Соч.: в рус. пер. — Стихотворения, Тб,. 1939; Стихотворения, Тб., 1947; Стихотворения, М. — Л., 1949.
Лит.: Барамидзе А. Г., Радиани Ш., Жгенти В., История грузинской литературы, Тб., 1958.
Орбелиани Сулхан Саба
Орбелиа'ни Сулхан Саба [25.10(4.11).1658, село Тандзиа, ныне Болнисский район Грузинской ССР, — 26.1(6.2).1725, Москва], грузинский писатель, учёный и политический деятель. Родился в семье верховного судьи Картли. Сторонник просвещённого абсолютизма. Боролся за освобождение Грузии от иностранного порабощения. После поражения Георгия XI в борьбе против Ирана О. в 1698 постригся в монахи и принял имя Саба. В правление своего воспитанника Вахтанга VI О. возобновил активную политическую деятельность. В 1712 сопровождал Вахтанга VI в Иран; в 1713—16 находился с дипломатической миссией в Западной Европе: в Париже, Риме. В 1724 вместе с Вахтангом VI эмигрировал в Россию. Многогранная литературная и научная деятельность О. оказала влияние на развитие прогрессивных общественных идей в Грузии. Автор сборника басен и притчей «О мудрости вымысла» (или «О мудрости лжи»), в котором выражены просветительские идеи О., сурово осуждены пороки феодального общества; книга отличается высокими художественными достоинствами, метким образным языком. Написал также книгу «Путешествие в Европу» и ряд сочинений религиозного содержания; составил толковый словарь грузинского языка. С литературной деятельностью О. связано начало оформления новогрузинского литературного языка.
Соч.: в рус. пер.: Мудрость вымысла, Тб., 1959; Путешествие в Европу, Тб., 1969.
Лит.: С.-С. Орбелиани, 1658—1958. Юбилейный сб. Тб., 1959.
С. С. Орбелиани.
Орбелян Стефанос
Орбеля'н Стефанос (1258 — 1304), армянский историк и церковно-политический деятель 13 — начала 14 вв.; см. Стефанос Орбелян.
Орбини Мавро
Орби'ни (Orbini) Мавро (год рождения неизвестен — умер 1614, Рагуза, ныне Дубровник), далматинский историк, родоначальник югославянской исторической науки. Был монахом бенедиктинского монастыря на о. Млет, затем аббатом. О. — автор книги «Славянское царство» (1601, на итальянском языке), в которой попытался дать историю всех славянских народов. В 1-й части сочинения О. сообщает сведения (нередко легендарные) о древнейшей истории славян, во 2-й излагает историю южнославянских народов со времени появления первых славянских государств и до турецкого нашествия. О. выдвинул теорию скандинавского происхождения славян; ошибочно причислил к славянам многие неславянские (германские, тюркские и др.) народы. В сочинении приведён перевод сербской хроники 12 в. (Летопись попа Дуклянина), которая таким путём стала доступна исторической науке. Сочинения О. пронизывает идея единства славянских народов. По указанию Петра I оно было переведено (с сокращениями) на русском языке под названием «Книга Историография початия имене, славы и расширения народа славянского...» (1722).
Орбиньи Альсид Дессалин д'
Орбиньи' (Orbigny) Альсид Дессалин д’ (1802 — 1857), французский палеонтолог; см. Д’Орбиньи А. Д.
«Орбита»
«Орби'та», условное название земных станций космической связи, образующих на территории СССР единую сеть; передают и принимают для последующей ретрансляции монохромные и цветные программы Центрального телевидения (ЦТ) через спутники связи «Молния». Первые 20 станций сети начали работать в 1967; к 1973 число их доведено до 40. С созданием «О.» телецентры во многих отдалённых пунктах страны получили возможность транслировать 1 или 2 программы ЦТ, помимо программ, поступающих по кабельным и радиорелейным линиям. Первоначально в советской системе космической связи использовались спутники «Молния-1», работавшие на дециметровых волнах. В 1972 вступили в строй также станции «О.-2», работающие на сантиметровых волнах со спутниками «Молния-2». К маю 1973 передачи из Москвы принимали 11 станций «О.-2» (в 1974—75 намечено построить ещё 25 станций). Действующая система космической связи СССР носит название «Молния — О.». Помимо трансляции телевизионных программ, эта система служит также для двустороннего (дуплексного) обмена или однонаправленной передачи информации др. видов. Действует на всей территории СССР. Продолжительность сеансов связи через каждый спутник «Молния» — 8—10 ч в сутки.
Телевизионные сигналы, излучаемые центральными земными станциями сети «О.» в направлении спутников «Молния», принимаются последними, усиливаются и снова излучаются на Землю. Принятые сигналы поступают по соединительным линиям на местные телецентры, откуда они передаются в эфир по одному из отведённых для телецентра телевизионных каналов в диапазоне метровых и дециметровых волн. В качестве соединительной линии обычно используется однопролётная радиорелейная линия (см. Радиорелейная связь). При расстояниях менее 1 км применяются также кабельные линии с согласующими, корректирующими и антифоновыми устройствами.
Станции «О.» размещают в типовых круглых в плане железобетонных сооружениях, служащих одновременно опорой антенной системы (рис.). В центральном зале станции сосредоточена вся приёмная аппаратура, аппаратура наведения на спутник и соединительные линии. В смежных помещениях располагаются система вентиляции и кондиционирования воздуха, аппаратура электропривода антенны, оборудование электропитания и пр. Антенна с параболическим отражателем диаметром 12 м установлена на опорно-поворотном устройстве и приводами перемещается по азимуту и углу места, сопровождая спутник с высокой точностью (до нескольких угловых минут). Управление слежением за спутником осуществляется либо автоматически (по телевизионному сигналу со спутника или программным устройством), либо вручную. Антенна способна нормально работать в суровых климатических условиях Крайнего Севера, Сибири, Дальнего Востока и Средней Азии без ветрозащитного укрытия. Шумовая температура антенны, направленной в зенит, не превышает 10 К.
Принятый антенной станции частотно-модулированный (ЧМ) сигнал поступает на входное устройство приёмного комплекса аппаратуры — параметрический усилитель. Для получения наибольшей чувствительности первые каскады его охлаждаются до температуры жидкого азота (77 К). С выхода параметрического усилителя сигнал поступает на преобразователь частоты и следующий за ним предварительный усилитель промежуточной частоты (УПЧ). Далее в высокоселективном УПЧ, настроенном на промежуточную частоту 70 Мгц, осуществляется основное усиление принятых сигналов (до 10 млн. раз) при сохранении линейности фазовой характеристики. Последующее детектирование ЧМ сигналов выполняется помехоустойчивым демодулятором — синхронным фазовым детектором. Т. к. сигналы звукового сопровождения передаются с использованием временного уплотнения (см. Линии связи уплотнение) в той же полосе частот, что и видеосигналы, в состав приёмного комплекса входит аппаратура разделения сигналов изображения и звука. В состав приёмного комплекса «О.» входит также контрольная аппаратура для оперативной проверки работоспособности всех его звеньев и измерения его качественных показателей. Аппаратура приёмного комплекса имеет 100%-ный резерв, позволяющий в случае аварийной ситуации автоматически переходить с рабочего комплекта аппаратуры на резервный.
Н. В. Талызин.
Общий вид станции «Орбита» в г. Фрунзе.
Орбита (мед.)
Орби'та (мед.), глазница, костная полость черепа, в которой расположено глазное яблоко (см. Глаз); парное симметричное образование.
Орбита (сфера действия)
Орби'та (от лат. orbita — колея, путь), круг, сфера действия, распространения; см. также Орбита (мед.), Орбиты небесных тел, Орбиты искусственных космических объектов.
Орбитальная станция
Орбита'льная ста'нция, тяжёлый искусственный спутник, длительное время функционирующий на околоземной, окололунной или околопланетной орбитах. О. с. может быть пилотируемой (с экипажем космонавтов) или работать в автоматическом режиме. Назначение О. с.: решение ряда научных и прикладных задач — исследование околоземного космического пространства и Земли с орбиты ИСЗ, проведение метеорологических, астрономических, радиоастрономических и др. наблюдений, изучение вопросов навигации, медико-биологические эксперименты, исследование поведения материалов и оборудования в условиях космического полёта и др. О. с. могут служить также базами для сборки на орбите тяжёлых космических кораблей, предназначенных для полёта к др. планетам Солнечной системы.
Возможность и целесообразность создания О. с. научно обоснованы в начале 20 в. в трудах К. Э. Циолковского, Ю. В. Кондратюка, Г. Оберта (Германия), Гвидо фон Пирке, Германа Нордунга (Австрия) и др. Создание О. с. и обеспечение их длительного функционирования на орбите связано с решением ряда сложных научно-технических и медико-биологических проблем. Одна из наиболее важных задач при создании О. с. — стыковка космических кораблей на орбите. Первая ручная стыковка осуществлена 16 марта 1966 экипажем американского пилотируемого космического корабля «Джемини-8» (см. «Джемини») с ракетой «Аджена». Впервые автоматическая стыковка без непосредственного участия космонавтов осуществлена 30 октября 1967 на околоземной орбите советского ИСЗ «Космос-186» и «Космос-188». Этот эксперимент был повторен 15 апреля 1968 при полёте автоматического ИСЗ «Космос-212» и «Космос-213». Первая экспериментальная О. с. была образована и кратковременно функционировала на околоземной орбите 16 января 1969 после автоматического сближения и ручной стыковки пилотируемых космических кораблей «Союз». Дальнейшие запуски космических кораблей «Союз» позволили к 1971 решить принципиальные задачи, связанные с созданием долговременных О. с. (см. «Салют»). К 1973 аналогичная задача была решена в США (см. «Скайлэб»).
Время активного функционирования на орбите, численность экипажа, параметры орбиты, масса и габариты О. с. зависят от её назначения. Конструкцию О. с. в основном определяет выбранный способ её сборки. Возможны два способа. В первом случае станция полностью собирается на Земле и выводится одной ракетой-носителем на орбиту ИСЗ, готовая к выполнению задач. Масса и объём О. с. ограничены энергетическими возможностями ракеты-носителя, поэтому способ пригоден для сборки О. с. до нескольких десятков т (например, «Салют», «Скайлэб»). При втором способе сборка осуществляется на околоземной орбите из нескольких самостоятельных блоков, секций, элементов или космических кораблей, которые выводятся несколькими ракетами-носителями. О. с. готова к выполнению всего комплекса возлагаемых на неё задач после окончательной сборки и проверки на орбите. Способ позволяет создавать станции любой необходимой массы и объёма, различных размеров, с использованием для вывода на орбиту элементов существующими ракетами-носителями, что приобретает особенно большое значение при запуске О. с. к Луне и др. планетам Солнечной системы. Неудачный запуск одного из блоков в этом случае не срывает выполнение программы создания О.с. В обоих случаях экипаж может быть выведен на орбиту на борту станции (или её элемента) или доставлен на О. с. транспортными кораблями, которые по мере необходимости запускаются с наземных космодромов, сближаются со станцией и стыкуются с ней.
Полёт О. с. с космонавтами на борту требует решения следующих проблем: преодоление длительного воздействия невесомости на организм человека, защита от радиации и микрометеоров, обеспечение надёжности и достаточного ресурса работы бортовых систем и аппаратуры и др.
Продолжительность пребывания космонавтов на О. с. со сменяемыми экипажами составляет несколько недель или месяцев (например, 3-й экипаж «Скайлэба» работал на орбите в течение 84 сут). На борту О. с. создаются условия для нормальной жизнедеятельности и проведения ряда научных экспериментов, в том числе медико-биологических, позволяющих исследовать приспосабливаемость человека к условиям невесомости. С этой целью применяются велоэргометр, «бегущая дорожка», нагрузочные костюмы и др. При более продолжительных полётах эта проблема может решаться др. способами, например возможно создание т. н. искусственной частичной гравитации путём вращения О. с. или определенных её элементов относительно центра тяжести.
Существенное значение особенно при длительных полётах приобретает обеспечение защиты экипажа от космической радиации. Применяется пассивная защита, осуществляемая экранированием отсеков станций материалами, способными поглощать опасные для организма заряженные частицы, и активная — основана на возможности изменения направления потока заряженных частиц под воздействием электростатических или электромагнитных полей.
Противометеорная защита (применительно к околоземным О. с.) решается с помощью выносных экранов; для обшивки корпуса используют материалы с хорошими противоударными свойствами (например, Ti, Mg, Be), делают многослойную обшивку с промежутками между слоями. Перспективно покрытие корпуса самогерметизирующимися материалами.
Решение задач, связанных с проблемой обеспечения надёжности и ресурса работы бортовых систем и аппаратуры, особенно при длительном активном существовании О. с., начинается на Земле в условиях, максимально приближающихся к условиям космичесеого полёта (см. Космического полёта имитация). Все системы и аппаратура проходят длительную и тщательную отработку на Земле.
С расширением границ освоения космического пространства сфера действия О. с. качественно изменяется. Например, создание окололунных О. с. (предложенных Ю. В. Кондратюком) с практически неограниченным сроком существования на орбите, выполняющих роль баз снабжения, облегчит полёты космических кораблей к др. планетам Солнечной системы.
Лит.: Циолковский К. Э., Собр. соч., т. 1—4, М., 1951—64; Кондратюк Ю. В., Завоевание межпланетных пространств, 2 изд., М., 1947; От космических кораблей к орбитальным станциям, 2 изд., М., 1971; «Салют» на орбите, М., 1973; Ордвей Ф. И., История, эволюция и достоинства проектов орбитальных станций, выдвигавшихся в США и Западной Европе, в сборнике: Из истории авиации и космонавтики, в. 17—18, М., 1972.
Г. А. Назаров.
Орбитный указатель
Орби'тный указа'тель, один из антропологических признаков, характеризуемый процентным отношением высоты орбиты (глазного отверстия на черепе человека) к её ширине. Принята следующая рубрикация: при О. у. до 75,9 — низкие орбиты (хамэконхия), от 76,0 до 84,9 — средние (мезоконхия), 85,0 и выше — высокие (гипсиконхия). Высокие орбиты характерны для большинства монголоидов, очень низкие — для тасманийцев и меланезийцев; у женщин ширина орбиты заметно меньше, чем у мужчин, хотя по высоте это различие менее выражено; у детей О. у. выше и относительный размер орбит больше, чем у взрослых, и т.д.
Орбиты искусственных космических объектов
Орби'ты иску'сственных косми'ческих объе'ктов, траектории движения космических аппаратов (КА). Отличаются от орбит небесных тел естеств. происхождения главным образом наличием активных участков, на которых КА движется с включенным реактивным двигателем. Часто, однако, под О. и. к. о. понимают лишь участки пассивного (с выключенным двигателем) полёта. Орбиты КА изучаются в астродинамике.
По характеру движения КА вблизи исследуемого небесного тела различают орбиты пролёта, спутниковые орбиты, орбиты посадки (жёсткой и мягкой). По орбите пролёта КА движется с гиперболической скоростью относительно исследуемого небесного тела и после сближения с этим телом покидает его окрестность (см. Космические скорости). Коррекция орбиты пролёта реактивными импульсами производится обычно до момента сближения, на участке же сближения коррекция, как правило, не производится, и КА совершает пассивный полет. Спутниковые орбиты КА характеризуются эллиптическими скоростями движения относительно исследуемого небесного тела. Для вывода КА на спутниковую окололунную или околопланетную орбиту необходимо уменьшить скорость КА при сближении с небесным телом до эллиптической, что достигается реактивным торможением КА. Для жёсткой посадки КА на поверхность небесного тела характерна большая относительная скорость КА в момент соприкосновения с поверхностью небесного тела. В результате жёсткой посадки КА, как правило, разрушается. Орбиты жёсткой посади являются частными случаями орбит пролёта или спутниковых орбит, когда часть орбиты проходит под поверхностью небесного тела и столкновение с этой поверхностью прекращает движение КА. Мягкой посадкой называется такая, при которой относительная скорость KA в момент контакта с поверхностью небесного тела не достигает значений, приводящих к разрушению КА. Мягкая посадка обеспечивается тормозящей реактивной тягой на участке спуска КА или парашютной системой, если небесное тело имеет достаточно плотную атмосферу.
Орбиты КА выбираются и рассчитываются заранее, в соответствии с задачами, которые решаются при запуске КА. При выборе орбит КА большую роль играют вопросы экономного расхода горючего и увеличения полезного веса КА, поэтому стремятся максимальным образом использовать силу тяготения исследуемого тела для изменения траектории в нужном направлении. Примером такого рода является полёт автоматической межпланетной станции (АМС), выведенной на орбиту 4 октября 1959 третьей советской космической ракетой. В момент сближения с Луной АМС прошла на расстоянии 6500 км от поверхности Луны и сфотографировала её обратную сторону; под действием притяжения Луны её траектория изогнулась и АМС возвратилась к Земле со стороны Северного полушария. Пройдя на расстоянии 4700 км от поверхности Земли, АМС передала снимки на Землю.
Так как КА имеют малые размеры и массы, то на их орбиты наряду с силами тяготения заметно влияют сопротивление атмосферы (Земли или планет) и световое давление, которые практически не влияют на движение естественных небесных тел. В движении искусственных спутников Земли (ИСЗ) наиболее заметны возмущения от сопротивления атмосферы и от сжатия Земли. Под действием сопротивления атмосферы орбита постепенно уменьшается в размерах — происходит вековое уменьшение большой полуоси и эксцентриситета таким образом, что высота перигея орбиты уменьшается во много раз медленнее, чем высота апогея. Следствием уменьшения размеров орбиты является уменьшение периода обращения ИСЗ вокруг Земли и ускорение видимого движения ИСЗ. Эти изменения орбиты происходят тем быстрее, чем ближе орбита к поверхности Земли. При высоте круговой орбиты порядка 150—160 км и ниже изменения настолько быстры, что ИСЗ не успевает сделать полного оборота и падает на Землю. Сжатие Земли вызывает два основных эффекта в движении ИСЗ: вращение плоскости орбиты ИСЗ вокруг оси Земли, происходящее в направлении, обратном движению ИСЗ (попятное движение линии узлов орбиты), и вращение самой орбиты в её плоскости (движение линии апсид). Скорость движения линии узлов равна нулю, если плоскость орбиты перпендикулярна к плоскости земного экватора. Направление движения линии апсид зависит от наклона орбиты к плоскости экватора и совпадает с направлением движения ИСЗ в орбите, если наклон орбиты i < 63°26'; если наклон больше этого значения, то линия апсид движется в направлении, обратном направлению орбитального движения спутника.
Выбранная (расчётная) орбита КА, из-за неизбежных отклонений режима работы двигателей от расчётного при запуске и коррекциях, реализуется не вполне точно. Орбита непрерывно изменяется под воздействием возмущающих сил. Поэтому возникает задача измерения видимого движения КА и определения параметров (элементов) реальной орбиты по результатам этих измерений. Наиболее распространены радиотехнические методы наблюдений, позволяющие определять расстояния до КА и его радиальные скорости. Движение близких к Земле КА (ИСЗ, лунные зонды) измеряется также по результатам наблюдений, позволяющих определять угловые координаты КА (обычно прямое восхождение и склонение или азимут и высоту), а также при помощи лазерных дальномеров. Уточнённые значения параметров (элементов) орбиты используются для расчёта корректировочных импульсов и для прогноза движения КА (вычисления эфемериды) при последующих наблюдениях КА.
Лит.: Левантовский В. И., Механика космического полета в элементарном изложении, М., 1970; Эльясберг П. Е., Введение в теорию полёта искусственных спутников Земли, М., 1965; Эскобал П. Р., Методы определения орбит, пер. с англ., М., 1970.
Ю. В. Батраков.
Орбиты небесных тел
Орби'ты небе'сных тел, траектории, по которым движутся небесные тела в космическом пространстве. Формы О. н. т. и скорости, с которыми по ним движутся небесные тела, определяются силой тяготения, а также силой светового давления, электромагнитными силами, сопротивлением среды, в которой происходит движение, приливными силами, реактивными силами (в случае движения ядра кометы) и многое др. В движении планет, комет и спутников планет, а также в движении Солнца и звёзд в Галактике решающее значение имеет сила всемирного тяготения. На активных участках орбит искусственных космических объектов наряду с силами тяготения определяющее значение имеет реактивная сила двигательной установки. Ориентация орбиты в пространстве, её размеры и форма, а также положение небесного тела на орбите определяются величинами (параметрами), называемыми элементами орбиты. Элементы орбит планет, комет и спутников определяются по результатам астрономических наблюдений в три этапа: 1) вычисляются элементы т. н. предварительной орбиты без учёта возмущений (см. Возмущения небесных тел), т. е. решается двух тел задача. Для этой цели в большинстве случаев достаточно иметь три наблюдения (т. е. координаты трёх точек на небесной сфере) небесного тела (например, малой планеты), охватывающие промежуток времени в несколько дней или недель. 2) Осуществляется улучшение предварительной орбиты (т. е. вычисляются более точные значения элементов орбиты) по результатам более длительного ряда наблюдений. 3) Вычисляется окончательная орбита, которая наилучшим образом согласуется со всеми имеющимися наблюдениями.
Для многих тел Солнечной системы, в том числе для больших планет, Луны и некоторых спутников планет, имеются уже длительные ряды наблюдений. Для вычисления по этим наблюдениям окончательной орбиты (или, как говорят, для разработки теории движения небесного тела) применяются аналитические и численные методы небесной механики.
В результате первого этапа орбита определяется в виде конического сечения (эллипса, иногда также параболы или гиперболы), в фокусе которого находится другое (центральное) тело. Такие орбиты называются невозмущёнными или кеплеровыми, т.к. движение небесного тела по ним происходит по Кеплера законам. Шестью элементами, определяющими гелиоцентрическую невозмущённую О. н. т. Р (рис.), являются: 1) наклон орбиты к плоскости эклиптики i. Может иметь любое значение от 0 до 180°; наклон считается меньшим 90°, если для наблюдателя, находящегося в северном полюсе эклиптики, движение планеты имеет прямое направление (против часовой стрелки), и большим 90° при обратном движении. 2) Долгота узла W. Это — гелиоцентрическая долгота точки, в которой планета пересекает эклиптику, переходя из Южного полушария в Северное (восходящий узел орбиты). Долгота узла может принимать значения от 0 до 360°. 3) Большая полуось орбиты а. Иногда вместо а в качестве элемента орбиты принимается среднее суточное движение n (дуга орбиты, проходимая телом за сутки). 4) Эксцентриситет орбиты е. Если b – малая полуось орбиты, то е = /a. Вместо эксцентриситета иногда принимают угол эксцентриситета j, который определяется соотношением sin j = е. 5) Расстояние перигелия от узла (или аргумента перигелия) w. Это гелиоцентрический угол между восходящим узлом орбиты и направлением на перигелий орбиты, измеряемый в плоскости орбиты в направлении движения планеты; может иметь любые значения от 0 до 360°. Вместо элемента w применяется также долгота перигелия p = W + w. 6) Элемент времени, т. е. эпоха (дата), в которую планета находится в определённой точке орбиты. В качестве такого элемента может служить, например, момент t, в который планета проходит перигелий. Положение планеты на орбите определяется аргументом широты и, который представляет собой угловое расстояние планеты вдоль орбиты от восходящего узла, или истинной аномалией v — угловым расстоянием планеты от перигелия. Аргумент широты меняется от 0 до 360° в направлении движения планеты. Аналогичными элементами определяются орбиты комет, Луны, спутников планет, компонентов двойных звёзд, Солнца в Галактике и др. небесных тел. Однако вместо термина «перигелий» в этих случаях употребляется или более общий термин — «перицентр», или специализированные название «перигей» (для Луны, движущейся по геоцентрической орбите), «периастр» (для компонентов двойной звезды) и т.п.
Задача улучшения (уточнения) предварительной орбиты при помощи дополнительных наблюдений решается путём последовательных приближений. Чем больше интервал времени, охватываемый наблюдениями, тем надёжнее определяются элементы улучшенной орбиты. В реальном случае, когда действуют не только силы тяготения, но и др. (возмущающие) силы, движение небесного тела не соответствует законам Кеплера. Однако отклонение движения от невозмущённого невелико и поэтому его описывают формулами невозмущённого движения, но при этом предполагают, что элементы орбиты не сохраняют постоянные значения, а изменяются с течением времени. Т. о. реальная орбита рассматривается как огибающая семейства непрерывно изменяющихся кеплеровых орбит; при этом в каждый момент времени положение и скорость небесного тела на реальной орбите совпадают со значениями положения и скорости, которые небесное тело имело бы, двигаясь по кеплеровой орбите с элементами, вычисленными именно для этого момента. Орбита, определённая таким методом для заданного момента времени t, называется оскулирующей орбитой, а момент t — эпохой оскуляции. Оскулирующая орбита непрерывно изменяет своё положение в пространстве и форму.
Метод определения первоначальной параболической орбиты был разработан Г. Ольберсом (1797), а эллиптической — К. Гауссом (1809). Методам улучшения орбит и определения окончательных орбит были посвящены многочисленные работы в 19—20 вв. Элементы орбит планет, малых планет, комет регулярно публикуются в астрономических ежегодниках и др. изданиях.
Классические методы небесной механики с успехом применяются также и для вычисления орбит искусственных спутников Земли (ИСЗ). В этом случае учитываются вековые изменения большой полуоси орбиты, долготы узла и аргумента широты, вызываемые тормозящим воздействием атмосферы, несферичностью Земли, а в некоторых случаях и световым давлением Солнца. Радиотехнические, радиолокационные и лазерные дальномерные методы наблюдений ИСЗ позволяют непосредственно определять расстояния до спутника и его радиальную скорость. Аналогичные методы наблюдений применяются и к естественным небесным телам (например, радиолокация Венеры и Марса, лазерная локация Луны). Поэтому в середине 20 в. разработаны новые способы определения орбит, специально приспособленные для наблюдений, выполненных современными техническими средствами.
Лит.: Эскобал П. Р., Методы определения орбит, пер. с англ., М., 1970. См. также лит. при ст. Небесная механика.
Г. А. Чеботарёв.
Эллиптическая орбита планеты Р в пространстве: S — Солнце; Р — планета; П — перигелий орбиты. Ось Sx направлена в точку весеннего равноденствия.
Орвието
Орвие'то (Orvieto), город в Средней Италии, в области Умбрия (провинция Терни). 24,2 тыс. жителей (1968). Керамическое производство, виноделие. Туризм. Готический собор (1290—1569, архитектор Л.Майтани, Андреа Пизано, А. Орканья, М. Санмикеле и др.) и примыкающее к нему Палаццо деи Папи (ныне — музей собора; 13 в.), церковь Сан-Доменико (13 в.; капелла Петруччи — 1518—23, архитектор М. Санмикеле). Музей Файна (древне-греческие вазы). Близ О. — этрусские гробницы с росписями (6 в. до н. э.).
Лит.: Tordi M., Orvieto, Roma, 1950.
Орвието. Палаццо дель Пополо. 13 в.
Оргазм
Орга'зм (греч. orgasmós, от orgáō — разбухаю, пылаю страстью), высшая степень сладострастного ощущения, возникающая в момент завершения полового акта или заменяющих его суррогатных форм половой активности (онанизм, поллюции и т.п.). В основе О. — безусловный рефлекс, который подкрепляет совокупность сексуальных реакций, формируя целостный поведенческий акт; в этом — биологическая роль О. У особей женского пола О. не является обязательным для оплодотворения. У самок подавляющего большинства видов животных (кроме некоторых млекопитающих) О. отсутствует. Механизм О. сложен; в нём участвует ряд физиологически соподчинённых нервных (корковых, подкорковых и спинномозговых) структур.
В отличие от здоровых мужчин, у которых окончание полового акта всегда завершается наступлением О., у большинства здоровых, нормальных женщин полное пробуждение сексуальности, появление О. наступает не сразу после начала регулярной половой жизни, а значительный срок спустя (чаще от нескольких месяцев до нескольких лет). В дальнейшем О. у женщины бывает не при каждом половом акте (условной границей «нормы» принято считать появление О. в половине случаев половых сношений). Значительная часть женщин (по некоторым данным, до 41%) никогда не испытывает О.; многие из них страдают приобретенной аноргазмией, которая поддаётся коррекции, других же условно можно охарактеризовать как «конституционально холодных»: они знают все радости материнства и считают свой брак счастливым во всех отношениях. Игнорирование биологических особенностей женской сексуальности и естественных индивидуальных различий и как результат — стремление «лечить» каждый случай аноргазмии так же бесперспективны, как попытка изменить темперамент человека.
Лит.: Васильченко Г. С., Оргазм, в кн.: Патогенетические механизмы импотенции, М.,1956, с 47—51; Имелинский К., Психогигиена половой жизни, пер. с польск., М, 1972; Свядощ А. М., Женская сексопатология, М., 1974; Malewska H., Kulturowe i psychospoleczne determinanty zycia seksualnego, Warsz., 1967; Gebhard Р., Raboch J., Giese H., The Sexuality of women, L.,1970.
Г. С. Васильченко.
Орган (биол.)
О'рган (биол.), часть тела животного или растительного организма, выполняющая одну или чаще несколько специфичных для него функций. Примеры О.: мозг, сердце, глаз, печень, желудок — у животных; корень, стебель, лист, цветок — у растений. Все О. данного организма взаимно связаны и взаимодействуют, что и обеспечивает его единство (см. Корреляция).О. классифицируют по их основным функциям, например: у животных О. движения, пищеварения, дыхания, кровообращения, выделения и др.; у растений — О. фотосинтеза, всасывания и др.; у тех и др. — О. воспроизведения и др. Дополняющие друг друга функционально О. объединяются в системы, обеспечивающие главные жизненные отправления организма. Каждый О. обычно состоит из ряда тканей, выполняющих более узкие функции. Для большинства О. характерна многофункциональность (см. Мультифункциональность). При сравнении О. различают аналогичные и гомологичные О. (см. Аналогия, Гомология).
В процессе исторического развития организмов ослабление функции О. и его редукция (например, редукция глаз у норных и пещерных животных, тычинок — в цветках растений семейства губоцветных, норичниковых и др.) или усиление функции О. и усиленное морфологическое развитие (например, развитие лёгких в ряду наземных позвоночных; мощное развитие корневой системы у растений засушливых местообитаний) — есть следствие новых потребностей организма в изменившихся условиях существования и естественного отбора.
Орган (воен.)
Орга'н (воен.), многоствольное орудие, применявшееся в различных армиях в 16 — начала 17 вв. Название «О.» произошло от сходства его внешнего вида с одноимённым духовым музыкальным инструментом. О. имел от 6 до 24 и более стволов (ружей, мортирок, малокалиберных пушек), скреплённых в несколько рядов на особом валу или рамах (см. рис.). Затравки стволов в каждом ряду соединялись общим жёлобом, позволявшим производить одновременный залп. О. обычно помещались на колёсных лафетах. В России подобные орудия назывались сороками. О. вышли из употребления с изобретением картечи.
Рис. к ст. Орган (воен.).
Орган (муз. инструмент)
Орга'н (лат. organum, от греч. órganon — орудие, инструмент), духовой клавишный музыкальный инструмент. Состоит из набора труб (деревянных и металлических) разных размеров и пневматической системы (воздухонагнетающего устройства и воздухопроводов), заключенных в общий корпус, а также кафедры управления. Помимо ручных (мануал) и ножных (педаль) клавиатур, на кафедре управления сосредоточены рукоятки различных рычагов, служащих для соединения между собой клавиатур, включения регистров и устройств, усиливающих и ослабляющих звучание. В О. бывает 1—7 мануалов (число клавиш на каждом — до 72) и педаль (обычно из 32 клавиш); в некоторых современных О. иногда прибавляют 2-ю. О. имеют до несколько тыс. труб (звучащие устройства), разделенных на регистры (группы). Общее число регистров в О. зависит от величины инструмента (небольшой О. может иметь до 10, а гигантский — несколько сот регистров). Каждый регистр обладает характерным тембром, включается рычажком или кнопкой. Музыку для О. пишут на 3 нотных станах обычно без указания регистра.
В О. бывают 3 основные системы (трактуры) передачи — механическая (передаёт энергию движения пальцев от клавиши к клапану, открывающему доступ воздуха в трубу, посредством большого количества тяжей, абстрактов, деревянных угольников и блоков), пневматическая («рабочий» воздух передаёт по трубочкам — кондуктам воздушный толчок околотрубному клапану, открывая его; не получила распространения) и электрическая («приказы» органиста передаются от клавиш к трубам с помощью электропроводов). В современном органостроении лучший вариант — сочетание механических и электрических трактур.
Предшественники О. — волынка, древнекитайский шэн, европейская флейта Пана. В 3 в. до н. э. в Древней Греции был изобретён «водяной» О. — гидравлос.
Для О. писали И. С. Бах, В. А. Моцарт, Л. Бетховен, Й Гайдн, И Брамс, К. Сен-Санс, Б. Бриттен, А. К. Глазунов, А. Ф. Гедике, Д. Д. Шостакович, А. Э. Капп, А. Я. Калнинь и др. Наиболее интенсивное распространение О. в Европе происходило в 16—18 вв. См. Позитив, Портатив, Регаль.
Лит.: Глебов И., О полифоническом искусстве, об органной культуре и о музыкальной современности, в сборнике: Полифония и орган в современности, Л., 1926; Браудо И., Возрождение органа, в сборнике: Современный инструментализм, Л., 1927 (Новая музыка, сб. 3); Farmer H. G., The organ of the ancients, L., 1931; Klotz H., Das Buch von der Orgel, 6 Aufl., Kassel, 1960.
Орган (периодич. издание)
О'рган (от греч. órganon — орудие, инструмент), периодическое издание (газета, журнал); учреждение, выполняющее определённые задачи в той или иной области общественной жизни (например, законодательный О., судебные О. и др.) См. также Орган (биол.), Органы речи, Чувств органы.
Органеллы
Органе'ллы (новолат., единственное число organella, уменьшительное от греч. órganon — орудие, инструмент, о'рган), части тела одноклеточных организмов — простейших, выполняющие различные функции. Особенно разнообразны и сложны О. инфузорий и жгутиковых. Различают несколько типов О.: скелетные и опорные, выполняющие функцию защиты организма от механических, химических и др. вредных воздействий (например, раковины саркодовых, панцири инфузорий); двигательные и сократимые (например, жгутики, реснички, мионемы); чувствительные, или рецепторные (например, светочувствительные глазки); нападения и защиты (например, палочковидные образования инфузорий, выбрасываемые из тела, — т. н. трихоцисты); пищеварительные, выполняющие функцию захвата, проведения и переваривания пищи (например, пищеварительные вакуоли инфузорий); экскреции и секреции (например, пульсирующие вакуоли инфузорий). Термин «О.» часто употребляют как синоним органоидов.
Организатор
Организа'тор (эмбриологич.), область зародыша хордовых животных, оказывающая индуцирующее влияние на прилежащие к ней др. области.
Термин «О.» (или «первичный О.») введён нем. эмбриологом Х. Шпеманом (Нобелевская премия, 1935), называвшим так материал спинной губы бластопора (будущей хордомезодермы) зародыша земноводных на стадии гаструлы. Этот материал при пересадке в чуждое место (на брюшную сторону зародыша или в бластоцель) способен не только дифференцироваться в органы, возникающие из него в норме, но и индуцировать в прилежащих к нему областях развитие нейральных и др. структур (первичная эмбриональная индукция). В результате действия О. формируется вторичный гармонично построенный зародыш разной степени сложности с правильным взаимным расположением органов.
Различают головной О. (материал прехордальной пластинки и переднего отдела хорды), индуцирующий образование передних отделов мозга, и туловищный О. (остальной материал хорды и сомитов), индуцирующий образование задних отделов мозга и туловищно-хвостовых структур. Впоследствии О., аналогичные О. земноводных, были обнаружены у представителей всех классов хордовых животных (гензеновский узелок у птиц, задний отдел зародышевого диска у костистых рыб и т.д.). О. стали называть и др. зачатки органов зародыша, оказывающие индуцирующее действие на прилежащие к ним области, — вторичные, третичные и т.д. О., в отличие от хордомезодермы, называемой первичным О. Так, зачаток глаза, возникающий в результате первичной эмбриональной индукции, будучи вторичным О., индуцирует в эктодерме образование хрусталика; последний как третичный О. индуцирует образование роговицы.
Термин «О.» употребляют, когда хотят подчеркнуть, что в качестве индукторов используют зачатки органов живых зародышей, а не чуждые индукторы (вещества, выделенные из тканей зародышей или взрослых животных), обладающие сходными индуцирующими свойствами.
Лит.: Саксен Л. и Тойвонен С., Первичная эмбриональная индукция, пер. с англ., М., 1963, с. 21—26; Токин Б. П., Общая эмбриология, М., 1970, с. 262—80; Бодемер Ч., Современная эмбриология, пер. с англ., М., 1971, с. 155—157.
Г. М. Игнатьева.
Организации, механизации и технической помощи строительству институт
Организа'ции, механиза'ции и техни'ческой по'мощи строи'тельству институ'т Центральный научно-исследовательский и проектно-экспериментальный, находится в ведении Госстроя СССР. Создан в 1966 в Москве на базе Государственного института по проектированию организации строительства (Гипрооргстрой). В составе института (1974): научные отделы, лаборатории, проектная часть, центральное экспериментально-конструкторское бюро (Строймехавтоматика), бюро внедрения с филиалами (Казахским, Прибалтийским, Среднеазиатским и Камским); опорные пункты (лаборатории) в Минске, Смоленске, Хабаровске, Ашхабаде, Воронеже. Основной профиль деятельности института: разработка важнейших научно-исследовательских проблем в области организации, технологии и механизации строительного производства, эксплуатации парка строительных машин, лабораторного контроля и техники безопасности в строительстве; подготовка, на основе проведённых исследований, общесоюзных инструктивно-нормативных документов (СНиП, норм продолжигельности строительства и др.). Институт имеет очную и заочную аспирантуру.
Организационно-технических мероприятий план
Организацио'нно-техни'ческих мероприя'тий план, оргтехплан, составная часть техпромфинплана предприятия (производственные объединения), предусматривающая совершенствование технического и организационного уровня производства. Включает в себя перечень мероприятий по механизации и автоматизации производственных процессов, внедрению прогрессивной технологии, улучшению организации труда, совершенствованию организации производства в целях повышения его эффективности. Содержание и структура оргтехплана отражает специфику различных отраслей промышленности. Он составляется применительно к каждому производственному участку, цеху и в целом по предприятию или производственному объединению. В оргтехплан участка или цеха включаются мероприятия, предусматриваемые к внедрению в соответствующих производственных звеньях, в оргтехплан предприятия или объединения — крупные мероприятия, проводимые в масштабах всего предприятия или объединения и требующие значительных материальных и трудовых затрат. В производственных объединениях создаются специальные отделы по проектированию средств механизации и нестандартного оборудования, концентрации однородного производства и углублению его специализации. Некоторые производственные объединения могут создавать собственную производственную базу по изготовлению оборудования, необходимого для реализации запланированных мероприятий.
Конкретные задания каждому звену предприятия намечаются исходя из его потребностей для выполнения плановых заданий, при этом в первую очередь намечаются мероприятия, обеспечивающие ритмичность производства и более полное использование производственных мощностей.
Разработка оргтехплана начинается с экономического анализа исходного уровня производства и осуществляется в соответствии с задачами по совершенствованию производства на планируемый период. По каждому мероприятию, включаемому в план, устанавливаются сроки и ответственные за их проведение лица, определяются источники покрытия расходов (собственные или заёмные), необходимые материальные ресурсы, эффективность от внедрения, сроки окупаемости и т.д.
Оргтехплан тесно увязан с др. разделами техпромфинплана предприятия (объединения). Внедряемые мероприятия оказывают непосредственное влияние на величину нормативов затрат труда, материалов, использования оборудования, а через них и на соответствующие показатели техпромфинплана — трудоёмкость производства, потребность в работниках, в материальных ресурсах, уровень использования производственных мощностей и др.