Большая Советская Энциклопедия (ОК)
Ока (река, приток р. Ангары)
Ока', Аха, река в Бурятской АССР и Иркутской области РСФСР, левый приток р. Ангары, впадает в Братское водохранилище, подпор от которого распространяется более чем на 300
Ока (река, приток р. Волги)
Ока', река в Европейской части СССР, правый приток р. Волги. Длина 1500
Питание преимущественно снеговое: 59% у Орла и 65% у Мурома; дождевое несколько более 20%, подземное менее 20%. Средний расход воды у Орла 18,8
Окаванго
Окава'нго (Okavango), река в Южной Африке; см.
Окадзаки
Окадза'ки, город в Японии, на о. Хонсю, на р. Яхаги, в префектуре Аити. 210,5 тыс. жителей (1970). Центр текстильной промышленности; химические, пищевые предприятия, часовой завод.
Окалина
Ока'лина, продукт окисления поверхности металла при взаимодействии с внешней средой. Обычно О. называют продукт окисления лишь железа и его сплавов. В широком смысле слова О. можно считать образующиеся на поверхности любого металла химического соединения его не только с кислородом, но и с др. окислителями, например серой, азотом и т.д. (см.
Окаменелости
Окамене'лости, остатки и следы жизнедеятельности организмов минувших геологических эпох; тоже, что
Окаменение
Окамене'ние, фоссилизация (от лат. fossilis — ископаемый), превращение остатков животных и растений после их смерти в окаменелости в результате воздействия ряда факторов: температуры и давления, замещения вещества скелета др. минеральными веществами, а также заполнения ими пустот в органических остатках.
Окань Морис
Ока'нь (Ocagne) Морис (25.3.1862, Париж, — 23.10.1938, Гавр), французский математик, член Парижской АН (1922). Известен работами по номографии. В 1884—90 открыл общий метод построения номограмм из выравненных точек, положил начало общей теории номографического построения. Автор работ по начертательной, дифференциальной и проективной геометрии, графостатике, графическим и графомеханическим методам вычисления.
Соч.: Traité de nomographie, théorie des
Оканье
О'канье, диалектное фонетическое явление русского языка (характерная черта северного наречия), которое состоит в различении гласных «а» и «о» после твёрдых согласных в безударных слогах: «дрова'», «голова'», и «трава'», «сажа'л». Полное О. сопровождается противопоставленным произношением «о» и «а» во всех безударных слогах (новгородские, олонецкие, поморские, вологодско-кировские и многие сибирские говоры). Неполное О. (владимиро-поволжская группа говоров) различает «а» и «о» в первом предударном слоге — в остальных безударных слогах имеет место
Окапи
Ока'пи (Okapia johnstoni), парнокопытное млекопитающее семейства жираф; единственный вид рода. О. меньше жирафы; длина тела около 2
Рис. к ст. Окапи.
Окара
Ока'ра, город в Пакистане, в провинции Пенджаб. 133 тыс. жителей (1971). Транспортный узел у канала Нижний Баридоаб, в междуречье Рави и Сатледж. Торговый центр с.-х. района. Хлопчато-бумажные, мукомольные, швейные, солеобрабатывающие предприятия, производство металлических ящиков и др. Техническая школа.
Окарем
Окаре'м, посёлок городского типа в Гасан-Кулийском районе Красноводской области Туркменской ССР. Расположен на крайнем Ю.-З. республики, в 212
Окарина
Окари'на (итал. ocarina, буквально — гусёнок), духовой музыкальный инструмент со свистковым устройством. Род
Окас Эвальд Карлович
О'кас Эвальд Карлович [р. 15(28).11.1915, Таллин], советский живописец и график, народный художник СССР (1963), член-корреспондент АХ СССР (1962). Учился в Высшем государственном художественном училище в Таллине (1938—41). Преподаёт в Художественном институте Эстонской ССР в Таллине (с 1944; профессор с 1954). Для живописи и графики О. характерны точность и острота типизации, драматизм повествования, динамика композиционных и фактурных приёмов. Произведения: «Война в Махтре» (1958, Исторический музей Эстонской ССР, Таллин), «Горящий “Тигр”» (1973, Художественный музей Эстонская ССР, Таллин), серия «Сланцевая промышленность Эстонской ССР» (акватинта, 1959), «В. И. Ленин» (сухая игла, акватинта, 1964 и 1969). Государственная премия Эстонской ССР (1947, 1948, 1950, 1959, 1965). Награжден орденом Ленина, орденом Трудового Красного Знамени и медалями.
Э. К. Окас.
Э. К. Окас. «Две юности». Лист из серии «Путешествие по Италии». Акватинта, сухая игла. 1961.
Окатывание
Ока'тывание, окомкование, процесс получения
Окатыши
Ока'тыши, рудный материал, получаемый из мелкой (пылевидной) руды или тонкоизмельчённых концентратов, в виде весьма прочных комков сферической формы крупностью от 2—3 до 30
Окая
Ока'я, город в Японии, на о. Хонсю, на озере Сува, в префектуре Нагано. 61 тыс. жителей (1970). Крупный центр шёлковой промышленности. Национальный заповедник — парк Ханаока.
Окаяма (город в Японии)
Окая'ма, город в Японии, на Ю.-З. о. Хонсю. Административный центр префектуры Окаяма. Торгово-распределительный и культурный центр Западной Японии (район Тюгоку). 375 тыс. жителей (1973). Текстильная (хлопчато-бумажная, шерстяная, искусственный шёлк), машино-строительная (электромашино-строительная, судостроительная), химическая, бумажная, пищевая, гончарно-керамическая промышленность. Кустарное производство фарфора и циновок татами. Аванпортом для О. служит порт Уно. Университет.
Окаяма (префектура вЯпонии)
Окая'ма, префектура в Японии, на Ю.-З. о. Хонсю. Площадь 7,1 тыс.
На долю промышленных предприятий префектуры О. (1970) приходится 2,2% стоимости промышленной продукции Японии. Добыча пиритов (месторождение Янахара), урановых руд, железной руды, разработки гранита, талька и белой глины. Вдоль побережья — соляные промыслы. Ведущие отрасли обрабатывающей промышленности: транспортное машиностроение, химическая, металлургическая, нефтеперерабатывающая, пищевая промышленность. Развиты ремёсла (изготовление циновок татами, производство керамических и фарфоровых изделий).
Оквикская культура
О'квикская культу'ра, локальный вариант
Океан (Мировой океан)
Океан, Мировой океан (от греч. Ōkeanós — Океан, великая река, обтекающая Землю).
I. Общие сведения
О. — непрерывная водная оболочка Земли, окружающая материки и острова и обладающая общностью солевого состава. Составляет большую часть гидросферы (94%) и занимает около 70,8% земной поверхности. В понятие «О.» часто включают подстилающие массу его вод земную кору и мантию. По физическим и химическим свойствам и качественному химическому составу воды (см.
О. представляет собой огромный аккумулятор солнечного тепла и влаги. Благодаря ему на Земле сглаживаются резкие колебания температуры и увлажняются отдалённые районы суши, что создаёт благоприятные условия для развития жизни. О. — богатейший источник продуктов питания, содержащих белковые вещества. Он служит также источником энергетических, химических и минеральных ресурсов, которые частично уже используются человеком (энергия приливов, некоторые химические элементы, нефть, газ и др.).
С древнейших времён О. и его моря использовались для установления связей между народами. Это создало предпосылки для
По физико-географическим особенностям, находящим своё выражение в гидрологическом режиме, в Мировом океане выделяются отдельные океаны, моря, заливы, бухты и проливы. В основе наиболее распространённого современного подразделения О. лежит представление о морфологических, гидрологических и гидрохимических особенностях его акваторий, в большей или меньшей степени изолированных материками и островами. Границы О. отчётливо выражены лишь береговыми линиями суши, омываемой им; внутренние границы между отдельными океанами, морями и их частями носят до некоторой степени условный характер. Руководствуясь спецификой физико-географических условий, некоторые исследователи выделяют также в качестве отдельного Южный океан с границей по линии субтропической или субантарктической конвергенции (см.
Табл. 1. – Основные морфометрические показатели океанов
Океаны | Поверхность | Объем, млн. | Средняя глубина, | Наибольшая глубина, | |
млн. | % | ||||
Тихий | 179,68 | 50 | 724 | 3984 | 11022 |
Атлантический | 93,361 | 251 | 3371 | 39261 | 8428 |
Индийский | 74,92 | 21 | 292 | 3897 | 7130 |
Северный Ледовитый | 13,102 | 42 | 172 | 12052 | 5449 |
Мировой океан | 361,06 | 100 | 1370 | 3795 | 11022 |
1По другим данным — 91, 14, 338, 3332 соответственно. 2По другим данным — 14, 7, 16,7, 1130 соответственно.
В Северном полушарии вода занимает 61% поверхности земного шара, в Южном — 81%. Севернее 81° с. ш. в Северном Ледовитом океане и приблизительно между 56° и 63° ю. ш. воды О. покрывают земной шар непрерывным слоем. По особенностям распределения воды и суши земной шар делится на океаническое и материковое полушария. Полюс первого расположен в Тихом океане, к Ю.-В. от Новой Зеландии, второго — на С.-3. Франции. В океаническом полушарии воды О. занимают 91% площади, в материковом — 53%.
II. Геологическое строение и рельеф дна
Рельеф дна и строение земной коры. Общее представление о распределении глубин О. даёт
На большей части периферии Тихого океана, в северо-восточной части Индийского океана, а также в районах морей Карибского и Скоша (Скотия) между подводной окраиной материка и ложем океана располагается
Выделенные планетарные морфоструктуры соответствуют крупнейшим структурно-тектоническим категориям земной коры. Подводные окраины материков в тектоническом отношении представляют собой затопленные части материковых платформ и характеризуются относительно спокойным тектоническим режимом с преобладанием медленных отрицательных движений земной коры, с изометрическими очертаниями геофизических полей и слабыми положительными аномалиями силы тяжести. У внешнего края шельфа и материкового склона часто отмечаются линейные положительные магнитные и гравитационные аномалии. Переходная зона — современная геосинклинальная область с резкой дифференциацией и высокими скоростями вертикальных движений земной коры, сложным рисунком геофизических полей, причём глубоководным желобам обычно свойственны резко выраженные отрицательные, а котловинам окраинных морей — значительные положительные аномалии силы тяжести. Срединно-океанические хребты в геотектоническом отношении соответствуют георифтогеналям и являются, как и переходная зона, областями высокой сейсмичности, вулканизма и горообразования. Для срединных хребтов характерно чередование линейно-вытянутых положительных и отрицательных магнитных аномалий. Ложе О., соответствующее в структурно-тектоническом отношении понятию
Донные осадки. До недавнего времени знания о геологическом возрасте, вещественном составе и истории формирования осадочного чехла О. ограничивались данными о самых верхних горизонтах слоя рыхлых осадков («первого» сейсмического слоя). Начиная с 1968 в результате систематического глубоководного бурения, проводимого с корабля «Гломар Челленджер» (см.
В центральных, удалённых от суши (пелагических) частях О. выявлено три широтных пояса максимальных мощностей осадочного чехла (более 2000
Среди донных осадков О. выделяются терригенные, биогенные (известковые, кремнистые), вулканогенные и осадки смешанного происхождения (полигенные), к которым относятся глубоководные красные глины. Терригенные осадки тяготеют к подводным окраинам материков, периферии ложа О. и глубоководным желобам. Среди них распространены отложения мутьевых потоков — турбидиты. Характерна относительная обогащённость органическим веществом, разложение которого создаёт восстановительную обстановку и обусловливает серую окраску осадков. Известковые осадки наиболее распространены в тёплых и умеренных зонах О. (от 50° с. ш. до 50° ю. ш.); в пределах океанического ложа они представлены фораминиферовыми и кокколитово-фора-миниферовыми отложениями, а на мелководьях — ракушечными и коралловыми отложениями. На глубине более 4500—5000
Поступление эндогенного вещества на дно О. не ограничивается районами надводных вулканов. Оно отмечается близ срединных хребтов и крупных разломов. К ним приурочено образование металлоносных, а в некоторых случаях — рудоносных (Красное море) пластов с высокой концентрацией Fe (до 20—40%), Mn, Co, Ni, Pb, Zn, Ag, Se, Hg и др. элементов. Другой тип океанического рудообразования связан с осадочными процессами, ведущими к накоплению железомарганцевых конкреций. Они приурочены к поверхностному слою осадков, но иногда обнаруживаются и в глубоких горизонтах осадочной толщи.
Для океанических осадков, в отличие от морских отложений, характерна малая скорость накопления. Она не превышает 1
Основная масса материала океанических осадков поступает с материков в виде взвесей и в растворённой форме. Количественное распределение осадочного материала и типы осадков связаны с климатической, вертикальной, горизонтальной и циркумконтинентальной зональностью, а также с тектоническим режимом. Климатическая зональность и тектонический режим определяют массу и состав терригенного и биогенного материала; вертикальная зональность — растворение карбонатов с глубиной и погрубение материала на поднятиях; циркумконтинентальная зональность — образование ареалов терригенных осадков близ материков.
Отложения, близкие к океаническим осадкам, предполагаются в составе геосинклинальных толщ древних складчатых систем материков. Их образование вероятно в геологических формациях ранних стадий развития краевых геосинклиналей (например, францисканская формация на Тихоокеанском побережье США), а также на океанических островах (Тимор, Барбадос и др.)
Происхождение и геологическая история. Согласно современным представлениям, воды О. — продукт дифференциации вещества мантии Земли. Имеются различные гипотезы о происхождении впадин О. и направленности их эволюции. По одной из них, впадины О. — более древние образования, чем материки; развитие земной коры и рельефа Земли идёт по пути постепенного сокращения О. и наращивания материков, переработки океанической коры в материковую в пределах геосинклинальных поясов (гипотеза «континентализации»). Согласно противоположной точке зрения, впадины О. — сравнительно молодые образования, возникшие благодаря процессам преобразования материковой коры в океаническую (гипотеза «океанизации»). В 60-х гг. 20 в. приобрела большое число сторонников третья гипотеза — разрастания океанического дна, или гипотеза «тектоники плит». Согласно этой гипотезе, вся земная кора состоит из ограниченного числа подвижных плит, границами которых служат срединные хребты и глубоководные желоба. В рифтовых зонах срединных хребтов происходит подъём глубинного вещества, которое затем растекается в обе стороны и, постепенно остывая и уплотняясь, снова погружается в зонах глубоководных желобов. Предполагается, что этот процесс протекает с середины мезозоя и постепенно ведёт ко всё большему раздвижению противоположных бортов О. Ряд фактов подтверждает эту гипотезу, однако она ещё мало увязывается с огромным материалом, накопленным в ходе изучения геологии суши.
О. в виде современных глубоководных бассейнов существуют, по крайней мере, с юрского периода, т.к. более древние породы на дне О. пока не обнаружены. В течение мела и кайнозоя происходило дальнейшее их углубление и развитие абиссального осадкообразования. Несомненным является недавнее наращивание окраин материков за счёт замыкания окраинных геосинклинальных бассейнов. Огромные мощности осадков в котловинах геосинклинальных морей свидетельствуют о древности О. При образовании крупных форм рельефа дна О. существ. роль играли вертикальные и горизонтальные движения земной коры (см.
III. Геохимия вод
Океаническая вода представляет собой раствор солей со средней концентрацией около 35
Табл. 2. — Среднее содержание химических элементов в морской воде*
Элемент | % | Элемент | % |
H | 10,7 | Y | 3·10–8 |
He | 5·10–10 | Zr | 5·10–9 |
Li | 1,5·10–5 | Nb | 1·10–9 |
Be | 6·10–11 | Mo | 1·10–6 |
B | 4,6·10–4 | Ag | 3·10–3 |
C | 2,8·10–3 | Cd | 1·10–8 |
N | 5·10–5 | In | 1·10–9 |
О | 85,8 | Sn | 3·10–7 |
F | 1,3·10–4 | Sb | 5·10–8 |
Ne | 1·10–8 | I | 6·10–6 |
Na | 1,035 | Cs | 3,7·10–8 |
Mg | 0,1297 | Ba | 2·10–6 |
Al | 1·10–6 | La | 2,9·10–10 |
Si | 3·10–4 | Ce | 1,3·10–10 |
P | 7·10–6 | Pr | 6·10–11 |
S | 0,089 | Nd | 2,3·10–11 |
Cl | 1,93 | Sm | 4,2·10–11 |
K | 0,038 | Eu | 1,1·10–10 |
Ca | 0,04 | Gd | 6·10–11 |
Sc | 4·10–9 | Dy | 7,3·10–11 |
Ti | 1·10–7 | Ho | 2,2·10–11 |
V | 3·10–7 | Er | 6·10–11 |
Cr | 2·10–9 | Fm | 1·10–11 |
Mn | 2·10–7 | Yb | 5·10–11 |
Fe | 1·10–6 | Lu | 1·10–11 |
Co | 5·10–8 | W | 1·10–8 |
Ni | 2·10–7 | Au | 4·10–10 |
Cu | 3·10–7 | Hg | 3·10–9 |
Zn | 1·10–6 | Tl | 1·10–9 |
Ga | 3·10–9 | Pb | 3·10–9 |
Ge | 6·10–9 | Bi | 2·10–8 |
As | 1·10–7 | Ra | 1·10–14 |
Se | 1·10–8 | Ac | 2·10–20 |
Br | 6,6·10–3 | Th | 1·10–9 |
Kr | 3·10–8 | Pa | 5·10–15 |
Rb | 2·10–5 | U | 3·10–7 |
Sr | 8·10–4 |
* Солёность S=35,00 ‰' (
Состав солевой массы О. регулируется растворимостью, сносом осадков с материков, процессами обмена с атмосферой и осадками дна (в основном карбонатными и силикатными равновесиями), а также жизнедеятельностью морских организмов. Одна группа ионов (Na+, Mg2+, Li+, CI–, SO42– и др.) не образует в существенных количествах нерастворимых соединений и накапливается в океанских водах в значительно более высокой степени, чем в речных. Вторая группа ионов сравнительно быстро осаждается в виде труднорастворимых соединений. Так, в тропических морях сильно нагретые поверхностные слои воды оказываются пересыщенными СаСО3, который осаждается на дно как химическим, так и биогенным путём. Также может осаждаться Ва в виде труднорастворимой соли BaSO4. Ионы некоторых металлов — Ti, Mn, Zr и др. в результате гидролиза коагулируют и осаждаются в форме гидроокислов. Целый ряд микроэлементов морской воды — Cu, Pb, Мо, Hg, Zn, U, Ag, редкие земли и др. осаждается путём адсорбции различными природными сорбентами — органическим веществом, гидроокислами железа и марганца, фосфатами кальция, силикатами. Вследствие этого концентрации тяжёлых металлов в воде О. значительно ниже, чем это следует из растворимости их соединений. В целом О. — динамическая система, в которой количество поступающих веществ (речной сток, атмосферная пыль, продукты вулканизма) приблизительно равно количеству убывающих из неё (осаждение, вынос в атмосферу). Стационарное состояние О. определяется отношением массы каждого компонента, находящегося в данный момент в О., к его массе, прошедшей через О. Величина этого отношения зависит от среднего времени пребывания элемента в О. Для большинства элементов (кроме Na и Cl) оно мало по сравнению с длительностью существования О.
В воде О. растворены также различные газы, поступающие из атмосферы и формирующиеся в самой водной толще. Наибольшее значение имеет O2 и CO2, определяющие жизнедеятельность в О. Содержится также ряд инертных (не принимающих участие в химических реакциях) газов — N2, Аг, Kr, Хе; их растворимость находится в обратной зависимости от атомной массы. Содержание O2 достигает максимума (7—8
Фотосинтетическая деятельность фитопланктона определяет содержание газов, растворённых в поверхностных слоях воды (до глубины 100—150
В геохимической истории О. многие исследователи различают три стадии развития: начальную, переходную и современную. С начальной — гипотетической стадией, охватывающей догеологический этап (приблизительно до 3,5 млрд. лет назад), связан вынос из недр Земли основных массы воды и кислых продуктов дегазации (Cl, F, Br, I, S и др.), которые затем нейтрализовались, взаимодействуя с породами ложа О. Переходная стадия, охватывающая, вероятно, около 2 млрд. лет (3,5—1,7 млрд. лет назад), ознаменовалась возникновением и развитием жизни, появлением и постепенным ростом содержания фотосинтетического кислорода в атмосфере, окислением восстановленной серы и др. поливалентных элементов. Современная стадия, начавшаяся, по-видимому, на рубеже раннего и позднего протерозоя (около 1,7 млрд. лет назад) и продолжающаяся до сих пор, характеризуется составом вод О. и газов атмосферы, близким к современному, стационарным режимом с кратковременными и ограниченными колебаниями солёности мор. воды в эпохи соленакопления (кембрий, девон, пермь). Под влиянием процессов, идущих в океанической воде, формируются осадки дна. Океаническая вода проникает в эти осадки на заметную глубину. Захороненная вода океанических осадков дна, её состав подвергаются изменению; см. также ст.
IV. Минеральные и энергетические ресурсы
О. служит источником богатых минеральных ресурсов. Они подразделяются на химические элементы, растворённые в мор. воде; полезные ископаемые, содержащиеся под морским дном, как в континентальных шельфах, так и за их пределами; полезные ископаемые на поверхности дна.
До 70-х гг. 20 в. из морской воды извлекались преимущественно значительные количества поваренной соли (около 8 млн.
Более 90% общей стоимости минерального сырья, получаемого из О., дают нефть и газ. Общая нефтегазоносная площадь в пределах шельфа оценивается в 13 млн.
Шельф богат и поверхностными залежами, представленными многочисленными россыпями на дне, содержащими металлические руды, а также неметаллическими ископаемыми. Важное значение среди них имеют титановые минералы — ильменит и рутил, а также циркон и монацит; наиболее крупные месторождения разрабатываются в Австралии (восточное побережье), где добывается свыше 1 млн.
На обширных площадях дна О. обнаружены богатые залежи железомарганцевых конкреций — своеобразных многокомпонентных руд, содержащих также никель, кобальт, медь; их потенциальные запасы оцениваются в несколько триллионов
Кроме нефти и газа, важное потенциальное значение имеют др. виды энергетических ресурсов. Для получения энергии из О. можно использовать силу волн, разность уровней, обусловленную приливами и отливами, или разницу температур на водной поверхности и на глубине. Мощность энергии приливов оценивается в 1 млрд.