Большая Советская Энциклопедия (ЛО)
Ло Гатто Этторе
Ло Га'тто (Lo Gatto) Этторе (р. 20.5.1890, Неаполь), итальянский литературовед. Профессор русской литературы и языка в университетах Рима и Неаполя, переводчик и пропагандист славянских литератур, в особенности русской. Автор «Истории русской литературы» (т. 1—7, 1927—45), «Истории русской современной литературы» (т. 1—2, 1958), труда «Итальянские мастера в России» (т. 1—3, 1927, 1934, 1943), книга «Миф о Петербурге» (1960), двухтомника «История русского театра» (1952) и работ, посвященных творчеству крупнейших русских писателей. Особенно внимательно Ло Г. изучает творчество А. С. Пушкина. Перевёл на итальянский язык его прозу и стихи (два тома), дав к ним аннотации и примечания. В 1960 опубликована книга «Пушкин. История поэта и его героя».
Ло Гуань-чжун
Ло Гуа'нь-чжу'н (второе имя — Ло Бэнь) (около 1330 — около 1400), китайский писатель. Участвовал в борьбе с монгольскими завоевателями. Автор популярной в Китае героической эпопеи «Троецарствие», где изображена междоусобная борьба правителей трёх царств после падения династии Хань (3 в.). В трактовке исторических лиц и событии Л. Г.-ч. исходил не из официальной истории, а из устного «Сказания о Трёх царствах» (12—13 вв.) и народных драм 13—14 вв. Прославляя героическое прошлое, он вместе с тем осуждал братоубийственную распрю, призывал к объединению страны. К «Троецарствию» близка по замыслу его драма «Союз дракона и тигра».
Соч. в рус. пер.: Троецарствис, т. 1—2, М., 1954.
Ло (департамент во Франции)
Ло (Lot), департамент на Ю.-З. Франции, в бассейне рр. Ло и Дордонь, частично на Центральном Французском массиве, частично на плато Керси. Площадь 5,2 тыс.
Ло Джон
Ло (Law) Джон (21.4.1671, Шотландия, — 21.3.1729, Венеция), шотландский финансист, создатель так называемой системы Ло, которая была основана на выпуске в обращение необеспеченных бумажных денег. Считая, что бумажные деньги сами по себе обладают определённой ценностью, Л. утверждал, что их усиленный выпуск благотворно скажется на деловой активности и увеличении богатства нации. Предложение Л. нашло поддержку в придворных кругах Франции, находившейся накануне финансового краха. В 1716 был создан частный банк (в 1718 преобразован в государственный), бумаги которого гарантировались именем короля, а Л. стал министром финансов Франции. Однако вследствие чрезмерного выпуска бумажных денег, не обеспеченных золотом и серебром, в 1720 государственный банк лопнул, и Л. бежал за границу. «Система Ло» сыграла определённую роль в зарождении учения физиократов (см.
Соч.: Oeuvres completes, publ. par P. Harsin, v. 1—3, P., 1934.
Ло и Гаронна
Ло и Гаро'нна (Lot-et-Garonne), департамент на Ю.-З. Франции, на Гароннской низменности. Площадь 5,4 тыс.
Ло (река во Франции)
Ло (Lot), река на Ю.-З. Франции, правый приток Гаронны. Длина 480
Лоа
Ло'а (Loa), река в северной части Чили. Длина около 400
Лобан
Лоба'н (Mugil cephalus), рыба семейства
Лобанов Андрей Михайлович
Лоба'нов Андрей Михайлович [28.7(10.8).1900, Москва, — 18.2.1959, там же], советский режиссёр, народный артист РСФСР (1947). В 1922 окончил школу 2-й студии МХАТ. В 1924—25 актёр Театра им. В. Ф. Комиссаржевской в Москве. В 30—40-х гг. режиссёр Театра-студии под руководством Р. Н. Симонова, затем художественный руководитель Московского театра для детей; ставил спектакли в театрах Революции, Сатиры. В 1944—58 главный режиссёр Театра им. М. Н. Ермоловой. Первая крупная режиссёрская работа Л. в Театре-студии — «Таланты и поклонники» Островского (1931). Спектакли Л. в Театре им. М. Н. Ермоловой — «Дачники» (1949), «Достигаев и другие» (1952) Горького, «Бешеные деньги» Островского (1945) и в Театре Сатиры — «На всякого мудреца довольно простоты» Островского (1958) — стали принципиальными завоеваниями советского театра. Тяготение к точным жанровым зарисовкам сочеталось в них с подлинно современной трактовкой конфликта, сатирической, иногда гротескной заострённостью в передаче картин дореволюционной России. Большое внимание уделял Л. советской драматургии. Одной из лучших режиссёрских работ Л. была «Таня» Арбузова (1939, Театр Революции). Великой Отечественной войне и послевоенному периоду посвящены спектакли «Старые друзья» Малюгина (1946), «Люди с чистой совестью» по Вершигоре, «Спутники» Пановой и Дара (оба в 1947), «Счастье» Павленко (1948). С 1933 вёл педагогическую работу в ГИТИСе (с 1948 — профессор). Государственная премия СССР (1946). Награжден орденом Трудового Красного Знамени и медалями.
Соч.: Мысли о режиссуре, в сборнике: Режиссёрское искусство сегодня, М., 1962.
Лобанов Павел Павлович
Лоба'нов Павел Павлович [р. 2(15).1.1902, деревня Старо, ныне Дмитревского района Московской области], советский государственный деятель, учёный-экономист в области сельского хозяйства, академик ВАСХНИЛ (1948), президент ВАСХНИЛ (1956—61 и с 1965). Герой Социалистического Труда (1971). Член КПСС с 1927. В 1925 окончил Московскую с.-х. академию им. К. А. Тимирязева. В 1936—37 заведующий кафедрой в Московском институте землеустройства. В 1937 ректор Воронежского с.-х. института. Заместитель наркома (1937—38) и нарком (1938) земледелия РСФСР, нарком зерновых и животноводческих совхозов СССР (1938—46). 1-й заместитель министра сельского хозяйства СССР (1947—53). 1-й заместитель председателя Совета Министров РСФСР и министр сельского хозяйства РСФСР (1953—55). Заместитель председателя Совета Министров СССР (1955—56). Заместитель председателя Госплана СССР (1961).
На 18-м съезде КПСС избран членом Центральной ревизионной комиссии. Делегат 20, 23 и 24-го съездов КПСС. На 20-м съезде КПСС — кандидат в члены ЦК КПСС. В 1956—62 председатель Совета Союза Верховного Совета СССР. Депутат Верховного Совета СССР 4, 5, 7, 8-го созывов и депутат Верховного Совета РСФСР 1—4-го созывов. Почётный академик Академии с.-х. наук ГДР (1968) и Болгарской АН (1967), иностранный член Польской АН (1971). Почётный член Королевского с.-х. общества Великобритании (1968).
Основные труды по системам ведения сельского хозяйства в различных природно-экономических зонах, интенсификации сельского хозяйства нечернозёмной зоны, целинных и залежных земель. Награжден 2 орденами Ленина, орденом Октябрьской Революции, орденом Трудового Красного Знамени и медалями.
П. П. Лобанов.
Лобанова - Ямагата протокол 1896
Лоба'нова — Ямага'та протоко'л 1896 по корейскому вопросу, подписан в Москве 28 мая (9 июня) министром иностранных дел России А. Б.
Лобанов-Ростовский Алексей Борисович
Лоба'нов-Росто'вский Алексей Борисович [18(30).12.1824, Воронежская губерния, — 18(30).8.1896, станция Шепетовка, округ Ровно, похоронен в Москве], князь, русский дипломат. На дипломатической службе с 1844. Был послом в Турции (1859—63, 1878), Великобритании (1879—82), Австро-Венгрии (1882—95), Германии (1895), товарищем министра внутренних дел (1867—1878); министром иностранных дел (1895—1896). Вместе с С. Ю. Витте — инициатор дипломатического выступления России, Германии и Франции, заставивших Японию смягчить условия
Лобань
Лоба'нь, река в Кировской области РСФСР, правый приток р. Кильмезь (бассейн р. Вятка). Длина 169
Лобария
Лоба'рия (Lobaria), род лишайников семейства стиктовых. Имеют вид крупных листовидных, по краям выемчатых пластинок. Растут на коре деревьев, реже на др. субстратах, преимущественно в тёплых странах. Известно около 80 видов; в СССР около 15 видов, встречаются главным образом на Дальнем Востоке. Наиболее распространена так называемая лёгочная Л. (L. pulmonaria) с сетчато-ямчатой верхней стороной, несколько напоминающей лёгкое. Используется в парфюмерной промышленности.
Лобастые быки
Лоба'стые быки' (Bibos), род (подрод) крупных жвачных млекопитающих семейства полорогих. Близки к настоящим
Лобачевский Николай Иванович
Лобаче'вский Николай Иванович [20.11(1.12).1792, Нижний Новгород, ныне г. Горький, — 12 (24).2.1856, Казань], русский математик, создатель неевклидовой геометрии, мыслитель-материалист, деятель университетского образования и народного просвещения. Родился в семье мелкого чиновника. Почти всю жизнь Л. провёл в Казани. Там он учился в гимназии (1802—07) на казённом содержании, затем в Казанском университете (1807—11). Рано обнаружил выдающиеся способности, по окончании университета получил степень магистра (1811) и был оставлен при университете; в 1814 стал адъюнктом, в 1816 — экстраординарным и в 1822 — ординарным профессором. Несмотря на реакционную обстановку, сложившуюся в годы попечительства М. Л. Магницкого, Л. вёл напряжённую научную и педагогическую работу (преподавал математику, физику и астрономию), закупил в столице оборудование для физического кабинета и книги для библиотеки, а затем возглавлял её 10 лет (с 1825); Л. заведовал обсерваторией; избирался деканом физико-математического факультета (1820—22, 1823—25). Но столкновения с попечителем обострились: Л. отстаивал в преподавании научные материалистические взгляды.
В эти годы Л. отыскивал пути строгого построения начал геометрии. Сохранились: студенческие записи его лекций (от 1817), где им делалась попытка доказать постулат параллельности Евклида, но в рукописи учебника «Геометрия» (1823) он уже отказался от этой попытки. В «Обозрениях преподавания чистой математики» на 1822/23 и 1824/25 Л. указал на «до сих пор непобедимую» трудность проблемы параллелизма и на необходимость принимать в геометрии в качестве исходных понятия, непосредственно приобретаемые из природы. Наконец, преодолев тысячелетние традиции, он приходит к созданию новой геометрии — так называемой геометрии Лобачевского. 7 февраля 1826 он представил для напечатания в Записках физико-математического отделения сочинение: «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке). 11 февраля оно было рассмотрено и назначены рецензенты. Сам Л. указывал, что он читал это рассуждение на заседании отделения 12 февраля. Но издание не осуществилось. Рукопись и отзывы не сохранились, однако само сочинение было включено Л. в его труд «О началах геометрии» в журнале «Казанский вестник» (1829—30), явившийся первой в мировой литературе публикацией по неевклидовой геометрии. Исходя из поисков безусловной строгости и ясности в началах геометрии, Л. рассматривает аксиому параллельности Евклида как произвольное ограничение, как требование слишком жёсткое, ограничивающее возможности теории, описывающей свойства пространства. Он заменяет эту аксиому требованием более широким и общим, именно: на плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную (по существу не менее чем одна, если учесть предельный случай).
Разработанная Л. новая геометрия существенно отличается от евклидовой геометрии, но при больших значениях входящей в формулы некоторой постоянной R (радиус кривизны пространства) отклонение становится незначительным (см.
Доклад Л. совпал по времени с увольнением Магницкого. Л. был высоко оценен новым попечителем — М. Н. Мусиным-Пушкиным. Л. избрали ректором (1827) и за 19 лет руководства университетом он добился его подлинного расцвета. Программа деятельности Л. отражена в его замечательной речи «О важнейших предметах воспитания» (1828, опубликована 1832), в которой обрисован идеал гармонического развития личности, подчёркнуто общественное значение воспитания и образования, освещена роль наук и долг учёного перед страной и народом.
В бытность Л. ректором было осуществлено в 1832—40 строительство целого комплекса вспомогательных зданий: библиотека, астрономическая обсерватория, физический кабинет и химическая лаборатория, анатомический театр, клиника и др. Он положил начало «Учёным запискам Казанского университета» (1834) и развил издательскую деятельность. Уровень научно-учебной работы повысился, контингент студентов возрос. университет стал важным центром востоковедения. Немало сил Л. вкладывал и в улучшение постановки преподавания в гимназиях и училищах округа. В моменты стихийных бедствий (эпидемия холеры в 1830, пожар Казани в 1842) особенно ярко проявилась его забота об университете. Но ректорство не отрывало Л. от преподавания: в разные годы он читал лекции по аналитической механике, гидромеханике, интегральному исчислению, дифференциальным уравнениям, математической физике, вариационному исчислению, а в 1838—40 — научно-популярные лекции по физике для населения. Студенты высоко ценили лекции Л.
Однако научные идеи Л. не были поняты современниками. Его труд «О началах геометрии», представленный в 1832 советом университета в Академию наук, получил у М. В.
Л. получил ряд ценных результатов и в др. разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений (
В 1846 Л. оказался фактически отстранённым от университета. Он был назначен помощником нового попечителя (без оплаты) и лишён ректорства. Здоровье его пошатнулось. Но семейное горе — смерть сына, материальные затруднения и развивавшаяся слепота не могли сломить мужества Л. Последнюю работу «Пангеометрию» он создал за год до смерти, диктуя её текст.
Л. умер непризнанным. Большую роль в признании трудов Л. сыграли исследования Э.
Соч.: Полн. собр. соч., т. 1—5, М. — Л., 1946—51; Избр. труды по геометрии, М. — Л., 1956.
Н. И. Лобачевский.
Лобачевского геометрия
Лобаче'вского геоме'трия, геометрическая теория, основанная на тех же основных посылках, что и обычная
Возникновение геометрии Лобачевского. Источником Л. г. послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в
Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 — начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 — начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным. Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Л. г. подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.
Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829—30 напечатал работу «О началах геометрии» с изложением своей теории. В 1832 была опубликована работа венгерского математика Я.
Интерпретации (модели) геометрии Лобачевского. Л. г. изучает свойства «плоскости Лобачевского» (в планиметрии) и «пространства Лобачевского» (в стереометрии). Плоскость Лобачевского — это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем — расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Л. г. состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Л. г. (об интерпретации вообще см.
В 1871 Ф.
Позже А.
Коротко модели Клейна и Пуанкаре можно определить так. В обоих случаях плоскостью Лобачевского может служить внутренность круга (пространством — внутренность шара), и Л. г. есть учение о тех свойствах фигур внутри круга (шара), которые в случае модели Клейна не изменяются при проективных, а в случае модели Пуанкаре — при конформных преобразованиях круга (шара) самого в себя (проективные преобразования есть те, которые переводят прямые в прямые, конформные — те, которые сохраняют углы).
Возможно чисто аналитическое определение модели Л. г. Например, точки плоскости можно определять как пары чисел
Содержание геометрии Лобачевского. Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, т. к. именно здесь начинается отличие Л. г. от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют т. н. абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились др. отделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. Приведём несколько фактов Л. г., отличающих её от геометрии Евклида и установленных самим Лобачевским.
1) В Л. г. не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.
2) Сумма углов всякого треугольника меньше p и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность p — (a + b + g), где a, b, g — углы треугольника, пропорциональна его площади.
3) Через точку О, не лежащую на данной прямой
4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.
5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.
6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.
7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность — предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.
8) Длина окружности не пропорциональна радиусу, а растет быстрее.
9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от p; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2p, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Л. г. переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай Л. г.
Л. г. продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Л. г. является обширной областью исследования, подобно геометрии Евклида.
Приложения геометрии Лобачевского. Сам Лобачевский применил свою геометрию к вычислению определённых интегралов. В теории функций комплексного переменного Л. г. помогла построить теорию
при делении на
Замечательное приложение Л. г. нашла в общей теории относительности (см.
Рис. 3 к ст. Лобачевского геометрия.
Рис. 1 к ст. Лобачевского геометрия.
Рис. 2 к ст. Лобачевского геометрия.