Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (УГ) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

  Каменные угли на средних стадиях метаморфизма приобретают спекающие свойства — способность гелифицированных и липоидных компонентов органического вещества переходить при нагревании в определённых условиях в пластического состояние и образовывать пористый монолит — кокс . Относительное количество запасов У. и. с высокой спекающейся способностью составляет 10—15% от общих запасов каменных углей, что связано с более высокой интенсивностью преобразования органических вещества на средних стадиях метаморфизма. Спекающиеся угли возникают при температурах примерно от 130 до 160—180 °С при общем диапазоне температур, обусловливающих протекание метаморфизма У. и., от 70—90 °С для длиннопламенных углей до 300—350 °С для антрацитов. Наиболее высококачественные спекающиеся угли формировались в бассейнах, испытавших региональный метаморфизм при глубоком погружении угленосной толщи. При термальном и контактовом метаморфизме в связи с резким изменением температур и невысоким давлением преобразование органического вещества протекает неравномерно и качество углей отличается невыдержанностью технологических свойств. Породы угленосных формаций наряду с метаморфизмом углей испытывают катагенетические преобразования (см. Катагенез ).

  В зонах аэрации и активного действия подземных вод вблизи поверхности Земли У. и. подвергаются окислению. По своему воздействию на химический состав и физические свойства У. и. окисление имеет обратную направленность по сравнению с метаморфизмом: У. п. утрачивают прочностные свойства (до превращения их в сажистое вещество) и спекаемость; в них возрастает относительное содержание кислорода, снижается количество углерода, увеличиваются влажность и зольность, резко снижается теплота сгорания. Глубина окисления У. и. в зависимости от современного и древнего рельефа, положения зеркала грунтовых вод, характера климатических условий, вещественного состава и метаморфизма углей колеблется от 0 до 100 м по вертикали.

  Различия в вещественном составе и степени метаморфизма обусловили большую дифференциацию технологических свойств У. и. Для установления рационального направления промышленного использования У. и. подразделяются на марки и технологические группы; в основу такого подразделения положены параметры, характеризующие поведение У. и. в процессе термического воздействия на них (см. табл.). Границей между бурыми и каменными углями принята высшая теплота сгорания рабочей массы беззольного угля, равная 5700 ккал/кг (23,86 Мдж ).

  Ведущий показатель при использовании У. и. в энергетических целях — низшая теплота сгорания — в пересчёте на рабочее топливо (Qп н ) колеблется в пределах (ккал/кг ): 2000—5000 (8,372—20,930 Мдж ) для бурых, 4100—6900 (17,162 — 28,893 Мдж ) для каменных углей и 5700—6400 (23,86—26,79 Мдж ) для антрацитов. Пониженная величина этого показателя у бурых углей объясняется низкой степенью углефикации органического вещества, слабой уплотнённостью материала и, соответственно, высокой их естественной влажностью, изменяющейся в пределах 15—58%. По содержанию рабочей влаги (W p ) бурые угли подразделяются на технологические группы: Б1 с Wp > 40%, Б2 с Wp 30—40% и Б3 с Wp < 30%.

  В основу промышленной маркировки каменных углей положены показатели, характеризующие результаты их высокотемпературной сухой перегонки (коксования): выход летучих веществ, образующихся при разложении органической массы (частично неорганического материала — сульфидов, карбонатов, гидратированных минералов), и характеристика беззольного горючего остатка — кокса по спекаемости. Весовой выход летучих веществ (VГ ) из У. и, последовательно снижается с повышением степени углефикации от 45 до 8% у каменных углей и до 8—2% у антрацитов.

  В СССР спекаемость У. и. определяется в лабораторном аппарате пластометрическим методом, предложенным в 1932 советскими учёными Л. М. Сапожниковым и Л. П. Базилевич, по толщине образующегося при нагревании пластического слоя (у) с учётом усадки (х ), выраженных в мм. Наибольшей спекающей способностью характеризуются каменные угли средних стадий углефикации с толщиной пластического слоя 10—35 мм (марок К и Ж). С понижением и увеличением степени метаморфизма спекаемость У. и. снижается. Угли марок Д и Т характеризуются слабоспекшимся порошкообразным нелетучим остатком. В таблице приведены величины основных показателей качества углей на различных стадиях углефикации применительно к маркам, употребляемым в СССР.

Основные показатели качества углей марочного состава

Марки угля Буквен-ное обоз-начение марок Средние величины показателей для углей, состоящих преимущественно из витринита Отражательная способность витринита в масляной иммерсии R °, %
Выход лету- чих веществ Vг , % содержание углерода Сг , % теплота сгорания Qг б , ккал/кг
Бурые ДлнннопламенныеГазовые Жирные Коксовые Отощённо-спекаю-      щиеся Тощие Антрациты Б Д Г Ж К ОС Т А 41 и более 39 и более 36 30 20 15 12 менее 8 76 и менее 76 83 86 88 89 90 91 и более 6900—7500 7500—8000 7900—8600 8300—8700 8400—8700 8450—8780 7300—8750 8100—8750 0,30—0,49 0,50—0,64 0,65—0,84 0,85—1,14 1,15—1,74 1,75—2,04 2,05—2,49 2,50—6,00

  Кроме указанных в таблице, в некоторых бассейнах выделяются промежуточные марки: газовые жирные (ГЖ), коксовые жирные (КЖ), коксовые вторые (K2 ), слабоспекающиеся (СС). Угли марок Г, ГЖ, Ж, КЖ, К и ОС подразделяются на технологические группы по спекающей способности; для указания технологической группы к буквенному обозначению марки прибавляется цифра, указывающая низшее значение толщины пластического слоя (у) в данных углях, например Г6, Г17, КЖ14 и т.п. Для углей конкретных бассейнов величины классификационных показателей (VГ и у) регламентируются ГОСТом. Для получения металлургического кокса используется смесь различных марок углей — шихта, основным компонентом которой являются угли с высокими спекающими свойствами.

  Подразделение У. и. на бурые, каменные и антрациты принято в большинстве стран Европы (в некоторых — с выделением дополнительно лигнитов). В основу принятой в 1956 Европейской экономической комиссией ООН Международной системы классификации каменных углей также положены выход летучих веществ (VГ ) для углей с VГ > 33% — высшая теплота сгорания влажной беззольной массы (Qв безз ), спекающая способность и коксуемость. Тип угля обозначается кодовым трёхзначным номером, первая цифра которого указывает класс угля (по VГ или Qв безз ), вторая — группу (по спекающей способности, определённой методом Рога или индексом вспучивания в тигле), третья — подгруппу (по коксуемости, определённой методами Одибер-Арну или Грей-Кинга). В США и некоторых др. странах У. и. подразделяются на лигниты, суббитуминозные, битуминозные угли и антрациты; классификационными параметрами приняты: для лигнитов, суббитуминозных и битуминозных (с высоким VГ >31%) углей — теплота сгорания беззольной массы, для битуминозных с VГ < 31% и антрацитов — выход летучих веществ и содержание связанного углерода.

  Маркировка углей, отражая комплекс определённых технологических свойств разновидностей У. и., используется как основной критерий в практике промышленного использования углей. Для конкретных направлений потребления устанавливаются дополнительные технические требования. Резкое снижение теплового эффекта сгорания У. и. и экономических показателей их использования за счёт балласта (золы и влаги) определяет необходимость брикетирования углей с высокой естественной влажностью и предварительного обогащения высокозольных углей (см. Обогащение полезных ископаемых ). Предельная зольность У. и., направляемых на слоевое сжигание, не должна превышать 20—37%, на пылевидное сжигание — 45%.

  Для коксования используются малозольные (обогащенные) спекающиеся каменные угли, в которых лимитируется содержание серы и фосфора. Для полукоксования, газификации, получения жидкого топлива, горного воска и др. направлений потребления нормируются спекаемость, сернистость, зольность, кусковатость, термическая стойкость, содержание смол, битумов и др. показатели качества.

  III. Основные закономерности угленакопления

  Углеобразование — один из региональных геологических процессов, протекавший и возобновлявшийся при благоприятном сочетании тектонических, климатических, геоморфологических, фитоценологических и др. факторов. Крупные эпохи углеобразования приурочены к периодам медленных колебательных движений земной коры на фоне общего длительного погружения крупных областей и участков. Для углеобразования существенное значение имели возникновение в нижнем палеозое наземной растительности и её эволюция в последующей истории Земли. Наличие в осадочных толщах гумусовых углей отмечается с силура, а угленакопление промышленного значения — с девона. Получившие в среднем палеозое развитие влаголюбивые папоротникообразные растения ограничивали размещение областей угленакопления приморскими (или постепенно терявшими связь с морем) равнинами — паралический тип углеобразования . С последующей эволюцией растительных форм и расселением их на суше связано перемещение областей углеобразования в глубь материков; преобладающее развитие получил лимнический тип углеобразования .

  В познание процессов углеобразования, закономерностей пространственного распределения запасов У. и. и др. проблем геологии углей большой вклад внесён русскими и советскими геологами. Первыми специалистами по геологии угольных бассейнов были Л. И. Лутугин и его ученики — В. И. Яворский, П. И. Степанов, А. А. Гапеев и др.; кроме того, большие работы были проведены М. А. Усовым, Ю. А. Жемчужниковым, И. И. Горским, Г. А. Ивановым, М. М. Пригоровским, А. К. Матвеевым, Г. Ф. Крашенинниковым и др. Развитие учения о геологии угля в зарубежных странах связано с именами немецких (Г. Потонье, К. Науман, М. и Р. Тейхмюллеры, Э. Штах и др.), английских (М. Стопе, К. Маршалл, У. Фрэнсис и др.), американских (Р. Тиссен, Д. Уайт и др.), голландских (Д. Кревелен), чешских (В. Гавлена) учёных и др.

  Анализ стратиграфического и палеогеографического распределения масс У. и. на Земле лег в основу разработанной в 1937 П. И. Степановым теории поясов и узлов углеобразования. Им установлена определённая закономерность в размещении одновозрастных угольных районов и бассейнов в виде поясов широтного или субмеридионального направления, которые были приурочены к зонам земной поверхности с палеоклиматическими и геотектоническими условиями, благоприятными для накопления угольной массы. На основании стратиграфического распределения учтенных запасов У. и. П. И. Степанов выделил два максимума углеобразования — в верхнем карбоне — перми и в палеогене — неогене, а также высказал предположение о наличии третьего — в юрско-нижнемеловое время. Последующие исследования подтвердили эти закономерности. Стратиграфическое распределение учтенных мировых геологических запасов углей по состоянию на 1970 (14 триллионов т ) приведено на (рис. 2 ). В СССР основные запасы У. и. сосредоточены в бассейнах пермского (48,5%) и юрско-мелового (39%) возрастов.

  Углеобразование является одним из региональных геологических процессов, проявившихся на территории всех континентов (рис. 3 ). Площади непрерывного распространения угленосных формаций (см. Формация геологическая) колеблются от нескольких до сотен тыс. км; мощности — от десятков м до 20 км, число заключённых в них пластов угля — от единиц до нескольких сотен. Согласно современным представлениям, все основные черты угленосных формаций — их мощность, пространственная изменчивость состава и строения, взаимоотношение с вмещающими породами, количественная и качественная характеристика угленосности, метаморфизм углей, тектоника и др.— определяются характером и интенсивностью колебательных движений земной коры, в тесной взаимосвязи с историей структурного развития и палеогеографией. Так, для угленосных формаций, приуроченных к краевым прогибам, унаследованным и наложенным крупным впадинам на складчатом основании (см. Тектонические прогибы ), характерны большая мощность формаций; зональность их тектонического строения (от сильно дислоцированных структур по границе с орогенными областями к спокойным в центральной и приплатформенной частях бассейна), многопластовость, горизонтальная и вертикальная зональность в проявлении регионального метаморфизма углей, широкий диапазон их марочного состава (от бурых до антрацитов). В СССР с этими формациями связаны бассейны, обеспечивающие сырьём коксохимическую промышленность: Донецкий, Кузнецкий, Карагандинский и Печорский.

  Крупные по масштабам процессы углеобразования приурочены к платформенным областям. В угленосных формациях, связанных с посторогенными (Челябинский и Тургайский бассейны), унаследованными и наложенными впадинами (Канско-Ачинский, Майкюбенский и Южно-Уральский бассейны) часто накапливались мощные угольные пласты. К платформенным синеклизам приурочены маломощные угленосные формации с невысокой угленосностью (Подмосковный и Иркутский бассейны). Степень углефикации углей платформенных формаций невысокая, преобладают угли бурые и каменные марок Д и Г. В орогенных областях углеобразование проявилось слабо, на локальных площадях, где создались благоприятные для континентального осадконакопления условия. Из-за сложной тектоники такие месторождения имеют очень ограниченное промышленное значение

  IV. Морфология угольных пластов и условия их залегания

  Подавляющему большинству угленосных формаций свойствен пластовый характер залегания У. и. между почти параллельными напластованиями вмещающих пород на обширных площадях, при небольшой по сравнению с площадью распространения мощности. В прибрежно-морских и прибрежно-бассейновых (лагунной, дельтовой) обстановках осадконакопления, характерных для угленосных формаций, приуроченных к переходным (от орогенных к платформенным) областям, угольные пласты формировались на огромных площадях, измеряемых сотнями км2 . Мощность отдельных пластов — от см до нескольких м, при относительно высокой выдержанности морфологических черт. Свойственная платформенным областям внутриконтинентальная (озёрная, озёрно-болотная, речная) обстановка осадконакопления обусловила более ограниченное по площади распространение пластов, во многих случаях их линзовидную форму. Мощность многих угольных залежей достигает здесь на значительных площадях десятков, в единичных случаях — сотен м. В практике промышленной оценки принято разделять угольные пласты: по мощности — на весьма тонкие (до 0,5 м ), тонкие (0,5—1,3 м ), средней мощности (1,3—3,5 м ), мощные (3,5—15 м ) и весьма мощные (более 15 м ); по выдержанности морфологии и качества угля — на выдержанные, относительно выдержанные и невыдержанные. На выдержанности морфологии угольных пластов, оцениваемой обычно на площадях в несколько км2 , отражается прежде всего региональное и локальное расщепление — результат прерывистых дифференцированных погружений дна бассейна, неравномерного сноса песчано-глинистого материала, колебаний уровня вод и др. Изменение мощностей пластов обусловливается также неровностями ложа торфяника и размывами как в процессе накопления, так и после захоронения торфяников и углей овражно-речной сетью или морской трансгрессией. Сохранность угольных пластов нарушается в ряде случаев процессами карстообразования в подстилающих угленосную толщу отложениях, выгоранием пластов, возникшим в результате окисления угля атмосферным воздухом, воздействием тектонических подвижек, приводящим к пережимам и раздувам, а также ассимиляцией угля изверженными породами, внедрившимися в угленосную толщу. Залегание угольных пластов также характеризуется большим разнообразием. Лишь в некоторых бассейнах и месторождениях платформенной группы угольные пласты характеризуются слабоволнистым, почти горизонтальным ненарушенным залеганием. В большей же части угленосные образования подверглись складкообразованию, сопровождавшемуся разрывными нарушениями (рис. 4 ). В практике разведки и эксплуатации условия залегания угольных пластов оцениваются для локальных участков крупных бассейнов и месторождений с запасами угля, обеспечивающими работу шахты (углеразреза). В масштабе шахтных (карьерных) полей ведущими структурными формами являются: моноклинали — крылья пологих синеклиз и антеклиз платформ, а также крылья и замковые части крупных синклиналей и антиклиналей; ограниченные по размерам брахискладки и участки с сопряжением различных складчатых форм более мелких порядков. Сопровождающие складчатость и наложенные разрывные нарушения создают блоковый характер залегания угольных пластов с размерами обособленных блоков от несколько км2 до мелкоблочных и чешуйчатых форм. Применительно к действующим принципам геологопромышленной оценки угольные месторождения и угленосные площади по степени сложности геологического строения подразделяются с учётом выдержанности морфологии угольных пластов и качества угля, а также характера проявления тектоники на три группы. К первой группе относятся месторождения (участки) простого строения с выдержанными мощностями основных рабочих пластов и качеством углей, ненарушенным или слабонарушенным залеганием; ко второй — месторождения (участки) сложного строения с изменчивой мощностью и строением большей части угольных пластов либо с невыдержанным качеством углей, а также угленосные площади, на которых при выдержанной морфологии основных пластов залегание последних — сложно складчатое или интенсивно нарушено разрывами; третью группу составляют месторождения (участки) очень сложного строения, интенсивно нарушенные складчатостью и разрывами, мелкоблочным залеганием или сложной изменчивой морфологией угольных пластов. Приведённая группировка используется при проектировании геологоразведочных работ, подсчёте запасов углей и планировании строительства угледобывающих предприятий. См. также Угольная промышленность , Подземная разработка полезных ископаемых.

  Лит.: Потонье Г., Происхождение каменного угля и других каустобиолитов, Л. — М. — Грозный — Новосибирск, 1934; Жемчужников Ю. А., Общая геология ископаемых углей, 2 изд., М., 1948; Крашенинников Г. Ф., Условия накопления угленосных формаций СССР, М., 1957; Матвеев А. К., Геология угольных бассейнов и месторождений СССР, М., 1960; Иванов Г. А., Угленосные формации, Л., 1967; Миронов К. В., Геологические основы разведки угольных месторождений, М., 1973; Метаморфизм углей и эпигенез вмещающих пород, М., 1975; Геология месторождений угля и горючих сланцев СССР, т. 1-11, М., 1962—73; Haviena V., Geologic uhelnу'ch ložisek, sv. 1—3, Praha, 1963—65: Francis W., Coaname = "note" its formation and composition, 2 ed., L.. 1961; Krevelen D. W. van, Coal, Arnst., 1961.

  К. В. Миронов.


Рис. 3. Распределение учтенных (по состоянию на 1970) мировых запасов углей по континентам: 1 — Европа; 2 — Азия; 3 — Северная Америка; 4 — Южная Америка; 5 — Африка; 6 — Австралия.


Рис. 2. Распределение учтённых (по состоянию на 1970) мировых запасов ископаемых углей по геологическому возрасту (по А. К. Матвееву) (в %): 1 — девон; 2 — карбон; 3 — пермь; 4 — триас; 5 — юра; 6 — мел; 7 — палеоген — неоген.


Рис. 1. Изменение рабочей влажности (Wp ), теплоты сгорания (Qг б ), содержания углерода (Cr ), выхода летучих веществ (Vr ) и отражательной способности витринита (R) с повышением степени углефикации углей (по И. В. Ерёмину, Э. М. Паху).


Главные угольные бассейны и месторождения.


Рис. 4. Примеры месторождений с различной сложностью тектоники: а — Итатское, Канско-Ачинский бассейн; б — Саранский участок, Карагандинский бассейн; в — Алмазно-Марьевский район, Донбасс; г — Бачатский район, Кузбасс. 1 — угольные пласты; 2 — зоны выгорания угля; 3 — разрывные нарушения; 4 — скважины.

Углич

Углич, город областного подчинения, центр Угличского района Ярославской области РСФСР. Пристань на р. Волге (Угличское водохранилище ). Соединён железнодорожной веткой (47 км ) со станцией Калязин (на линии Москва — Сонково). 37,5 тыс. жителей (1976).

  По местной летописи известен с 937, в Ипатьевской летописи упомянут под 1148. В 12 — начале 13 вв. входил в состав Владимиро-Суздальского княжества , с 1207 — Ростовского, с 1218 У. — столица Угличского княжества. В 1329 присоединён к Московскому великому княжеству. В 14—15 вв. центр удельного княжества, зависимого от Москвы. В 1591 в У. погиб царевич Дмитрий Иванович (см. «Угличское дело» ). В 1608—11 город был разрушен польскими интервентами. В начале 18 в. входил в Петербургскую губернию, с 1796 уездный центр Ярославской губернии. Советская власть установлена 12 (25) декабря 1917. В 1921—22 в составе Рыбинской губернии, затем — Ивановской промышленной области, с 1936 — Ярославской.

  В У. — Угличская ГЭС. Заводы: часовой, ремонтно-механический, экспериментальный ремонтно-механический, научно-производственное объединение «Углич», включающее Всесоюзный НИИ маслоделия и сыроделия

  и ряд производственно-экспериментальных предприятий. Филиал НИИ часовой промышленности. Вечерний приборостроительный техникум, филиал механико-технологического техникума молочной промышленности, педагогическое училище. Историко-художественный музей с картинной галереей.

  У. расположен на мысу, вдающемся в р. Волгу, на конце которого находится кремль с Тронной палатой княжеского дворца («Дворец царевича Димитрия», 15 в.), церковью Димитрия «на крови» (1692), Спасо-Преображенским собором (перестроен в 1713 в духе ярославской школы 17 в.; колокольня, 1730). В городе — трёхшатровая Успенская церковь («Дивная») Алексеевского монастыря (1628); церковь Иоанна Предтечи (1681); собор, трапезная палата с церковью Одигитрии (Смоленской божьей матери) и звонница Воскресенского монастыря (1674—77), церковь Рождества Иоанна Предтечи (1690), комплекс Богоявленского монастыря (преимущественно 1-я половина 19 в.), жилые дома 18 в. По регулярному генеральному плану 1784 У. (трёхлучие основных улиц сходится к главной площади, разбитой с южной стороны кремля) застраивался жилыми и административными зданиями в стиле классицизма (здание бывшей Городской думы, 1815, и др.). В советское время сооружены Угличская ГЭС (1950, архитекторы Д. Б. Савицкий, М. Л. Шпекторов и др.) и ряд промышленных предприятий. Современная застройка ведётся согласно генеральному плану 1968 («Ленгипрогор»).

  Лит.: Иванов В. Н., Ростов Великий. Углич, М., 1964; Ковалев И. А., Пуришев И. Б., Углич. Путеводитель по городу и окрестностям, 2 изд., Ярославль, 1971.


Углич. Гостиница «Углич». 1972.


Углич. Архитектурные памятники.


Углич. Вид на кремль со стороны Волги.


Углич. Церковь Рождества Иоанна Предтечи. 1690.


Углич. Дом Калашниковых. 18 в.


Углич. Арка Шлюза гидроузла. 1939. Архитекторы В. А. Петров, С. М. Бирюков.


Углич. Площадь Коммуны.


Углич. Дворец угличских князей («Дворец царевича Димитрия»). 15 в.


Углич. Дом Меховых-Ворониных. 18 в.


Углич. Успенская («Дивная») церковь Алексеевского монастыря. 1628.

Угличское водохранилище

У'гличское водохрани'лище, образовано плотиной Угличской ГЭС на р. Волге, на территории Ярославской и Калининской область РСФСР. Площадь 249 км2 , объём 1,2 км3 , длина 143 км, наибольшая ширина 5 км, средняя глубина 5 м, максимальная — 23 м. Уровень У. в. колеблется в пределах 5,5 м, оно осуществляет сезонное регулирование стока. Создано (1940) в целях развития энергетики и судоходства; используется также для водоснабжения и рыбного хозяйства. На берегах У. в. — гг. Углич, Калязин и Кимры.

«Угличское дело»

«У'гличское де'ло», следственное дело, производившееся специальной комиссией (боярин князь В. И. Шуйский, окольничий А. П. Клешнин, думный дьяк Е. Вылузгин, а также митрополит Геласий) во 2-й половине мая 1591 в связи со смертью царевича Дмитрия Ивановича и народным восстанием в Угличе 15 мая 1591. Было привлечено к следствию около 150 чел. Допрашивались дядья царевича — Нагие, мамка, кормилица, духовные лица, близкие ко двору или бывшие во дворце в начальный момент событий. Составление белового экземпляра «У. д.» в основном было завершено уже в Угличе. 2 июня оно докладывалось Геласием на заседании Освященного собора, по решению которого было передано на усмотрение царя. Смерть царевича была признана произошедшей во время припадка эпилепсии, когда он упал и закололся ножом. Его мать была пострижена в монахини, родственники подвергнуты опале, а значительное количество посадских людей, участников восстания, было выслано «на житьё» в Сибирь.

  Лит.: Полосин И. И., Угличское следственное дело 1591 г., в его кн.: Социально-политическая история России XVI — начала XVII в., М., 1963.

Углов Федор Григорьевич

Угло'в Федор Григорьевич [р. 22.9(5.10).1904, деревня Чугуево, ныне Иркутской области], советский хирург, академик АМН СССР (1967). Член КПСС с 1931. В 1929 окончил медицинского факультет Саратовского университета. Ученик Н. Н. Петрова . С 1950 заведующий кафедрой госпитальной хирургии 1-го Ленинградского медицинского института и одновременно (1967—1972) директор Всесоюзного научно-исследовательского института пульмонологии. Труды по проблемам хирургии пищевода, портальной гипертензии, гипотермии в грудной хирургии и т.д. Одним из первых в СССР (1953) разрабатывал методы хирургического лечения пороков сердца. Предложил ряд оперативных методик и инструментов. Ленинская премия (1961) за разработку хирургических методов лечения заболеваний лёгких. Редактор журнала «Вестник хирургии им. И. И. Грекова» (с 1953). Награжден 2 орденами, а также медалями.

  Соч.: Резекция лёгких, 2 изд., Л., 1954; Рак лёгкого, 2 изд., Л., 1962; Катетеризация сердца и селективная ангиокардиография, Л., 1974 (соавтор); Сердце хирурга, М., 1974.

Угловая скорость

Углова'я ско'рость, величина, характеризующая быстроту вращения твёрдого тела. При равномерном вращении тела вокруг неподвижной оси численно его У. с. w =Dj/ Dt, где Dj — приращение угла поворота j за промежуток времени Dt. В общем случае У. с. численно равна отношению элементарного угла поворота Dj к соответствующему элементарному промежутку времени dt, то есть w= d j/dt. Вектор У. с. w направлен вдоль оси вращения в ту сторону, откуда поворот тела виден происходящим против хода часовой стрелки (в правой системе координат). Размерность У. с. T -1 .

Угловая стабилизация

Углова'я стабилиза'ция космического летательного аппарата, управление движением космического летательного аппарата (КЛА) вокруг центра масс на тех участках, где полёт протекает со значительными ускорениями, например при работе ракетного двигателя. В отличие от ориентации космического летательного аппарата , У. с. является вспомогательной задачей управления. Один из способов У. с. — стабилизация одной из осей КЛА вращением вокруг этой оси.

Угловая сталь

Углова'я сталь, угловой профиль, см. в ст. Прокатный профиль .

Угловая точка

Углова'я то'чка, излома точка, особая точка кривой.

Угловая частота

Углова'я частота', круговая частота, число полных колебаний, совершающихся при периодическом колебательном процессе за 2 p единиц времени. У. ч. w связана с периодом колебаний Т и частотой колебаний f зависимостью w = 2 pf = 2 p/Т.

Угловка

Угло'вка, посёлок городского типа в Окуловском районе Новгородской области РСФСР. Железнодорожная станция на линии Бологое — Чудово; от У. — ветка (30 км ) на Боровичи. Известковый комбинат, кирпичный завод; лесозаготовки.

Угловое

Углово'е, посёлок городского типа в Приморском крае РСФСР, подчинён Артёмовскому горсовету. Железнодорожная станция (Угловая) на линии Владивосток — Находка, в 41 км к С.-В. от Владивостока. 16,7 тыс. жителей (1975). Добыча бурого угля. Заводы: кирпичный, шиноремонтный, ремонтно-механический, стройматериалов, фарфоровый.

Угловое ускорение

Углово'е ускоре'ние, величина, характеризующая быстроту изменения угловой скорости твёрдого тела. При вращении тела вокруг неподвижной оси, когда его угловая скорость w растет (или убывает) равномерно, численно У. у. e = Dw /Dt , где Dw — приращение, которое получает w за промежуток времени Dt , а в общем случае при вращении вокруг неподвижной оси e = d w/dt = d 2 j/dt2 , где j — угол поворота тела. Вектор У. у. e направлен вдоль оси вращения (в сторону w при ускоренном вращении и противоположно w — при замедленном). При вращении вокруг неподвижной точки вектор У. у. определяется как первая производная от вектора угловой скорости w по времени, т. е. e = d w/dt, и направлен по касательной к годографу вектора w в соответствующей его точке. Размерность У. у. Т-2 .

Угловой коэффициент

Углово'й коэффицие'нт (математическое), число k   в уравнении прямой линии на плоскости у = kx+b (см. Аналитическая геометрия ), характеризующее наклон прямой относительно оси абсцисс. В прямоугольной системе координат У. к. k = tg j , где j — угол между положительным направлением оси абсцисс и данной прямой линией, отсчитываемый в направлении положительных поворотов (считая положительным наименьший поворот от оси Ox к оси Оу ).

Угловой профиль

Углово'й про'филь, угловая сталь, см. в ст. Прокатный профиль .

Углозубые

Углозу'бые (Hynobiidae), семейство хвостатых земноводных. Длина тела до 25 см, около половины — хвост. 5 родов (в том числе лягушкозубы ), объединяющих свыше 30 видов. Распространены главным образом в Северной и Восточной Азии; один вид — в Северо-Восточной Европе, один — в Западной Азии. Встречаются как в горах (на высоте до 4 тыс. м ), так и на равнинах, главным образом в лесах. Одни У. (например, семиреченский лягушкозуб) живут в воде, преимущественно в горных ручьях и ключах, лишь иногда выползая на сушу; другие (например, сибирский углозуб) заходят в воду только в период размножения. Оплодотворение наружное. Самцы вымётывают в воду сперматофоры, самки — колбасовидные икряные мешки, содержащие от 7 до 60 икринок. Питаются У. мелкими беспозвоночными: ракообразными, многоножками, паукообразными, насекомыми, земляными червями и др. В СССР 3 вида: сибирский углозуб, семиреченский лягушкозуб и уссурийский когтистый тритон.

  Лит.: Терентьев П. В.. Чернов С. А., Определитель пресмыкающихся и земноводных, 3 изд., М., 1949; Жизнь животных, т. 4, ч. 2, М., 1969.

  И. С. Даревский.

Угломер горный

Угломе'р го'рный, прибор для измерения горизонтальных и вертикальных углов и расстояний в маркшейдерских съёмках, не требующих высокой точности (съёмка очистного пространства в шахтах, задание направления подэтажным горным выработкам и др.). У. г. отличается от теодолита простотой конструкции и меньшей точностью отсчёта по лимбам. В СССР распространены У. г. — тахеометры (с визуальными дальномерами и с проекционно-визуальным дальномером). У. г. состоит из горизонтального круга и вертикального полукруга с открытыми лимбами, из зрительной трубы, расположенной с эксцентриситетом относительно её горизонтальной оси вращения и снабженной дальномером, круглого установочного уровня и зажимных устройств. Расстояние, измеряемое дальномером, до 45 м, относительная ошибка измерения те = 1:100, пределы измерения вертикальных углов та = 15.

  Лит.: Оглоблин Д. Н., Рейзенкинд И. Я., Новые маркшейдерские приборы, 2 изд., М., 1967; Справочник по маркшейдерскому делу, 3 изд., М., 1973.

Угломерные приборы

Угломе'рные прибо'ры в машиностроении, группа средств измерения углов. В зависимости от способа измерения различают 4 вида У. п.. К первой группе относят приборы, применение которых основано на сравнении измеряемого угла с жёсткой мерой: призматические угловые меры с углами от 1' до 180° (рис. 1 ), угольники (рис. 2 ), обычно с углом 90°, конусные калибры , шаблоны и др. Отличительной особенность У. п. этой группы — постоянство одного (например, в угольнике) или нескольких (например, в призматической мере) углов. При использовании этих приборов их либо непосредственно вводят в соприкосновение с образующими измеряемого угла (затем определяют степень прилегания «на просвет» или «по краске»), либо по ним настраивают на нуль отсчётное устройство какого-либо контрольного приспособления. Ко второй группе относят приборы для измерения углов методом сравнения их с углом, на который настраивается измерительный прибор, например тангенсные и синусные линейки . Настройку производят по функциям тангенса или синуса на размер измеряемого или дополнительного угла. С помощью отсчётного устройства измеряемый угол сравнивают с углом, на который настроен прибор, и определяют отклонение. В третью группу входят приборы, в которых применяется способ сравнения измеряемого угла с угловой шкалой: угломеры с нониусом (рис. 3 ), оптические угломеры, делительные головки (рис. 4 ), делительные столы, уровни, теодолиты, квадранты, гониометры и т.д. Этот способ часто называют гониометрическим. Шкала отсчётного устройства этих У. п. имеет цену деления от 1" до 2' в диапазоне от 0 до 180—360°. Эти У. п. имеют устройства для базирования прибора на измеряемой детали или детали на приборе. С помощью специального устройства можно фиксировать в определённом положении измеряемый угол для сравнения его размера с углом на шкале У. п. Четвёртую группу составляют приборы, применение которых основывается на определении размера стороны прямоугольного треугольника (при постоянном размере другой стороны) и вычислении по тригонометрическим функциям синуса и тангенса значения искомого угла (так называемый косвенный, или тригонометрический, метод измерения). Эти измерения производят на измерительных микроскопах, координатно-измерительных машинах, специальных приспособлениях и т.д. Например, внутренние и наружные конусы измеряют с использованием шариков и роликов (рис. 5 ). Для этого каким-либо измерительным средством определяют размер L по роликам у большого основания конуса, затем размер l у малого основания и высоту b, которая устанавливается по концевым мерам (рис. 5 , а). По этим данным вычисляют tga =(L— l )/ 2b , определяют a и сравнивают этот угол c заданным. При определении угла внутреннего конуса измеряют h и Н (рис. 5 , б) до вершин большого и малого (D и d ) шариков, размеры которых аттестованы, и по найденному расстоянию а между ними вычисляют sina = Dd / (2a — D+d ).

  Получают развитие У. п., основанные на сравнении измеряемого угла с угловой шкалой, в которых применяют индуктивные счётные системы (в уровнях, делительных столах, делительных головках), магнитные и растровые шкалы, использование которых позволяет автоматизировать процессы измерения и регистрацию результатов измерения. При автоматическом контроле чаще всего применяют тригонометрический способ.

  Лит.: Эйдинов В, Я., Измерение углов в машиностроении, М., 1963; Оптические приборы для измерения линейных и угловых величин в машиностроении, М., 1964; Оптико-механические приборы, М., 1965.

  Н. Н. Марков.




Поделиться книгой:

На главную
Назад