С 1948 проводятся раз в два года чемпионаты мира по П. с. В 1950 ФАИ создана планёрная комиссия, на которую возложено руководство развитием П. с. в мире, организация и проведение крупнейших международных соревнований, чемпионатов мира (в 1974 объединяла планеристов около 60 стран). В 1974 советским планеристам принадлежало 9 из 32 мировых рекордов, в том числе дальности полёта на 1-местном планёре (749
За рубежом П. с. наиболее развит в Польше, США, ФРГ, Франции, ГДР, Чехословакии, Великобритании, Югославии. Чемпионами мира были Э. Макула и Я. Врублевский (Польша), А. Смит и Дж. Моффат (США), Х. Ведль (Австрия), Г. Рейхман (ФРГ), Г. Акс (Швеция) и др.
Вопросы П. с. освещаются в журнале ДОСААФ СССР «Крылья Родины».
Планёрское
Планёрское (до 1944 — Коктебель), посёлок городского типа в Крымской области УССР. Подчинён Феодосийскому горсовету. Расположен на Южном берегу Крыма, у восточного подножия Карадага, в 20
Приморский климатический курорт на берегу Чёрного моря. Лето жаркое (средняя температура июля около 24 °С), зима мягкая (средняя температура января около 0 °С); осадков 360
Планет
Плане'т (франц. pianette, уменьшительное от plane — струг), ручное или конное орудие типа струга для рыхления почвы и подрезания сорной растительности в междурядьях пропашных культур.
«Планета»
«Плане'та», издательство Государственного комитета Совета Министров СССР по делам издательств, полиграфии и книжной торговли и Союза журналистов СССР. Находится в Москве. Создано в 1969 на базе творческого объединения Союза журналистов СССР «Орбита» и редакции фотоизданий издательства «Советский художник». Средствами фотоискусства «П.» пропагандирует достижения СССР и других социалистических стран в области экономики, науки и культуры, советский образ жизни, борьбу народов за мир и национальную независимость. Выпускает фотоальбомы, фотокниги, фотооткрытки, фотопортреты, буклеты, фотомонтажи; издательству поручен выпуск журнала «Советское фото». За 1969—73 издательство выпустило около 100 фотоальбомов, многие из которых («В. И. Ленин», «Советский Союз», «Москва», «К вулканам Камчатки», «Командоры», «Байкал» и др.) отмечены дипломами на всесоюзных конкурсах; альбомы «Москва» и «Командоры» в 1973 на Всемирном конкурсе «Самая красивая книга в мире» в Берлине получили: первый золотую, второй бронзовую медали.
Планетарий
Планета'рий (новолат. planetarium, от позднелат. planeta — планета), 1) аппарат для проецирования изображений звёздного неба, Солнца, Луны и планет на полусферический купол-экран. Первый оптический П. был сконструирован немецким инженером В. Бауэрсфельдом в 1924, а первая модель построена на оптическом заводе фирмы «Карл Цейс» (Германия). В 70-х гг. 20 в. народное предприятие «Карл Цейс» (ГДР) выпускает три модели аппаратов: «Большой планетарий Цейса», «Спейсмастер» для демонстрации космического полёта и « Малый планетарий Цейса»; некоторое количество аппаратов выпущено в США (Spitz), Японии (Goto) и ФРГ (Zeiss).
Наибольшие демонстрационные возможности у «Большого П.». С его помощью демонстрируются все звёзды до 6,5 звёздной величины включительно. В современных моделях 20 наиболее ярких звёзд имеют цвет, соответствующий их спектральному классу. Проекторы звёзд представляют собой шары, причём один из них проецирует звёзды Северного полушария неба, другой — Южного. В шарах по 16 отверстий, в которые вложены металлические пластинки из фольги. В каждой пластинке проделано до двухсот мельчайших отверстий, относительное расположение которых соответствует положению звёзд на небе. Аппарат оснащен также проектором Млечного Пути. Шар меньшего диаметра проецирует названия созвездий. Имеются также проекторы Солнца, Луны и 5 планет, видимых невооружённым глазом,— Меркурия, Венеры, Марса, Юпитера и Сатурна. Всего же аппарат имеет более ста проекционных фонарей, а также ряд электрических двигателей, с помощью которых он может совершать разнообразные движения: суточное, годовое, прецессионное и движение по меридиану. «Суточное» движение аппарата, соответствующее видимому суточному движению звёздного неба, можно осуществить ускоренно: 1 оборот за время от 4
Аппарат П. вместе с соответствующими панорамами может показывать не только «земное» звёздное небо, но и небо Луны, Марса и Венеры.
П. «Спейсмастер» имеет возможность показать вид звёздного неба из космического корабля, летящего по трассе с любым углом наклона к экватору.
2) Научно-просветительное учреждение, в котором читаются популярные лекции по астрономии, космонавтике и наукам о Земле. Лекции сопровождаются демонстрацией искусств, неба с Солнцем, звёздами, планетами, спутниками, различными космическими аппаратами. Здесь можно демонстрировать полярные сияния, кометы, метеоры, солнечные и лунные затмения, панораму Луны, Марса, Венеры и климатических поясов земного шара. Для этих целей служит проекционный аппарат П.
Первый П. был построен в Мюнхене в 1925. В СССР первый П. был открыт в Москве 5 ноября 1929. В 1974 стационарные П. работали в 62 городах СССР.
Московский П.— крупнейший в стране центр пропаганды естествознания. Важной составной частью работы П. являются: пропаганда материалистического мировоззрения, научного атеизма, анализ и обобщение методики популяризации естественнонаучных знаний, создание уникальных демонстрационных приборов. Многие П. имеют астрономические площадки, оснащенные телескопами и др. приборами для демонстрации различных астрономических, физических, геофизических явлений. При многих П. работают астрономические кружки, в которых школьники овладевают методами обращения с телескопами, обработки наблюдений и вычислений.
Большие П. имеются во многих зарубежных странах: в странах Северной Америки — 26, Южной Америки — 7, Европы (без СССР) — 19, Азии — 10, Африки — 2, Австралии — 1.
Оптический аппарат, установленный в Московском планетарии.
Схема аппарата планетария: 1 — северный и южный шары с проекторами звёздного неба; 2 — северный и южный шары с проекторами названий созвездий; 3 — проекторы Млечного Пути; 4 — проекционные механизмы Солнца, Луны и планет; 5 — проектор звезды Сириус; 6 — прибор для демонстрирования солнечных и лунных затмений; 7 — проектор небесного меридиана; 8 — проектор небесного экватора и эклиптики.
Здание Московского планетария.
Планетарная передача
Планета'рная переда'ча,
Простейшей П. п. является передача с 1
(
Если в преобразованном механизме передаточное отношение положительное
(
Если использовать колёса со смещением (см.
Изготовление П. п. существенно упрощается, если сателлиты выполнить одновенцовыми увеличенной ширины, входящими в зацепление с центральными колёсами, имеющими разные числа зубьев (
П. п., различные по назначению, устройству и характеристикам, применяют в
Рис. 2. Планетарная передача с положительным передаточным отношением преобразованного механизма: а и б — с внешним и внутренним зацеплением; в — с упрощёнными сателлитами.
Рис. 1. Планетарная передача с отрицательным передаточным отношением преобразованного механизма: а — однорядная; б — двухрядная; z1 и z4 — центральные колёса; z2 и z3 — сателлиты; в — водило.
Планетарные туманности
Планета'рные тума'нности, туманные светлые пятна круглой формы с небольшими угловыми размерами, видимые на звёздном небе. По внешнему виду напоминают диски планет, откуда и происходит их название. Представляют собой скопление крайне разряженного газа с горячей звездой в центре. См.
Планетезимали
Планетезима'ли (англ. planetesimal, от planet — планета и infinitesimal — бесконечно малая величина), название мелких твёрдых частичек, послуживших материалом для построения планет, согласно космогонической гипотезе, предложенной на рубеже 19 и 20 вв. американскими учёными Ф. Мультоном и Т. Чемберленом. По этой гипотезе, П. образовались в результате остывания и конденсации вещества, исторгнутого из Солнца. Однако это предположение несостоятельно, т.к. оно не даёт возможности объяснить большие расстояния планет, удельные моменты количества движения. Иногда термин «П.» применяется в современных космогонических гипотезах и теориях, рассматривающих образование планет из твёрдых частиц.
Планетная аберрация
Плане'тная аберра'ция,
Рис. к ст. Планетная аберрация.
Планетный радиолокатор
Плане'тный радиолока'тор, радиолокатор, предназначенный для астрономических исследований Луны, больших планет и крупных астероидов, приближающихся к Земле. П. р. состоит из передающего устройства, облучающего объект зондирующими радиосигналами, приёмного устройства, улавливающего и обрабатывающего отражённые эхо-сигналы, а также регистрирующей и вспомогательные аппаратуры. Характеристики эхо-сигнала, а именно: мощность, время запаздывания, средняя частота спектра, форма спектра, форма огибающей, поляризация, содержат информацию об отражающей поверхности объекта. Анализом и интерпретацией данных, полученных таким методом, занимается
Главным показателем информативности эхо-сигнала является уровень его энергии относительно энергии шумов приёмной системы, на фоне которых он выделяется. Для того чтобы этот уровень был достаточно высоким, приходится применять мощные передатчики, крупнейшие антенны, охлаждаемые малошумящие приёмники, а также увеличивать время накопления энергии эхо-сигнала. При слабых сигналах время накопления достигает величины времени облучения и исчисляется часами. Обработка эхо-сигналов, которая, помимо выделения из шумов, заключается в разрешении их по частоте и по запаздыванию, производится на электронных вычислительных машинах и занимает время большее, чем длительность сигнала. Поэтому после усиления и понижения несущей частоты эхо-сигнал перед обработкой регистрируется, например, на магнитную ленту.
Планетографические координаты
Планетографи'ческие координа'ты, числа, определяющие положение точки на поверхности планеты. В качестве П. к. служат, как и для Земли, широта и долгота. Широта измеряется углом между плоскостью экватора планеты и нормали к поверхности планеты в данной точке. Для планеты с малым сжатием это понятие практически совпадает с понятием планетоцентрической широты, измеряемой углом между плоскостью экватора и прямой, соединяющей данную точку с центром планеты. Северным считается полушарие планеты, находящееся со стороны того полюса её, который лежит с северной стороны
Нередко для П. к. конкретных планет используются собственные имена: гермографические координаты у Меркурия (Гермеса), венерианские координаты у Венеры, географические — у Земли, селенографические — у Луны, ареографические — у Марса (Ареса), йовиграфические — у Юпитера и т.п.
Планетология
Планетоло'гия (от
Планеты
Плане'ты (позднелат., единственное число planeta, от греч. astèr planétes — блуждающая звезда), большие небесные тела, движущиеся вокруг Солнца и светящиеся отраженным солнечным светом; размеры и массы П. на несколько порядков меньше, чем у Солнца. Ещё в глубокой древности были наделены семь небесных светил, изменяющих своё положение («блуждающих») среди звёзд: Солнце, Луна,
Уже в древности П. по характеру их движения среди звёзд делились на нижние и верхние. К нижним П. относятся Меркурий и Венера, движущиеся вокруг Солнца ближе, чем Земля; к верхним принадлежат все остальные П., орбиты которых расположены за пределами земной орбиты. Более глубокое научное значение имеет деление П. на внутренние и внешние. К внутренним относят П., движущиеся по орбитам внутри пояса малых П. Это — Меркурий, Венера, Земля, Марс; они названы также П. земной группы. Внешние П. находятся за пределами кольца малых П. Это — Юпитер, Сатурн, Уран, Нептун, Плутон. Все они (кроме Плутона) из-за своих значительных размеров называются также
Между П. и Солнцем действует взаимное притяжение, описываемое
Табл. 1. — Геометрические и механические характеристики больших планет (по данным на 1973).
Планета | Диаметр планеты (экваториальный) | Угловые диа-метры плане-ты (эквато-риальные) — Наименьший и наибольший в секундах дуги | Сжатие планеты | Объем планеты в едини-цах объе-ма Земли | Масса планеты в едини-цах мас-сы Земли | Средняя плот-ность планеты, в | Ускорение силы тя-жести на поверхно-сти плане-ты в еди-ницах Земли | Скорость убегания на по-верхности планеты, в | Среднее расстоя-ние от Солнца, в | Период обращения планеты вокруг Солнца | |
в | В едини-цах диаметра Земли | ||||||||||
Меркурий | 4865 | 0,38 | 4,7—12,9 | 0,0 | 0,055 | 0,055 | 5,52 | 0,38 | 4,3 | 0,387 | 88 суток |
Венера | 12105 | 0,95 | 9,9—65,2 | 0,0 | 0,861 | 0,815 | 5,22 | 0,90 | 10,3 | 0,723 | 224,7 суток |
Земля | 12756 | 1,00 | — | 1:298,2 | 1,000 | 1,000 | 5,517 | 1,00 | 11,2 | 1,000 | 365,3 суток |
Марс | 6800 | 0,53 | 3,5—25,5 | 1:190 | 0,150 | 0,107 | 3,97 | 0,38 | 5,0 | 1,524 | 1,881 года |
Юпитер | 141700 | 11,11 | 30,5—50,1 | 1:15,3 | 1344,8 | 317,82 | 1,30 | 2,35 | 57,5 | 5,203 | 11,862 года |
Сатуре | 120200 | 9,41 | 14,7—20,7 | 1:10,2 | 770 | 95,28 | 0,68 | 0,92 | 37 | 9,539 | 29,458 года |
Уран | 50700 | 3,98 | 3,4—4,3 | 1:33 | 61 | 14,56 | 1,32 | 0,92 | 22 | 19,19 | 84,015 года |
Нептун | 49500 | 3,88 | 2,2—2,4 | 1:60 | 57 | 17,28 | 1,84 | 1,15 | 23 | 30,06 | 164,79 года |
Плутон | 60001 | 0,47 | 0,5 | — | 0,1 | 0,111 | 61 | 0,51 | 5 | 39,752 | 250,62 года |
1 Очень ненадежное значение.
2 Сильно меняется во времени
Общая характеристика планет. Видимый блеск всех П., известных с древности, не уступает блеску самых ярких звёзд, а блеск Венеры, Марса и Юпитера превосходит их. Из П., открытых в новое время, только Уран доступен невооружённому глазу. Для нормального человеческого зрения все П. представляются, как и звёзды, светящимися точками, но уже с помощью небольшого телескопа можно увидеть диск у всех П. (кроме далёкого Плутона), что впервые обнаружил в 1609 Г.
Радиолокация П. (Меркурия, Венеры, Марса и Юпитера) даёт возможность очень точно установить расстояние до поверхности П.: небесно-механические же расчёты, основанные на анализе радиолокационных измерений за несколько лет, позволяют вычислить расстояния до центра П. Разность тех и других расстояний равна радиусу П. Такой способ вычисления радиусов П. обеспечивает точность, большую 0,1%. Радиусы П. определяются также из наблюдений затмения спутника П. при его заходе за диск П. и выходе из-за диска. Результаты особенно успешны в применении к П. с разрежённой атмосферой (например, Марс). Измерения видимого диаметра П. в разных направлениях позволяют определить её фигуру или, по крайней мере, сжатие у полюсов. Достаточно надёжно характеризует форму П. сжатие (динамическое сжатие), которое выводится из анализа возмущений, наблюдаемых в движении спутников П., в предположении, что внутри П. соблюдается гидростатическое равновесие.
Геометрические, механические и физические характеристики больших П. приведены в табл. 1 и 2.
Табл. 2. — Физические характеристики больших планет (по данным на 1973).
Планета | Период вращения планеты вокруг оси относительно звезд в единицах времени | Наклон плоскости экватора планеты к плоскости ее орбиты | Солнечная постоянная для планеты | Освещенность от Солнца на границе атмосфер в фотах | Блеск планеты в среднем противо-стоянии в звезд-ных величинах | Сферическое аль-бедо (визуальное) | Равновесная температура, °С | Средняя измерен-ная температура, °С | Координаты северного конца оси вращения планеты (1950.0) | Число спутников | ||
| В единицах солнечной постоянной для Земли | Прямое восхо-ждение | Склоне-ние | |||||||||
Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун Плутон | 58,65 | 0°3 178 23,5 25,2 3,1 26,4 98 29 ? | 910 261 1364 59 5,0 1,5 0,37 0,15 0,08 | 6,7 1,9 1,0 0,43 0,037 0,011 0,0027 0,0011 0,0006 | 90,1 25,8 13,5 5,8 0,50 0,15 0,037 0,015 0,0085 | -0,3-+0,65 -0,076 -3,877 -2,01 -2,55 +0,678 +5,52 +7,84 +14,9 | 0,07 0,76 0,39 0,16 0,67 0,69 0,93 0,84 0,1 | +230° -44 -23 -57 -160 -190 -210 -220 -230 | +340°9 +48010 +12 -53 -14511 -17011 -21011 -160 - | 254° 273,0 - 317,32 268,00 38,50 76,50 294,91 ? | +70° +66,0 +90 +52,68 +64,52 +83,31 +14,92 +40,53 ? | 0 0 1 2 12 10 5 2 ? |
1I – на экваторе. 2II – на средних широтах. 3Ненадежное значение. 41,95
Детали поверхности, вращения планет, их картографирование. На поверхности П., полностью (или почти полностью) лишенной атмосферы, видны различные детали. Им часто условно присваивают названия земных образований, хотя их названия земных образований, хотя их физическая природа и не соответствует этим названиям. Таковы, например, темные «моря» на Марсе, которые вовсе не являются морями в земном смысле слова; они выделяются на фоне др. деталей лишь из-за более низкой способности отражать солнечный свет. У такой П., как Венера, обладающей мощной атмосферой, детали поверхности не поддаются оптическим наблюдениям, у неё доступны для наблюдений только детали облачного слоя. Впрочем, с космического корабля «Маринер 10» поверхность Венеры была сфотографирована частично, в просветы между облаками. Периодически повторяющиеся перемещения деталей на диске П. указывают на её вращение; измеряя их положение в разное время определяют период вращения П. вокруг оси и положение оси вращения в пространстве. Это дает возможность определить на П.
Радиолокация даёт возможность построить карту деталей радио-альбедо П., выделяя в вернувшемся на Землю сигнале части, отраженные разными местами поверхности П. Более того, благодаря исключительной точности вычисления расстояний радиолокационными методами может быть выявлен и рельеф поверхности П., по крайней мере в тех ее местах, которые локализуются близ центра видимого диска П. Так, в частности, был определён рельеф Венеры и Марса.
Масса и плотность планет. Изучение закономерностей движения спутников П. на основе закона всемирного тяготения позволяет уверенно определить массу П. У Меркурия, Венеры и Плутона, не имеющих спутников, массы определяются по возмущениям, которые они вызывают в движениях др. небесных тел, в первую очередь комет и искусственных
Атмосферы планет. Наличие газовой оболочки вокруг П. может быть легко замечено при наблюдениях с Земли
О мощности атмосферы П. судят по упругости газов у её основания, т. е. по величине, которую показал бы барометр-анероид на поверхности П.: выражают её в миллибарах (
Химический состав атмосфер П. определяется из спектральных наблюдений по интенсивности молекулярных полос поглощения, возникающих в спектре солнечного излучения, после того как оно дважды прошло через атмосферу П.— до и после отражения от её поверхности. Сложность применения этого метода связана с тем, что на спектрограмме, полученной на земной поверхности, эти полосы трудно отделимы от полос, обусловленных прохождением света через земную атмосферу. Частично эти затруднения устраняются при наблюдениях с баллонов (см.
Космическая эра принесла новую методику исследования атмосфер П. Измеряя ослабление радиосигналов космических зондов, заходящих за П., вследствие поглощения в атмосфере, можно вывести «шкалу высот» атмосферы и определить т. о. отношение её температуры
Совокупное исследование температуры и химического состава атмосферы П. (наличие кислорода и воды) позволяет сделать заключение о возможности существования жизни на П. Так, из того, что известно о Марсе, можно заключить, что на этой П. может существовать жизнь в простейших её формах. Возможность жизни даже в таких формах на др. П. Солнечной системы сомнительна.
Внутреннее строение планет. Наблюдения изменений орбиты спутника П., в частности поворота плоскости орбиты, вращения орбиты в этой плоскости позволяют математическим путём определить форму П., её сжатие. Скорость этого вращения тем больше, чем больше величина
Как видно из табл. 1, у П. земной группы средняя плотность значительно превышает среднюю плотность П.-гигантов, близкую к средней плотности Солнца (1,4
Совсем иная картина у П.-гигантов. Очень низкая средняя плотность и специфический химический состав их атмосфер свидетельствуют о том, что они состоят из вещества, подобного солнечному, т. е. главным образом из водорода и гелия. Значительный тепловой поток, исходящий из Юпитера, указывает на высокую температуру в его недрах — м. б. до 20 тыс. градусов. Такой поток тепла свидетельствует о существовании в недрах Юпитера и Сатурна конвективного перемешивания тепла. В недрах господствует колоссальное давление, намного превышающее 2,5 млн.
Для полноты характеристики П. Солнечной системы необходимо ещё добавить, что у П. земной группы мало спутников (у Земли — 1, Марса — 2), тогда как у П.-гигантов их много: у Юпитера — 12, Сатурна — 10, Урана — 5 и только у Нептуна — 2. Плутон спутников, по-видимому, не имеет.
Эволюция планет и их происхождение. На протяжении миллиардов лет существования П. Солнечной системы испытали сильные изменения. П. малой массы (например, Меркурий и отчасти Марс) не могли удержать легкие газы, у которых скорость теплового движения молекул может превзойти или приблизиться к скорости убегания. Это относится прежде всего к водороду и гелию. Наоборот, азот, кислород, углекислый газ и, в меньшей мере, водяной пар сравнительно прочно удерживаются большинством П. Выделяющиеся при медленной эволюции недр абсорбированные там газы пополняют атмосферу, но у меньших П. процесс улетучивания преобладает. Происходящее в верхних слоях атмосферы расщепление сложных молекул газа (той же воды) солнечным коротковолновым излучением также облегчает убегание более лёгких их составных частей. Известную роль в изменении состава атмосферы могут играть живые организмы. Так, предполагается, что на Земле первоначально атмосфера была богата H2O, CO2, CH4, а также более тяжёлыми углеводородами, но в результате жизнедеятельности простейших микроорганизмов и растительности при энергетическом воздействии Солнца углекислый газ был расщеплен на углерод и кислород. Последний интенсивно расходовался на окисление горных пород, но всё же значительная часть его сохранилась.
Таким образом, П. земной группы, имеющие малую массу, растеряли свои летучие газы H2, Не, CH4, а Меркурий и отчасти Марс — и более тяжёлые (O2 и CO2), за исключением H2, связанного с О в водяном паре и существующего преимущественно в жидкой или твёрдой фазе у большинства П. Наоборот, у П.-гигантов сохранились все газы, вследствие чего химический состав их атмосфер (и недр) тот же, что и у Солнца.