Платеоза'вр (Plateosaurus), род ящеротазовых динозавров подотряда
Платереско
Платере'ско (исп. plateresco, от platero — ювелир), архитектурный стиль испанского Возрождения. Основой стиля П., возникшего в конце 15 в., является тончайшее архитектурное узорочье, крайне детализированное по формам и имеющее плоскостный, ковровый характер. Не затрагивая конструкции зданий в целом, декор П. первоначально накладывался на позднеготические, а позднее — и на ренессансные формы. В раннем П. (архитекторы Х. Гуас, Х. де Колония, Э. де Эгас) сплавлены воедино мотивы готики и
Университет в Саламанке. Фасад. 1529.
Платибазальный череп
Платибаза'льный че'реп (от греч. Platýs — широкий и básis — основание), тип осевого
Платибелодон
Платибелодо'н (Platybelodon), род вымерших млекопитающих отряда хоботных. Внешне П. были похожи на бегемотов. Передняя часть нижней челюсти и бивни (резцы) у П. были сильно вытянуты в виде лопаты и приспособлены для добывания растений из грунта. П. жили по берегам рек, озёр. Остатки известны из миоценовых отложений Северного Кавказа (впервые описан А. А. Борисяком) и Центральной Азии (Китай, Монголия).
Рис. к ст. Платибелодон.
Платина
Пла'тина (лат. Platinum), Pt, химический элемент VIII группы периодической системы Менделеева, атомный номер 78, атомная масса 195,09; тяжёлый тугоплавкий металл. О П., а также о рутении, родии, палладии, осмии и иридии, сопутствующих П. в земной коре и сходных с нею по свойствам, см. в статьях
Платина самородная
Пла'тина саморо'дная, группа платиновых минералов, являющихся неупорядоченными природными твёрдыми растворами Fe, Cu, Ni, lr, Rh, Pd, Sn, Os, Ru, Au, Ag, Bi, Pb в платине. Обычно содержат 2—3 основных (минералообразующих) металла и различное количество металлов-примесей. Их главный элемент — платина; в кристаллической структуре П. с. она является металлом-растворителем, её структура наследуется минералами П. с. Атомы второстепенных минералообразующих и примесных элементов статистически распределяются в унаследованной структуре платины, как бы растворяясь в ней. Подобными кристаллическими структурами обладают следующие минералы П. с.: твёрдые растворы Fe в Pt — поликсен (2,5—11,9 весового % Fe) и ферроплатина (12,0—28,1% Fe); lr в Pt — иридистая платина (10,4— 37,5% lr); Pd в Pt — палладистая платина (19,4—40,0% Pd); Sn и Pd в Pt — палладистая станноплатина (16—23% Sn и 17,2—20,9% Pd). Содержание примесей в минералах П. с. достигает: в поликсене — 8,8% lr, 6,8% Rh, 6% Pd, 3,3% Cu и 2,3% Ru; в ферроплатине — до 14,3% Ni, 14% Cu, 12,9% Pd, 7,5% lr, 5,8% Rh и 3% Bi; в иридистой платине — до 11% Os, 4% Pd и 2,5% Ru; в палладистой платине — до 3% Au; в палладистой станноплатине — до 2,5% Bi. Поликсен и ферроплатина с содержанием Rh свыше 4% называется родистой платиной, ферроплатина с содержанием свыше 7% Cu — медистой ферроплатиной или купроплатиной; ферроплатина, в которой более 3% Ni, называют иногда никелистой платиной. Ферроплатина и поликсен являются наиболее распространёнными минералами П. с.
Кристаллизуются минералы П. с. в кубической системе, кристаллическая структура типа
Минералы П. с. непрозрачные, серо-стального и серебряно-белого цвета, с жёлтым оттенком у палладистой платины и бронзовым — у купроплатины; металлический блеск особенно сильный у иридистой платины. Выделения этих минералов (зёрна, сростки, кристаллы) часто покрыты с поверхности чёрной оксидной плёнкой, тонкой и хрупкой. Преобладающая часть выделений ферроплатины и поликсена и некоторые из выделений купроплатины обладают магнитными свойствами. Почти все минералы П. с. ковкие, исключая слабохрупкую иридистую платину. Твёрдость по минералогической шкале в пределах 3,5—5,5; минимальная у Cu- и Ni-содержащих минералов и максимальная у lr-содержащих минералов. Плотность от 13100 до 21500
Минералы П. с. — один из главных природных источников получения
Платинель
Платине'ль, общее название сплавов благородных металлов для электродов высокочувствительной (~39
Платинирование
Платини'рование, 1) нанесение на поверхность металлических изделий тонкого слоя платины (толщиной 1—5
Платинит
Платини'т, биметаллическая проволока, состоящая из железо-никелевого сердечника (58% Fe, 42% Ni), покрытого тонким слоем меди (около 30% от общей массы проволоки). П. имеет коэффициент теплового расширения, близкий к коэффициенту теплового расширения платины (около 9×10-6
Платиновые металлы
Пла'тиновые мета'ллы, платиноиды, химические элементы второй и третьей триад VIII группы периодической системы Менделеева. К ним принадлежат: рутений (Ruthenium) Ru, родий (Rhodium) Rh, палладий (Palladium) Pd (лёгкие П. м., плотность ~12
Историческая справка. Имеются указания, что самородная платина в древности была известна в Египте, Эфиопии, Греции и Южной Америке. В 16 в. исп.
В 1803 английский учёный У. Х. Волластон обнаружил в самородной платине палладий, получивший это название от малой планеты Паллады (открытой в 1802), и родий, названный так по розовато-красному цвету его солей (от греч. rhódon — роза). В 1804 английский химик Смитсон Теннант в остатке после растворения самородной Pt в царской водке открыл ещё 2 металла. Один из них получил название иридий вследствие разнообразия окраски его солей (от греч. íris, род. падеж íridos — радуга), другой был назван осмием по резкому запаху его четырёхокиси (от греч. osmá — запах). В 1844 К. К.
Распространение в природе. П. м. принадлежат к наиболее редким элементам, их среднее содержание в земной коре (кларки) точно не установлено, ориентировочные значения приведены в таблице. Самые редкие в земной коре — Rh и lr (1×10-7% по массе), наиболее распространён Os (5×10-6%). Содержание П. м. повышено в ультраосновных и основных изверженных породах, происхождение которых связано с глубинными магматическими процессами. К этим породам приурочены месторождения П. м. Ещё выше среднее содержание П. м. в каменных метеоритах, которые считаются аналогами средней мантии Земли (кларки П. м. в каменных метеоритах составляют
Физические и химические свойства. Физические и механические свойства П. м. сопоставлены в таблице. В дополнение необходимо указать, что Ru и Os очень тверды и хрупки (возможно вследствие присутствия примесей). Rh и lr обладают меньшими твёрдостью и хрупкостью, а Pd и Pt ковки, поддаются прокатке, волочению, штамповке при комнатной температуре. Интересна способность некоторых П. м. (Ru, Pd, Pt) поглощать водород. Особенно это свойственно Pd, объём которого поглощает до 900 объёмов H2. При этом Pd сохраняет металлический вид, но растрескивается и становится хрупким. Все П. м. парамагнитны. Магнитная восприимчивость cs×10-6 электро-магнитных единиц при 18 °С равна 0,05 у Os; 0,50 у Ru; 5,4 у Pd; у Rh, lr и Pt она несколько более 1,0.
Согласно давно установившейся традиции, П. м. принято помещать в VIII группу
Химические свойства П. м. имеют много общего. Все они в компактном виде (кроме Os) малоактивны. Однако в виде т. н. черни (мелкодисперсного порошка) П. м. легко адсорбируют S, галогены и др. неметаллы. (Чернь обычно получают восстановлением П. м. из водных растворов их соединений.) Компактные Ru, Rh, Os, lr, будучи сплавлены с Pt, Zn, Pb, Bi, переходят в раствор при действии царской водки, хотя она не действует на эти П. м., взятые отдельно.
Семейство П. м. можно разделить на 3 диады (двойки), образованные двумя стоящими один под другим лёгким и тяжёлым П. м., а именно: Ru, Os; Rh, lr; Pd, Pt.
При нагревании с O2 и сильными окислителями Ru и Os образуют легкоплавкие кристаллы — четырёхокиси (тетроксиды) — оранжевую RuO4 и желтоватую OsO4. Оба соединения летучи, пары их имеют неприятный запах и весьма ядовиты. При действии восстановителей превращаются в низшие окислы RuO2 и OsO2
RuO4 + 2KOH = K2RuO4 + 1/2O2 + H2O.
При действии хлора K2RuO4 превращается в перрутенат калия:
K2RuO4 + 1/2Cl2 = KRuO4 + KCI.
Четырёхокись OsO4 даёт с KOH комплексное соединение K2[OsO4(OH)2]. С фтором и др. галогенами Ru и Os легко реагируют при нагревании, образуя соединения типа RuF3, RuF4, RuF5, RuF6. Осмий даёт подобные же соединения, кроме OsF3; существование OsF8 не подтверждено. Весьма интересны комплексные соединения Ru с
На компактные Rh и lr царская водка не действует. При прокаливании в O2 образуются окислы Rh2O3 и Ir2O3, разлагающиеся при высоких температурах.
Pd легко растворяется при нагревании в HNO3 и концентрированной H2SO4 с образованием нитрата Pd (NO3)2 и сульфата PdSO4. На Pt эти кислоты не действуют. Царская водка растворяет Pd и Pt, причём образуются комплексные кислоты — тетрахлоропалладиевая кислота H2[PdCl4] и гексахлороплатиновая — коричнево-красные кристаллы состава H2[PtCl6]×6H2O Из её солей наибольшее значение для технологии П. м. имеет хлороплатинат аммония (NH4)2[PtCl6] — светло-жёлтые кристаллы, малорастворимые в воде и почти не растворимые в концентрированных растворах NH4CI. При прокаливании они разлагаются по реакции:
При этом Pt получается в мелкораздробленном виде (т. н. платиновая губка, или губчатая платина).
Получение. Разделение П. м. и получение их в чистом виде очень сложно вследствие большого сходства их химических свойств; это требует большой затраты труда, времени, дорогих реактивов. Для получения чистой Pt исходные материалы — самородную платину, платиновые шлихи (тяжёлые остатки от промывки платиноносных песков), лом (негодные для употребления изделия из Pt и её сплавов) обрабатывают царской водкой при подогревании. В раствор переходят: Pt, Pd, частично Rh, lr в виде комплексных соединений H2[PtCl6], H2[PdCl4], Нз [RhCl6] и H2[IrCl6], а также Fe и Cu в виде FeClз и CuCl2. Нерастворимый в царской водке остаток состоит из осмистого иридия, хромистого железняка (FeCrO2), кварца и др. минералов.
Из раствора осаждают Pt в виде (NH4)2[PtCl6] хлористым аммонием. Но чтобы в осадок вместе с Pt не выпал lr в виде аналогичного нерастворимого соединения (NH4)2[lrCl6] (остальные П. м. NH4Cl не осаждает), предварительно восстанавливают Ir (+4) до Ir (+3) (например, прибавлением сахара C12H22O11 по способу И. И.
Хлороплатинат аммония отфильтровывают, промывают концентрированным раствором NH4CI (в котором осадок практически не растворим), высушивают и прокаливают. Полученную губчатую платину спрессовывают, а затем оплавляют в кислородно-водородном пламени или в электрической печи высокой частоты. Из фильтрата, оставшегося после осаждения (NH4)2[PtCl6], и из осмистого иридия извлекают прочие П. м. путём сложных химических операций. В частности, для перевода в растворимое состояние нерастворимых в царской водке П. м. и осмистого иридия используют спекание с перекисями BaO2 или Na2O2. Применяют также хлорирование — нагревание смеси Pt-концентратов с NaCl и NaOH в струе хлора.
В результате аффинажа получают труднорастворимые комплексные соединения: гексахлорорутенат аммония (NH4)3[RuCl6], дихлорид тетрамминдиоксоосмия [OsO2(NH3)4] Cl2, хлорпентамминдихлорид родия [Rh (NH3)5CI] Cl2, гексахлороиридат аммония (NH4)2[lrCl6] и дихлордиаммин палладия [Pd (NH3)2] Cl2. Прокаливанием перечисленных соединений в атмосфере H2 получают П. м. в виде губки, например
[OsO2(NH3)4] Cl2 + 3H2 = Os + 2H2O + 4NH3 + 2HCI
[Pd (NH3)2] Cl2 + H2 = Pd + 2NH3 + 2HCI.
Губчатые П. м. сплавляют в вакуумной электрической печи высокой частоты.
Применяют и др. способы аффинажа, в частности основанные на использовании
Основным источником получения П. м. служат сульфидные медно-никелевые руды, месторождения которых находятся в СССР (Норильск, Красноярский край), Канаде (округ Садбери, провинция Онтарио), ЮАР и др. странах. В результате сложной металлургической переработки этих руд благородные металлы переходят в т. н. черновые металлы — нечистые
Свойства платиновых металлов
Свойство | Ru | Rh | Pd | Os | lr | Pt |
Атомный номер | 44 | 45 | 46 | 76 | 77 | 78 |
Атомная масса | 101,07 | 102,9055 | 11906,4 | 190,2 | 192,22 | 195,09 |
Среднее содержание в земной коре, % по массе | (5·10-7) | 1·10-7 | 1·10-6 | 5·10-6 | 1·10-7 | 5·10-7 |
Массовые числа природных изотопов (в скобках указано распространение | 96, 98, 99, 100, 101,102 (31, 61), 104 | 103 (100) | 102, 104, 105 (22,23), 106 (27,33), 108 (26,71), 110 (11,8) | 184, 186, 187, 188, 189, 190 (26,4), 192 (41,0) | 191 (38,5) 193 (61,5) | 190, 192 (оба слабо радиоактивны), 194 (32,9), 196(25,2), 198 (7,19) |
Кристаллическая решётка, параметры в | Гексагональ- ная плотнейшей упаковки* | Гранецент- рированная кубическая | Гранецент- рирован- ная кубическая | Гексаго- нальная плотней- шей упаковки | Гране- центри- рованная кубичес- кая | Гране- центри- рован- ная кубичес- кая |
Атомный радиус, | 1,34 | 1,34 | 1,37 | 1,36 | 1,36 | 1,39 |
Ионный радиус, | Ru4+ 0,67 | Rh4+ 0,68 | Pd4+ 0,65 | Os4+ 0,65 | lr4+ 0,68 | Pt4+ 0,65 |
Конфигурация внешних электронных оболочек | 4d75s1 | 4d85s1 | 4d10 | 5d66s2 | 5d76s2 | 5d96s1 |
Состояния окисления (наиболее характерные набраны полужирным шрифтом) | 1,2,3,4,5,6,7,8 | 1,3,4 | 2,3,4 | 2,3,4,6,8 | 1,2,3,4,6 | 2,3,4 |
Плотность (при 20 °С), | 12,2 | 12,42 | 11,97 | 22,5 | 22,4 | 21,45 |
Температура плавления, °С | 2250 | 1960 | 1552 | ок. 3050 | 2410 | 1769 |
Температура кипения, °С | ок. 4900 | ок. 4500 | ок. 3980 | ок. 5500 | ок. 5300 | ок. 4530 |
Линейный коэффициент теплового расширения | 9,1×10-6 (20°С) | 8,5×10-6 (0—100 °С) | 11,67×10-6 (0°С) | 4,6×10-6° | 6,5×10-6 (0—100°С) | 8,9×10-6 (0°С) |
Теплоёмкость, кал/( | 0,057 (0°C) | 0,059 (20 °C) | 0,058 (0°С) | 0,0309 (°С) | 0,0312 | 0,0314 (0°С) |
| 0,0312 | 0,247 | 0,243 | 0,129 | 0,131 | 0,131 |
Теплопроводность | — | 0,36 | 0,17 | — | — | 0,17 |
| — | 151 | 71 | — | — | 71 |
Удельное электросопротивление, | 7,16-7,6 (0°C) | 4,7 (0°C) | 10,0 (0°C) | 9,5 (0°C) | 5,40 (25°C) | 9,81 (0°C) |
Температурный коэффициент электросопротивления | 44,9×10-4 (0—100°C) | 45,7×10-4 (0—100°C) | 37,7×10-4 (0—100°C) | 42×10-4 (0—100°C) | 39,25×10-4 (0—100°C) | 39,23×10-4 (0—100°C) |
Модуль нормальной упругости, | 47200 | 32000 | 12600 | 58000 | 52000 | 17330 |
Твёрдость по Бринеллю, | 220 | 139 | 49 | 400 | 164 | 47 |
Предел прочности при растяжении, | — | 48 | 18,5 | — | 23 | 14,3 |
Относительное удлинение при разрыве, % | — | 15 | 24—30 | — | 2 | 31 |
* Для Ru обнаружены полиморфные превращения при температурах 1035, 1190 и 1500°С.
** Все механические свойства даны для отожжённых П. м. при комнатной температуре; 1
Применение. Из всех П. м. наибольшее применение имеет Pt. До 2-й мировой войны 1939—45 свыше 50% Pt служило для изготовления ювелирных изделий. В последние 2—3 десятилетия около 90% Pt потребляется для научных и промышленных целей. Из Pt делают лабораторные приборы — тигли, чашки, термометры сопротивления и др., — применяемые в аналитических и физико-химических исследованиях. Около 50% потребляемой Pt (частично в виде сплавов с Rh, Pd, lr, см.
lr применяют главным образом в виде сплава Pt + 10% lr. Из такого сплава сделаны международные эталоны метра и килограмма. Из него изготовляют тигли, в которых выращивают кристаллы для лазеров, контакты для особо ответственных узлов в технике слабых токов. Из сплава lr с Os делают опоры для стрелок компасов и др. приборов.
Способностью сорбировать H2 и катализировать многие химические реакции обладает Ru; он входит в состав некоторых сплавов, обладающих высокой твёрдостью и стойкостью против истирания и окисления.
Rh благодаря своей способности отражать около 80% лучей видимой части спектра, а также высокой стойкости против окисления является хорошим материалом для покрытия рефлекторов прожекторов и зеркал точных приборов. Но главная область его применения — сплавы с Pt, из которых изготовляют лабораторную и заводскую аппаратуру, проволоку для термоэлектрических
Pd в виде черни применяется преимущественно как катализатор во многих химических производствах, в частности в процессах
H2[PdCI4] +H2O + CO = 4HCI + CO2 + Pd.
Аффинаж П. м. сопровождается выделением ядовитых Cl2 и NOCI, что требует хорошей вентиляции и возможной герметизации аппаратуры. Пары легколетучих RuO4 и OsO4 вызывают общее отравление, а также тяжёлые поражения дыхательных путей и глаз (вплоть до потери зрения). При попадании этих соединений на кожу она чернеет (вследствие восстановления их до RuO2, OsO2, Ru или Os) и воспаляется, причём могут образоваться трудно заживающие язвы. Меры предосторожности: хорошая вентиляция, резиновые перчатки, защитные очки, поглощение паров RuO4 и OsO4 растворами щелочей.
В организме П. м. представлены главным образом элементом рутением, а также искусственными радиоизотопами рутения и родия. Морские и пресноводные водоросли концентрируют радиоизотопы рутения в сотни и тысячи раз (по сравнению со средой), ракообразные — в десятки и сотни, моллюски — до десятков, рыбы и головастики лягушек — от единиц до сотен. 106Ru интенсивно мигрирует в почве, накопляясь в корнях наземных растений. У наземных млекопитающих радиоизотопы Ru всасываются через пищеварительный тракт, проникают в лёгкие, отлагаются в почках, печени, мышцах, скелете. Радиоизотопы Ru — составная часть
Платиновые руды
Пла'тиновые ру'ды, природные минеральные образования, содержащие
Платиновые металлы распределены в пределах месторождений П. р. неравномерно. Их концентрации колеблются: в коренных собственно платиновых месторождениях от 2—5
Коренные месторождения П. р. представлены различными по форме телами платиноносных комплексных сульфидных и собственно платиновых хромитовых руд с массивной и вкрапленной текстурой. Эти рудные тела, генетически и пространственно тесно связанные с интрузивами основных и ультраосновных пород, имеют преимущественно магматического происхождение. Коренные месторождения П. р. встречаются в платформенных и складчатых областях и всегда тяготеют к крупным разломам земной коры. Образование этих месторождений происходило на разных глубинах (от 0,5—1 до 3—5
Россыпные месторождения П. р. представлены главным образом мезозойскими и кайнозойскими элювиально-аллювиальными и аллювиальными россыпями платины и осмистого иридия. Промышленные россыпи обнажаются на дневной поверхности (открытые россыпи) или скрыты под 10—30
Добыча П. р. ведётся открытым и подземным способами. Открытым способом разрабатывается большинство россыпных и часть коренных месторождений. При разработке россыпей широко используются
В результате мокрого обогащения металлоносных песков и хромитовых П. р. получают шлих «сырой» платины — платиновый концентрат с 70—90% минералов платиновых металлов, а в остальном состоящий из хромитов, форстеритов, серпентинов и др. Такой платиновый концентрат отправляется на
Главные страны, добывающие П. р., — СССР, ЮАР и Канада. Мировые запасы платиновых металлов (без СССР) оцениваются около 7000
Платиновые сплавы
Пла'тиновые спла'вы, сплавы (обычно двойные) на основе
П. с. применяют для изготовления термопар (5—40% Rh), разрывных и скользящих контактов (10—25% Rh или 5—15% Ru, или 5—30% lr, или 10—20% Pd, или 5% Ni), деталей малогабаритных приборов ответственного назначения: потенциометров (4—8% W или 3—10% Cu, или 10—20% lr, или 10% Ru, или 5—10% Mo), пружин и пружинящих элементов (25—30% Ir), постоянных магнитов (23% Со), а также высокотемпературных припоев (10—20% Pd). П. с. используются в качестве
Платинотрон
Платинотро'н [от греч. Platýno — делаю шире, расширяю и
П. применяют в передающих устройствах радиолокационных станций, систем связи, навигации и телеметрии для усиления частотно- или фазомодулированных сигналов на частотах от 0,5 до 10
Рис. 2. Зависимость выходной мощности и коэффициента усиления платинотрона от входной мощности при различных значениях мощности питания P0.
Рис. 1. Конструктивная схема платинотрона: 1 — ввод СВЧ энергии; 2 — связки замедляющей системы; 3 — полые резонаторы замедляющей системы; 4 — торцевой экран катода; 5 — пластины анодной структуры; 6 — катод; 7 — вывод СВЧ энергии; Е — источник анодного напряжения. Стрелкой показано направление (в резонаторах) вектора магнитной индукции В.
Платиопс
Платио'пс (Platyops), род крупных ископаемых земноводных надотряда