8 нм ).

  Естественные источники У. и. — Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть У. и. (l > 290 нм ) достигает земной поверхности. Более коротковолновое У. и. поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30—200 км от поверхности Земли, что играет большую роль в атмосферных процессах. У. и. звёзд и др. космических тел, кроме поглощения в земной атмосфере, в интервале 91,2—20 нм практически полностью поглощается межзвёздным водородом.

  Приёмники У. и. Для регистрации У. и. при l >230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность У. и. вызывать ионизацию и фотоэффект: фотодиоды , ионизационные камеры , счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей — каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в У. и. и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании У. и. также используют различные люминесцирующие вещества, преобразующие У. и. в видимое. На этой основе созданы приборы для визуализации изображений в У. и.

  Применение У. и. Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия , Вакуумная спектроскопия ). На фотоэффекте, вызываемом У. и., основана фотоэлектронная спектроскопия . У. и. может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и т.д., см. Фотохимия ). Люминесценция под действием У. и. используется при создании люминесцентных ламп , светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии . У. и. применяется в криминалистике для установления идентичности красителей, подлинности документов и т.п. В искусствоведении У. и. позволяет обнаружить на картинах не видимые глазом следы реставраций (рис. 2 ). Способность многих веществ к избирательному поглощению У. и. используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

  Лит.: Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. — М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. — L. — Sydney, [1967]; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. — Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

  А. Н. Рябцев.

  Биологическое действие У. и. При действии на живые организмы У. и. поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия У. и. лежат химические изменения молекул биополимеров . Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и др. низкомолекулярных соединений.

  На человека и животных малые дозы У. и. оказывают благотворное действие — способствуют образованию витаминов группы D (см. Кальциферолы ), улучшают иммунобиологические свойства организма. Характерной реакцией кожи на У. и. является специфическое покраснение — эритема (максимальным эритемным действием обладает У. и. с l = 296,7 нм и l = 253,7 нм ), которая обычно переходит в защитную пигментацию (загар ). Большие дозы У. и. могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы У. и. в некоторых случаях могут оказывать канцерогенное действие на кожу.

  В растениях У. и. изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы У. и. Большие дозы У. и., несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

  На микроорганизмы и культивируемые клетки высших животных и растений У. и. оказывает губительное и мутагенное действие (наиболее эффективно У. и. с l в пределах 280—240 нм ). Обычно спектр летального и мутагенного действия У. и. примерно совпадает со спектром поглощения нуклеиновых кислот ДНК и РНК (рис. 3 , А), в некоторых случаях спектр биологического действия близок к спектру поглощения белков (рис. 3 , Б). Основная роль в действии У. и. на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом тимин ) при поглощении квантов У. и. образуют димеры, которые препятствуют нормальному удвоению (репликации ) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств (мутациям ). Определённое значение в летальном действии У. и. на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

  Большинство живых клеток может восстанавливаться от вызываемых У. и. повреждений благодаря наличию у них систем репарации . Способность восстанавливаться от повреждений, вызываемых У. и., возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

  По чувствительности к У. и. биологические объекты различаются очень сильно. Например, доза У. и., вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм2 , а для бактерий Micrococcus radiodurans — 7000 эрг/мм2 (рис. 4 , А и Б). Чувствительность клеток к У. и. в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к У. и. мутации некоторых генов . У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к У. и. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к У. и., известны и у высших организмов, в том числе у человека. Так, наследственное заболевание — пигментная ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

  Генетические последствия облучения У. и. пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид . Частота мутирования отдельных генов, при действии высоких доз У. и., может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием У. и. возникают относительно чаще, чем мутации хромосом . Благодаря сильному мутагенному эффекту У. и. широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие У. и. могло играть существенную роль в эволюции живых организмов. О применении У. и. в медицине см. Светолечение .

  Лит.: Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П,, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

  В. И. Корогодин.


Рис. 1. Зависимость коэффициента отражения r слоя алюминия от длины волны l, измеренная сразу после напыления в ультравысоком вакууме (1) и после хранения на открытом воздухе в течение года (2).


Рис. 2. Спектры действия ультрафиолетового излучения на некоторые биологические объекты: А — возникновение мутаций в пыльцевых зернах кукурузы (кружки) и спектр поглощения нуклеиновых кислот (сплошная кривая); Б — иммобилизация (прекращение движения) парамеций (кружки) и спектр поглощения альбумина (сплошная кривая).


Рис. 3. Зависимость выживаемости разных бактерий от дозы ультрафиолетового излучения: А — кишечная палочка, длина волны 253,7 нм ; 1, 2 — мутантные штаммы; 3 — дикий тип; Б — M. radiodurans , длина волны 265,2 нм .

Ультрафиолетовое облучение

Ультрафиоле'товое облуче'ние, использование ультрафиолетовых лучей с лечебной целью и для обеззараживания воды, помещений и т.п. Об У. о. человека см. Светолечение .

  У. о. животных применяют для профилактики и лечения рахита и остеомаляции, лечения ран, повышения иммунологической реакций организма. С.-х. животные при моционах облучаются ультрафиолетовыми лучами солнца. В зимне-стойловый период проводят групповое облучение животных искусственными источниками ультрафиолетового излучения (бактерицидная, ртутно-кварцевая, эритемно-увиолевая лампы). Для каждого вида животных существуют свои нормы облучения, например доза облучения (в/мэр ×ч/м2 ) для коровы 290—210, свиньи 100—70, курицы 25—20. Птиц при клеточном содержании облучают круглосуточно. Крупных животных облучают в фиксационных станках, на привязи; телят, жеребят — в клетках; пушных зверей и поросят — в специальных ящиках с сетками. Источник У. о. устанавливают на разном расстоянии — в зависимости от вида лампы, характера болезни, вида животного. У. о. противопоказано при туберкулёзе, лейкозе, остром гепатите, декомпенсированном пороке сердца.

  Лит.: Медведев И. Д., Физические методы лечения животных, 3 изд., М., 1964, с. 182—265.

Ультрахолодные нейтроны

Ультрахоло'дные нейтро'ны, очень медленные нейтроны , со скоростями £ 5 м/сек. Термин «У. н.» объясняется тем, что примерно с такой же скоростью двигались бы молекулы газа при температуре ниже 10-2 К. У. н. обладают малой кинетической энергией (порядка 10-7 эв ), недостаточной для преодоления слабого отталкивания ядрами большинства химических элементов, и поэтому полностью отражаются от поверхности многих материалов. Величина отталкивающего потенциала равна:

  ,

  где h — Планка постоянная , m — масса нейтрона, Ni плотность ядер i -го сорта в веществе, ai так называемая длина рассеяния нейтрона на этих ядрах. Для меди U = 1,7×10-7 эв, для стекла U = 10-7 эв. Для ядер 1 H, 7 Li, 48 Ti и 186 W U < 0, то есть У. н. притягиваются. Отражение У. н. в некоторой степени можно уподобить отражению света от металлических зеркал, оно может быть описано мнимым показателем преломления для нейтронной волны внутри отражающей среды (см. Нейтронная оптика ).

  Полное отражение У. н. от стенок позволяет хранить их в течение нескольких мин внутри замкнутых вакуумированных объёмов. Впервые на эту особенность У. н. в 1959 указал Я. Б. Зельдович ; первые эксперименты по обнаружению и хранению У. н. были выполнены Ф. Л. Шапиро с сотрудниками в 1968. Время хранения У. н. в замкнутых сосудах ограничено временем жизни свободного нейтрона до бета-распада , а также процессами захвата нейтронов ядрами и неупругого рассеяния нейтронов на ядрах в поверхностном слое толщиной (4pNa )-1/2 ~ 10-6 см. У. н. могут течь по трубам произвольной формы (нейтроноводам) как разреженный газ. Изогнутые нейтроноводы используются для вывода У. н. из ядерных реакторов и выделения из потока тепловых нейтронов , в котором доля У. н. составляет лишь 10-11 . Поэтому реально получаемые плотности У. н. £1 нейтрон/см3 . На движение У. н. существенно влияют магнитное и гравитационное поля. Свойства У. н. пока недостаточно изучены, но, по-видимому, они могут служить чувствительным инструментом для обнаружения возможного электрического заряда или электрического дипольного момента у нейтрона (см. Нейтрон ).

  Лит.: Гуревич И. И., Тарасов Л. В., Физика нейтронов низких энергий, М., 1965; Власов Н, А., Нейтроны, 2 изд., М., 1972.

  В. И. Лущиков.

Ультрацентрифуга

Ультрацентрифу'га (от ультра ..., центр и лат. fugo — бег, бегство), прибор для разделения частиц менее 100 нм (коллоидов, субклеточных частиц, макромолекул белков, нуклеиновых кислот, липидов, полисахаридов, синтетических полимеров и пр.), взвешенных или растворённых в жидкости; это достигается вращением ротора, создающего центробежное поле с ускорением, на много порядков превышающим ускорение силы тяжести. По назначению и конструкции У. подразделяются на препаративные, аналитические и препаративно-аналитические. Препаративные У. снабжены угловыми роторами с гнёздами для цилиндрических пробирок, стаканов или бутылок, наклоненных под углом 20—40° к вертикальной оси ротора, либо так называемыми бакетными роторами со стаканами, поворачивающимися на 90° при вращении. Существуют также зональные и проточные роторы с одной большой внутренней полостью для фракционируемой жидкости. Препаративные У. используются для выделения отдельных компонентов из сложных смесей. Аналитические У. снабжены роторами со сквозными цилиндрическими гнёздами, в которые помещены специальные прозрачные кюветы для исследуемых растворов или суспензий. Процесс перераспределения частиц в них можно наблюдать непосредственно при вращении ротора с помощью специальных оптических систем (рефрактометрических, абсорбционных). Существуют модели аналитических У., соединённые с ЭВМ, производящими автоматическую обработку экспериментальных данных. Первая У., предназначенная для изучения движения частиц, невидимых в световой микроскоп, создана шведским учёным Т. Сведбергом в 1923 (публикация в 1924). В этой У. достигались центробежные ускорения всего до 5000 g. Она имела абсорбционную оптическую систему и использовалась для изучения движения частиц золота диаметром около 5 нм. В 1926 Сведберг сконструировал первую высокоскоростную У. (41000 об/мин, ускорения — до 105 g ), с помощью которой проводились аналитические исследования белков в растворах (в частности, гемоглобина). В 1939 Сведбергом создана аналитическая У. со стальным ротором (65000 об/мин ). Подавляющее большинство современных лабораторных У. снабжено электрическими приводами и алюминиевыми или титановыми роторами. В СССР и за рубежом выпускается много видов У., в которых создаются центробежные ускорения вплоть до 500000 g, а разделение частиц и молекул осуществляется в объёмах, измеряемых десятками и сотнями мл. См. также Ультрацентрифугирование .

  Лит.: Лотц Ю. А., Ожерельев А, Я., Аналитическая ультрацентрифуга., «Уникальные приборы», 1970, № 5; Svedderg Т., Pedersen K. O., The Ultracentrifuge, Oxf., 1940.

  А. Д. Морозкин.

Ультрацентрифугирование

Ультрацентрифуги'рование, метод разделения и исследования высокомолекулярных соединений, вирусов и субклеточных частиц с помощью ультрацентрифуги . Идея У. была предложена А. В. Думанским в 1913, однако разработка современной теории седиментационного анализа стала возможной только после того, как Т. Сведберг в 1926 сконструировал высокоскоростную ультрацентрифугу, обеспечивавшую ускорение 105 g.

  Принято различать 2 типа У.: препаративное и аналитическое. Препаративное У. применяют для фракционирования и выделения биополимеров в количествах, достаточных для практических целей. Широко используют У. в градиенте плотности растворов сахарозы, глицерина, декстринов; оно позволяет разделять смеси веществ на отдельные компоненты, различающиеся эффективной массой и коэффициентом трения частиц или молекул. Применение зональных и проточных роторов дало возможность значительно повысить объёмы растворов фракционируемых частиц и использовать их для очистки вируса гриппа при изготовлении вакцин. Аналитическое У. используют для исследования гомогенности (чистоты) препаратов биополимеров (белков, нуклеиновых кислот, полисахаридов), а также для определения констант седиментации, молекулярной массы, констант ассоциации и размеров макромолекул. У. применяется в медицине при клинической диагностике, для приготовления кровезаменителей и т.п.

  Лит.: Шпикитер О. В., Методы исследования биополимеров с помощью аналитической ультрацентрифуги, в кн.: Современные методы в биохимии, М., 1964; Боуэн Т., Введение в ультрацентрифугирование, пер. с англ., М., 1973; Schachman Н. К., Ultra centrifugation in biochemistry, N. Y. — L., 1959.

  Н. Н. Чернов.

Ультрачистые металлы

Ультрачи'стые мета'ллы, высокочистые металлы, особо чистые металлы, металлы, суммарное содержание примесей в которых не превышает 1×10-3 % (по массе). Основные стадии технологии производства У. м.: получение чистых химических соединений, восстановление их до элементарного состояния и дополнительная очистка. Чистые соединения получают сорбцией , экстракцией , дистилляцией , ректификацией , ионным обменом , перекристаллизацией из водных растворов. Восстановление соединений осуществляется химическими методами, термическим разложением или электроосаждением. Дополнительная очистка металлов обеспечивается электролитическим рафинированием (Cu, Ni, Pb, Al, Ga), дистилляцией или ректификацией (Zn, Cd, Hg), вакуумной плавкой (Cu, Sn, Al, Ga), электроннолучевой или плазменной плавкой (V, Nb, Ta, W, Mo, Ti). Значительное повышение чистоты металлов и получение монокристаллов достигаются методами направленной кристаллизации, вытягиванием кристаллов из расплава, зонной перекристаллизацией. У. м. обладают повышенной пластичностью, коррозионной стойкостью, электропроводностью, пониженной температурой рекристаллизации. Для анализа примесей в У. м. применяют высокочувствительные методы (спектральный с обогащением, полярографический, люминесцентный, масс-спектральный, радиоактивационный и др.). Для оценки общей чистоты металлов используют соотношение удельных электросопротивлений при 293 К и 4,2 К (S293 / S4,2 ); это соотношение возрастает с повышением чистоты металлов.

  У. м. (например, W, Mo) применяются в качестве конструкционных материалов в приборах и устройствах авиационной и ядерной техники. Из высокочистого ниобия изготовляют сверхпроводящие СВЧ резонаторы. У. м. 2-й (Zn, Cd, Hg), 3-й (Al, Ga, In), 4-й (Pb, Sn) и 5-й (Bi) групп таблицы Менделеева используются для синтеза простых и сложных полупроводниковых соединений и твёрдых растворов на их основе.

  У. м. имеют важное значение для исследований в области физики твёрдого тела (в качестве эталонов), для развития энергетики, космической и полупроводниковой техники.

Ульфат Гуль-Пача

Ульфа'т Гуль-Пача (р. 1909), афганский писатель, общественный деятель. Пишет на пушту. Получил духовное образование в Кабуле и Джелалабаде. В 1956—63 был президентом историко-филологической Академии «Пашто толына», возглавлял общество афгано-советской дружбы (1960—63). Редактировал ведущие газеты и журналы Афганистана. Автор глубоких по содержанию стихов: «Избранные стихи» (1955), «Голос сердца» (1962) и сочинений в прозе, в том числе философские эссе: сборники «Горящий светильник» (1941), «Избранная проза» (1956) и др. В творчестве У. переплетаются традиционные и современные сюжеты, мотивы, образы. Излюбленный приём писателя — философская аллегория. Сочинения У. глубоко гуманистичны, проникнуты любовью к простым людям.

  Соч. в рус. пер.: [Стихи], в кн.: Стихи поэтов Афганистана, М., 1962.

  Лит.: Дворянков Н. А., «Избранные стихи» Гуль Пача Ульфата, в кн.: Независимый Афганистан, М., 1958; Герасимова А.. Гире Г., Литература Афганистана, М., 1963; Усманов А., Публицистическое мастерство Гуль Пача Ульфата, «Краткие сообщения института народов Азии», 1965, в. 80.

  Г. Ф. Гире. Э

Ульфила

Ульфи'ла (греческое Ulphílas), Вульфила (готское Wulfila, уменьшительное от wulfs — волк) (около 311 — около 383), церковный деятель вестготов . Около 341 в Константинополе епископом-арианином У. был возведён в сан «епископа готов». В дальнейшем активно распространял христианство (в форме арианства ) среди германских племён. У. считается изобретателем готского алфавита и автором перевода на готский язык   большей части Библии (что некоторыми исследователями ставится под сомнение); сохранившиеся фрагменты этого перевода — древнейший памятник вымершего готского языка.

Ульчи

У'льчи, ольчи (самоназвание — пани, буквально— люди), народ, живущий на нижнем Амуре, в Ульчском районе Хабаровского края РСФСР. Численность 2,4 тыс. чел. (1970, перепись). Ульчский язык относится к тунгусо-маньчжурским языкам . В прошлом у У. были распространены анимистические верования, шаманизм. В этногенезе У. участвовали таёжные тунгусы, древнее аборигенное население и др. этнические элементы. В прошлом отсталый народ за годы Советской власти добился больших успехов в развитии экономики и культуры. Объединённые в колхозы У. занимаются рыболовством и охотничьим промыслом. Более 10% У. живёт в городах. Сложилась национальная интеллигенция. Известен писатель-ульча А. Л. Вальдю.

  Лит.: Народы Сибири, М. — Л., 1956; Смоляк А. В., Ульчи, М., 1966.

Ульчский язык

У'льчский язы'к, язык ульчей , один из бесписьменных тунгусо-маньчжурских языков .

Улья

У'лья, река в Хабаровском крае РСФСР. Длина 325 км, площадь бассейна 15500 км2 . Берёт начало в хребте Джугджур; течёт в глубокой долине между хребтами Джугджур и Ульинский, впадает в Охотское море. Питание снеговое и дождевое. Замерзает в конце октября — начале ноября, вскрывается в мае. На У. — нерест лосося.

Ульянин Василий Николаевич

Улья'нин Василий Николаевич [17(29).9.1840, Петербург, — 1889, Варшава], русский зоолог и эмбриолог. В 1864 окончил Московский университет. Ученик А. П. Богданова. С 1875 по 1880 директор Севастопольской биостанции. С 1885 профессор Варшавского университета. Исследования по фауне Чёрного моря; У. выделены в самостоятельную группу (1870) своеобразные ресничные черви Acoela (бескишечные), изучено эмбриональное развитие различных ракообразных, насекомых и оболочников, разъяснён метагенез у оболочника Doliolum (1884), установлен паразитизм у гидроидных медуз из рода Cunina в желудке гидроидных медуз семейства герионид (1875).

  Лит.: Митрофанов П., В. Н. Ульянин, «Варшавские университетские известия», 1889, № 6.

Ульянов Александр Ильич

Улья'нов Александр Ильич [31.3(12.4).1866, Нижний Новгород, ныне Горький,— 8(20).5.1887, Шлиссельбург, ныне Петрокрепость], участник революционного движения в России. Старший брат В. И. Ленина. В 1883 окончил Симбирскую гимназию с золотой медалью и поступил на естественный факультет Петербургского университета, проявил большие научные способности (на 3-м курсе получил золотую медаль за самостоятельную работу по зоологии). Участвовал в студенческих нелегальных собраниях, демонстрациях, вёл пропаганду в рабочем кружке. В конце 1886 стал членом «Террористической фракции» партии «Народная воля» ; один из авторов её программы, в которой проявилось влияние марксизма. Наряду с признанием рабочего класса «ядром социалистической партии» в программе утверждалось, что инициативу борьбы с самодержавием должна взять на себя революционная интеллигенция; методом борьбы признавался террор. У. с товарищами готовил покушение на Александра III, но 1 марта 1887 они были арестованы. На суде У. выступил с политической речью. А. И. Ульянов, П. И. Андреюшкин, В. Д. Генералов, В. С. Осипанов, П. Я. Шевырёв были приговорены к смертной казни и повешены.

  Лит.: Ульянова-Елизарова А. И., А. И. Ульянов и дело 1 марта 1887. Сб., М.—Л., 1927; Переписка семьи Ульяновых. 1883—1917, М., 1969; 1 марта 1887 г. Дело П. Шевырева, А. Ульянова и др., М.—Л., 1927; Иванский А. И., Жизнь как факел, М., 1966; Итенберг В. С., Черняк А. Я., Жизнь А. Ульянова, М., 1966.

  Б. С. Итенберг.


А. И. Ульянов.

Ульянов Владимир Ильич

Улья'нов Владимир Ильич (1870—1924), см. Ленин В. И.

Ульянов Григорий Константинович

Улья'нов Григорий Константинович [21.9(3.10).1859, станица Усть Медведицкая, ныне г. Серафимович Волгоградской области, — 8.4(21.4).1912, Петербург], русский языковед. Окончил Московский университет (1881), ученик Ф. Ф. Фортунатова . Профессор (с 1888), ректор (1899—1904) Варшавского университета. Товарищ министра народного просвещения (1907—11), сенатор (1911—12). Основные исследования в области глагольной системы литовского и славянского языков, сравнительно-исторического языкознания (докторская диссертация «Значения глагольных основ в литовско-славянском языке», ч. 1—2, 1891—95).

  Соч.: Греческие именительные единственного числа на и в словах мужского рода, в кн.: cariotnria. Сб. статей по филологии и лингвистике в честь Ф. Е. Корша, М., 1896; Краткое значение удвоенных основ, в кн.: Сб. статей, посвященный учениками и почитателями... Ф. Ф. Фортунатову, Варшава, 1902.

  Лит.: Фортунатов Ф. Ф., Разбор сочинения Г. К. Ульянова: Значения глагольных основ в литовско-славянском языке, «Сб. отделения русского языка и словесности, АН», 1899, т. 64, № 11.

  Ф. М. Березин.

Ульянов Дмитрий Ильич

Улья'нов Дмитрий Ильич [4(16).8.1874, Симбирск, ныне Ульяновск, — 6.7.1943, Горки Ленинские; похоронен в Москве], деятель российского революционного движения. Член Коммунистической партии с 1903, в революционном движении с 1894. Младший брат В. И. Ленина. В 1893 окончил Самарскую гимназию и поступил на медицинский факультет Московского университета. Был членом марксистских кружков, московского «Рабочего союза». В 1897 арестован, с 1898 жил под гласным надзором полиции в Подольске. С 1900 агент «Искры» . В 1901 окончил медицинский факультет Юрьевского (Тартуского) университета. С 1902 работал врачом на юге России. В 1903 вёл революционную работу в Туле, делегат 2-го съезда РСДРП, затем агент ЦК РСДРП в Киеве. Неоднократно подвергался арестам. В годы Революции 1905—07 работал врачом в Симбирске и был членом комитета РСДРП, затем в Серпуховском уезде, Феодосии. Во время 1-й мировой войны 1914—18 мобилизован в армию, служил военным врачом в Севастополе, Одессе, сануправлении Румынского фронта, вёл революционную работу. Участник борьбы за Советскую власть в Крыму. С декабря 1917 член Таврического комитета РСДРП (б). В 1918—19 в партийном подполье Крыма. В 1919 член Евпаторийского комитета РКП (б), Ревкома, заместитель председателя Крымского СНК. В 1920—21 член Крымского обкома РКП (б) и Ревкома. С 1921 в Москве в Наркомздраве, Коммунистическом университете им. Я. М. Свердлова. С 1933 в научном секторе поликлиники Сануправления Кремля. Одновременно с врачебной деятельностью вёл работу в Центральном музее В. И. Ленина. В 1941—42 жил в Ульяновске, затем в Москве. Делегат 16, 17-го съездов партии.

  Соч.: Очерки разных лет. Воспоминания. Переписка. Статьи, М., 1974; Воспоминания о Владимире Ильиче, 4 изд., М., 1971; О Ленине. Отрывки из воспоминаний, М., 1934 (совм. с Ульяновой М. И.).

  Лит.: Ленин В. И., Письма к родным. 1893—1922, Полн. собр. соч., 5 изд., т. 55; Переписка семьи Ульяновых. 1883—1917, М., 1969; Вольфсон Б. М., Д. И. Ульянов, «Вопросы истории КПСС», 1964, № 9; Хигеров Р., Младший брат, в кн.: Партия шагает в революцию, 2 изд., М., 1969.

  М. Г. Бондарчук.




Поделиться книгой:

На главную
Назад