Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (КВ) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Квалиме'трия (от лат. qualis — какой по качеству и ...метрия), научная область, объединяющая методы количественной оценки качества продукции. Основные задачи К.: обоснование номенклатуры показателей качества, разработка методов определения показателей качества продукции и их оптимизации, оптимизация типоразмеров и параметрических рядов изделий, разработка принципов построения обобщённых показателей качества и обоснование условий их использования в задачах стандартизации и управления качеством. К. использует математические методы: линейное, нелинейное и динамическое программирование, теорию оптимального управления, теорию массового обслуживания и т.п.

  Лит.: «Стандарты и качество», 1970 № 11, с. 30—34.

Квалитативное (качественное) стихосложение

Квалитати'вное (ка'чественное) стихосложе'ние (от лат. qualitas — качество), тип стихосложения, в котором слоги соотносятся по ударности и безударности, а не по долготе, как в квантитативном (количественном) стихосложении. К. (к.) с. объединяет силлабическое, силлабо-тоническое и тоническое стихосложение. См. Стихосложение.

Квалификация

Квалифика'ция (от лат. qualis — какой по качеству и facio — делаю), 1) степень и вид профессиональной обученности работника, наличие у него знаний, умения и навыков, необходимых для выполнения им определённой работы. К. работников отражается в их тарификации (присвоении работнику в зависимости от его К. того или иного тарифного разряда). Присвоение тарифного разряда свидетельствует о пригодности работника к выполнению данного круга работ. В СССР К. работников, как правило, устанавливается специальной квалификационной комиссией в соответствии с требованиями тарифно-квалификационного справочника. Показателем К. работника, помимо разряда, может быть также категория или диплом, наличие звания и учёной степени. Занятие некоторых должностей допускается лишь при наличии диплома (должность врача, учителя). В СССР на предприятиях, в учреждениях и организациях создана система подготовки и повышения квалификации рабочих и служащих, где рабочие и служащие обучаются новым профессиям и специальностям и проходят обучение по повышению своей квалификации (см. Баланс трудовых ресурсов, Трудовые ресурсы). 2) Характеристика определённого вида работы, устанавливаемая в зависимости от её сложности, точности и ответственности. В СССР К. работы обычно определяется разрядом, к которому данный вид работы отнесён тарифно-квалификационным справочником. Определение К. работ важно при установлении тарифных ставок и должностных окладов работников. К. инженерно-технических работ и работ, выполняемых служащими и др. лицами, не занятыми непосредственно на производстве, определяется требованиями, предъявляемыми к занимаемой должности. 3) Характеристика предмета, явления, отнесение его к какой-либо категории, группе, например квалификация преступления.

  Л. Ф. Бибик.

Квалификация преступления

Квалифика'ция преступле'ния, в уголовном праве установление и закрепление в соответствующих процессуальных актах точного соответствия признаков совершенного деяния тому или иному составу преступления, предусмотренному уголовным законом. К. п. является основанием для назначения меры наказания и для наступления иных правовых последствий совершенного преступления. Советская правовая наука рассматривает правильную К. п. как важный фактор соблюдения социалистической законности в уголовном судопроизводстве. Неправильная К. п., т. е. применение закона, не соответствующего фактическим обстоятельствам дела, искажает представление о характере совершенных преступлений и влечёт за собой вынесение неверного приговора. Ошибка в К. п. — основание для отмены или изменения приговора.

Квалифицированное большинство

Квалифици'рованное большинство', в отличие от простого большинства в 50% + 1, большинство в 2/3, 3/4 и т.д. голосов. Обычно требуется для принятия наиболее важных решений (например, для внесения изменений в конституционные законы). Конституция СССР устанавливает, что изменение Конституции производится по решению Верховного Совета СССР, принятому большинством не менее 1/3 голосов в каждой из его палат. К. б. требуется также при вынесении вердикта в суде присяжных.

Квалифицированное преступление

Квалифици'рованное преступле'ние, квалифицированный вид преступления, в уголовном праве преступление, имеющее один или несколько предусмотренных в законе признаков (отягчающих обстоятельств), которые указывают на его повышенную общественную опасность по сравнению с неквалифицированным (простым) видом того же преступления. Так, по советскому уголовному праву умышленное убийство из хулиганских побуждений (УК РСФСР, статья 102, пункт «б») — К. п. по сравнению с убийством без отягчающих обстоятельств (УК РСФСР, статья 103). Закон в статьях, устанавливающих наказание за отдельные виды преступлений, признаками К. п. считает повторность, наличие у виновного судимости, крупный размер причинённого ущерба, совершение преступления организованной группой и др. За К. п. устанавливается более строгое наказание.

Квалифицированный труд

Квалифици'рованный труд, труд, требующий специальной предварительной подготовки работника, наличия у него навыков, умения и знаний, необходимых для выполнения определённых видов работ. В отличие от неквалифицированного (простого) труда, К. т. выступает как сложный: один час его эквивалентен нескольким часам простого труда (см. Редукция труда). В соответствии с этим К. т. оплачивается выше, чем неквалифицированный (см. Труд, Заработная плата, Квалификация).

Кванго

Ква'нго, Куангу (Kwango, Cuango), река в Центральной Африке, в Анголе и Республике Заир. Крупнейший левый приток р. Касаи (бассейн р. Конго). Длина около 1200 км. Площадь бассейна 263,5 тыс. км2. Берёт начало на плато Лунда, течёт на С. в широкой и глубокой долине, образуя ряд порогов и водопадов. Главные притоки — Вамба и Квилу (справа). Подъём воды с сентябре — октябре по апрель, в сезон дождей; самые низкие уровни — в августе. Средний годовой расход воды в нижнем течении — 2,7 тыс. м3/сек. Судоходна в низовьях (от устья до порогов Кингуши, 307 км) и частично в среднем течении (между Кингуши и водопадом Франца-Иосифа, около 300 км). Рыболовство.

Кванджу

Кванджу', Кванчжу, город в Южной Корее. Административный центр провинции Чолла-Намдо. 403,7 тыс. жителей (1966). Транспортный узел. Торговый центр с.-х. района (равнина Йонсанган). Текстильная промышленность.

Квандо

Ква'ндо, Куанду (Kwando, Cuando), в нижнем течении — Линьянти, река в Анголе (в среднем течении пограничная между Анголой и Замбией), Намибии и Ботсване, правый приток Замбези. Длина около 800 км. Берёт начало на плато Бие, течёт в порожистом русле по саванновым лесам; в низовьях протекает по болотистой равнине, принимая справа один из рукавов р. Окаванго. Половодье в период дождей (октябрь — ноябрь).

Кванза

Ква'нза, Куанза (Kwanza, Cuanza), река в Анголе. Длина 960 км. Площадь бассейна 147,7 тыс. км2. Берёт начало на плоскогорье Бие, течёт на С., затем на С.-З. и З. в глубоко врезанной долине, образуя многочисленные пороги и водопады; в нижнем течении выходит на приморскую низменность и становится судоходной (на 258 км от устья). Впадает в Атлантический океан к Ю. от г. Луанда. Полноводна в период дождей. В среднем течении К. — ГЭС Камбамбе.

«Квант»

«Квант», ежемесячный физико-математический научно-популярный журнал АН СССР и АПН СССР. Издаётся с 1970 в Москве. Рассчитан на преподавателей средних школ и учащихся старших классов. Тираж около 34 тыс. экз. (1972). Главные редакторы (с 1970) академики И. К. Кикоин и А. Н. Колмогоров.

Квант действия

Квант де'йствия, то же, что Планка постоянная.

Квант света

Квант све'та (нем. Quant, от лат. quantum — сколько), количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить атом или др. квантовая система; элементарная частица, то же, что фотон.

Квантиль

Кванти'ль, одна из числовых характеристик случайных величин, применяемая в математической статистике. Если функция распределения случайной величины Х непрерывна, то квантиль Kp порядка р определяется как такое число, для которого вероятность неравенства Х < Kp равна р. Из определения К. следует, что вероятность неравенства Kp < Х < Kp' равна p' — р. Квантиль K1/2 есть медиана случайной величины X. Квантили K1/4 и K3/4 называются квартилями, a K0,1, K0,2,..., K0,9децилями. Знание К. для подходяще выбранных значений р позволяет составить представление о виде функции распределения.

  Например, для нормального распределения (рис.)

график функции Ф (х) можно вычертить по децилям: K0,1 = 1,28; K0,2 = —0,84; K0,3 = — 0,52; K0,4 = — 0,25; K0,5 = 0; K0,6 = 0,25; K0,7 = 0,52; K0,8 = 0,84; K0,9 = 1,28. Квартили нормального распределения Ф (х) равны K1/4 = — 0,67;


Рис. к ст. Квантиль.

Квантитативное (количественное) стихосложение

Квантитати'вное (коли'чественное) стихосложе'ние (от лат. quantitas — количество), тип стихосложения, основанный на упорядоченном чередовании долгих и кратких слогов; то же, что и метрическое стихосложение.

Квантитативное ударение

Квантитати'вное ударе'ние, выделение ударных элементов слова или фразы при помощи увеличения их относительной длительности. Как правило, ударение складывается из взаимодействия нескольких компонентов. Языки, в которых ударение было бы чисто квантитативным, науке неизвестны; можно утверждать лишь, что в некоторых языках ударение является по преимуществу квантитативным. Например, ударение в русском языке, в котором ударный слог (и особенно гласный в нём) обладает большей относительной длительностью, чем безударный.

Квантование вторичное

Квантова'ние втори'чное, метод, применяемый в квантовой механике и квантовой теории поля для исследования систем, состоящих из многих или из бесконечного числа частиц (или квазичастиц). В этом методе состояние квантовой системы описывается при помощи т. н. чисел заполнения — величин, характеризующих среднее число частиц системы, находящихся в каждом из возможных состояний.

  Метод К. в. особенно важен в квантовой теории поля в тех случаях, когда число частиц в данной физической системе не постоянно, а может меняться при различных происходящих в системе процессах. Поэтому важнейшей областью применения метода К. в. является квантовая теория излучения, квантовая теория элементарных частиц и систем различных квазичастиц. В теории излучения рассматриваются системы, содержащие световые кванты (фотоны), число которых меняется в процессах испускания, поглощения, рассеяния. В теории элементарных частиц необходимость применения метода К. в. связана с возможностью взаимных превращений частиц; таковы, например, процессы превращения электронов и позитронов в фотоны и обратный процесс (см. Аннигиляция и рождение пар). Наиболее эффективен метод К. в. в квантовой электродинамике — квантовой теории электромагнитных процессов, а также в теории твёрдого тела, базирующейся на представлении о квазичастицах. Менее эффективно применение К. в. для описания взаимных превращений частиц, обусловленных неэлектромагнитными взаимодействиями.

  В математическом аппарате К. в. волновая функция системы рассматривается как функция чисел заполнения. При этом основную роль играют т. н. операторы, «рождения» и «уничтожения» частиц. Оператор уничтожения — это оператор, под действием которого волновая функция какого-либо состояния данной физической системы превращается в волновую функцию другого состояния с числом частиц на единицу меньше. Аналогично, оператор рождения увеличивает число частиц в этом состоянии на единицу. Принципиальная сторона метода К. в. не зависит от того, подчиняются ли частицы, из которых состоит система, Бозе — Эйнштейна статистике (например, фотоны) или Ферми — Дирака статистике (например, электроны и позитроны). Конкретный же математический аппарат метода, в том числе основные свойства операторов рождения и уничтожения, в этих случаях существенно различен вследствие того, что в статистике Бозе — Эйнштейна число частиц, которое может находиться в одном и том же состоянии, ничем не ограничено (так что числа заполнения могут принимать произвольные значения), а в статистике Ферми — Дирака в каждом состоянии может находиться не более одной частицы (и числа заполнения могут иметь лишь значения 0 и 1).

  Метод К. в. был впервые развит английским физиком П. Дираком (1927) в его теории излучения и далее разработан сов. физиком В. А. Фоком (1932). Термин «К. в.» появился вследствие того, что этот метод возник позже «обычного», или «первичного», квантования, целью которого было выявить волновые свойства частиц. Необходимость последовательного учёта и корпускулярных свойств полей (поскольку корпускулярно-волновой дуализм присущ всем видам материи) привела к возникновению методов К. в.

  Лит. см. при ст. Квантовая теория поля.

Квантование магнитного потока

Квантова'ние магни'тного пото'ка, макроскопическое квантовое явление, состоящее в том, что магнитный поток через кольцо из сверхпроводника с током может принимать только дискретные значения (см. Сверхпроводимость). Минимальное значение потока (квант потока) Ф0 = ch/2e @ 2.10–7 гс×см2, где с — скорость света, h — Планка постоянная, е — заряд электрона. Магнитный поток в сверхпроводнике может быть равен только целому числу квантов потока. К. м. п. было теоретически предсказано Ф. Лондоном (1950), который получил для кванта потока значение ch/e. Эксперименты (1961) дали для кванта потока вдвое меньшее значение. Это явилось прекрасным подтверждением созданной к тому времени микроскопической теории сверхпроводимости, согласно которой сверхпроводящий ток обусловлен движением пар электронов.

  Лит. см. при ст. Сверхпроводимость.

Квантование пространства-времени

Квантова'ние простра'нства-вре'мени, общее название обобщений теории элементарных частиц (квантовой теории поля), основанных на гипотезе о существовании конечных минимальных расстояний и промежутков времени, Ближайшей целью таких обобщений является построение непротиворечивой теории, в которой все физические величины получались бы конечными.

  Представления о пространстве и времени, которые используются в современной физической теории, наиболее последовательно формулируются в относительности теории А. Эйнштейна и являются макроскопическими, т. е. они опираются на опыт изучения макроскопических объектов, больших расстояний и промежутков времени. При построении теории, описывающей явления микромира, — квантовой механики и квантовой теории поля, — эта классическая геометрическая картина, предполагающая непрерывность пространства и времени, была перенесена на новую область без каких-либо изменений. Экспериментальная проверка выводов квантовой теории пока прямо не указывает на существование границы, за которой перестают быть применимыми классические геометрические представления. Однако в самой теории элементарных частиц имеются трудности, которые наводят на мысль, что, возможно, геометрические представления, выработанные на основе макроскопического опыта, неверны для сверхмалых расстояний и промежутков времени, характерных для микромира, что представления о физическом пространстве и времени нуждаются в пересмотре.

  Эти трудности теории связаны с так называемой проблемой расходимостей: вычисления некоторых физических величин приводят к не имеющим физического смысла бесконечно большим значениям («расходимостям»). Расходимости появляются вследствие того, что в современной теории элементарные частицы рассматриваются как «точки», т. е. как материальные объекты без протяжённости. В простейшем виде это проявляется уже в классической теории электромагнитного поля (классической электродинамике), в которой возникает т. н. кулоновская расходимость — бесконечно большое значение для энергии кулоновского поля точечной заряженной частицы [из-за того, что на очень малых расстояниях r от частицы (г ® 0) поле неограниченно возрастает].

  В квантовой теории поля не только остаётся кулоновская расходимость, но и появляются новые расходимости (например, для электрического заряда), также в конечном счёте связанные с точечностью частиц. (Условие точечности частиц в квантовой теории поля выступает в виде требования т. н. локальности взаимодействий: взаимодействие между полями определяется описывающими поля величинами, взятыми в одной и той же точке пространства и в один и тот же момент времени.) Казалось бы, расходимости легко устранить, если считать частицы не точечными, а протяжёнными, «размазанными» по некоторому малому объему. Но здесь существенные ограничения налагает теория относительности. Согласно этой теории, скорость любого сигнала (т. е. скорость переноса энергии, скорость передачи взаимодействия) не может превышать скорости света с. Предположение о том, что взаимодействие может передаваться со сверхсветовыми скоростями, приводит к противоречию с привычными (подтвержденными всем общечеловеческим опытом) представлениями о временной последовательности событий, связанных причинно-следственными соотношениями: окажется, что следствие может предшествовать причине. Конечность же скорости распространения взаимодействия невозможно совместить с неделимостью частиц: в принципе некоторой малой части протяжённой частицы можно было бы очень быстро сообщить столь мощный импульс, что данная часть улетела бы раньше, чем сигнал об этом дошёл бы до оставшейся части.

  Т. о., требования теории относительности и причинности приводят к необходимости считать частицы точечными, Но представление о точечности частиц тесно связано с тем, какова геометрия, принимаемая в теории, в частности, основывается ли эта геометрия на предположении о принципиальной возможности сколь угодно точного измерения расстояний (длин) и промежутков времени. В обычной теории явно или чаще неявно такая возможность предполагается.

  Во всех вариантах изменения геометрии большая роль принадлежит так называемой фундаментальной длине l, которая вводится в теорию как новая (наряду

 с Планка постоянной h и скоростью света

с) универсальная постоянная. Введение фундаментальной длины l соответствует предположению, что измерение расстояний принципиально возможно лишь с ограниченной точностью порядка l (а времени — с точностью порядка l/c). Поэтому l называют также минимальной длиной. Если считать частицы неточечными, то их размеры выступают в роли некоторого минимального масштаба длины. Т. о., введение фундаментальной (минимальной) длины, в известном смысле, скрывает за собой неточечность частиц, что и даёт надежду на построение свободной от расходимостей теории.

  Одна из первых попыток введения фундаментальной длины была связана с переходом от непрерывных координат х, у, z и времени t к дискретным: х ® n1l, y ® n2l, z ® n3l, t ® n4l/c, где n1, n2, n3, n4 целые числа, которые могут принимать значения от минус бесконечности до плюс бесконечности. Замена непрерывных координат дискретными несколько напоминает правила квантования Бора в первоначальной теории атома (см. Атом) отсюда и термин«К. п.-в.».

  Если рассматривать большие расстояния и промежутки времени, то каждый «элементарный шаг» l или l/c можно считать бесконечно малым. Поэтому геометрия «больших масштабов» выглядит как обычная. Однако «в малом» эффект такого квантования становится существенным. В частности, введение минимальной длины l исключает существование волн с длиной l < l, т. е. как раз тех квантов бесконечно большой частоты n = с/l, а следовательно, и энергий e = hn, которые, как показывает квантовая теория поля, ответственны за появление расходимостей. Здесь наглядно проявляется то, как изменение геометрических представлений влечёт за собой важные физические следствия.

  Введение указанным способом «ячеистого» пространства (с «ячейками» размера l) связано с нарушением изотропии пространства — равноправия всех направлений. Это один из существенных недостатков данной теории.

  Подобно тому, как на смену боровской теории (в которой условия квантования постулировались) пришла квантовая механика (в которой квантование получалось как естественное следствие основных её положений), за первыми попытками К. п.-в. появились более совершенные варианты. Их общей чертой (и здесь выступает аналогия с квантовой механикой, в которой физическим величинам ставятся в соответстие операторы) является рассмотрение координат и времени как операторов, а не как обычных чисел. В квантовой механике формулируется важная общая теорема: если некоторые операторы не коммутируют между собой (т. е. в произведении таких операторов нельзя менять порядок сомножителей), то соответствующие этим операторам физические величины не могут быть одновременно точно определены. Таковы, например, операторы координаты  и импульса  частицы (операторы принято обозначать теми же буквами, что и соответствующие им физические величины, но сверху со «шляпкой»). Некоммутативность этих операторов является математическим отражением того факта, что для координаты и импульса частицы имеет место неопределённостей соотношение:

,

показывающее границы точностей, с которыми могут быть одновременно определены px и х. Частица не может иметь одновременно точно определённые координату и импульс: чем точнее определена координата, тем менее определённым является импульс, и наоборот (с этим связано вероятностное описание состояния частицы в квантовой механике).

  При К. п.-в. некоммутирующими объявляются операторы, сопоставляемые координатам самих точек пространства и моментам времени. Некоммутативность операторов  и ,  и  и т.д. означает, что точное значение, например, координаты х в заданный момент времени t не может быть определено, так же как не может быть задано точное значение нескольких координат одновременно. Это приводит к вероятностному описанию пространства-времени. Вид операторов подбирается так, чтобы средние значения координат могли принимать лишь целочисленные значения, кратные фундаментальной длине l. Масштаб погрешностей (или неопределённость) координат определяется фундаментальной длиной.

  В некоторых вариантах теории постулируется непереставимость операторов координат и операторов, описывающих поле. Это равносильно предположению о невозможности одновременного точного задания описывающих поле величин и точки пространства, к которой эти величины относятся (такого рода варианты часто называют теориями нелокализуемых состояний).

  В большинстве известных попыток К. п.-в. сначала вводятся постулаты, касающиеся «микроструктуры» пространства-времени, а затем получившееся пространство «населяется» частицами, законы движения которых приводятся в соответствие с новой геометрией. На этом пути получен ряд интересных результатов: устраняются некоторые расходимости (однако иногда на их месте появляются новые), в некоторых случаях получается даже спектр масс элементарных частиц, т. е. предсказываются возможные массы частиц. Однако радикальных успехов получить пока не удалось, хотя методическая ценность проделанной работы несомненна. Представляется правдоподобным, что возникающие здесь трудности свидетельствуют о недостатках самого подхода к проблеме, при котором построение новой теории начинается с постулатов, касающихся «пустого» пространства (т. е. чисто геометрических постулатов, независимых от материи, это пространство «населяющей»).

  Пересмотр геометрических представлений необходим — эта идея стала почти общепризнанной. Однако такой пересмотр должен, по-видимому, в гораздо большей мере учитывать неразрывность представлений о пространстве, времени и материи.

  Лит.: Марков М. А., Гипероны и К-мезоны, М., 1958, §§33 и 34; Блохинцев Д. И., Пространство и время в микромире. М., 1970.

  В. И. Григорьев.

Квантование пространственное

Квантова'ние простра'нственное в квантовой механике, дискретность возможных пространственных ориентаций момента количества движения атома (или др. частицы или системы частиц) относительно любой произвольно выбранной оси (оси z). К. п. проявляется в том, что проекция Мг  момента М на эту ось может принимать только дискретные значения, равные целому (0, 1, 2,...) или полуцелому (1/2, 3/2,5/2,...) числу m, помноженному на Планка постоянную , . Две другие проекции момента Mx и Му остаются при этом неопределёнными, т. к., согласно основному положению квантовой механики, одновременно точные значения могут иметь лишь величина момента и одна из его проекций. Для орбитального момента количества движения m (ml) может принимать значения 0, ± 1, ± 2,... ± l, где l = 0, 1, 2... определяет квадрат момента Ml (т. е. его абсолютную величину): . Для полного момента количества движения М (орбитального плюс спинового) m (ml) принимает значения с интервалом в 1 от — j до + j, где j определяет величину полного момента:  и может быть целым или полуцелым числом.

  Если атом помещается во внешнее магнитное поле H, то появляется выделенное направление в пространстве — направление поля (которое и принимают за ось z). В этом случае К. п. приводит к квантованию проекции mн магнитного момента атома m на направление поля, т.к. магнитный момент пропорционален механическому моменту количества движения (отсюда название m — «магнитное квантовое число»). Это приводит к расщеплению уровней энергии атома в магнитном поле вследствие того, что к энергии атома добавляется энергия его магнитного взаимодействия с полем, равная — mHH (см. Зеемана эффект).

  В. И. Григорьев.

Квантование сигнала

Квантова'ние сигна'ла, дискретизация непрерывных сигналов, преобразование электрического сигнала, непрерывного во времени и по уровню, в последовательность дискретных (отдельных) либо дискретно-непрерывных сигналов, в совокупности отображающих исходный сигнал с заранее установленной ошибкой. К. с. осуществляется при передаче данных в телемеханике, при аналого-цифровом преобразовании в вычислительной технике, в импульсных системах автоматики и др.

  При передаче непрерывных сигналов обычно достаточно передавать не сам сигнал, а лишь последовательность его мгновенных значений, выделенных из исходного сигнала по определённому закону. К. с. производится по времени, уровню или по обоим параметрам одновременно. При К. с. по времени сигнал через равные промежутки времени М прерывается (импульсный сигнал) либо изменяется скачком (ступенчатый сигнал, рис.). Например, непрерывный сигнал, проходя через контакты периодически включаемого электрического реле, преобразуется в последовательность импульсных сигналов. При бесконечно малых интервалах включения (отключения), т. е. при бесконечно большой частоте переключений контактов, получается точное представление непрерывного сигнала. При К. с. по уровню соответствующие мгновенные значения непрерывного сигнала заменяются ближайшими дискретными уровнями, которые образуют дискретную шкалу квантования. Любое значение сигнала, находящееся между уровнями, округляется до значения ближайшего уровня.

  При бесконечно большом числе уровней квантованный сигнал превращается в исходный непрерывный сигнал.

  Лит.: Харкевич А. А., Борьба с помехами, 2 изд., М., 1965; Маркюс Ж., Дискретизация и квантование, пер. с франц., М., 1969.

  М. М. Гельман.


Квантование сигнала: а — по времени; б — по уровню; x0(t) — исходный сигнал; x(t) — квантованный сигнал; Dt — интервал квантования; Dх — уровень квантования.

Квантовая жидкость

Ква'нтовая жи'дкость, жидкость, свойства которой определяются квантовыми эффектами. Примером К. ж. является жидкий гелий при температуре, близкой к абсолютному нулю. Квантовые эффекты начинают проявляться в жидкости при достаточно низких температурах, когда длина волны де Бройля для частиц жидкости, вычисленная по энергии их теплового движения, становится сравнимой с расстоянием между ними. Для жидкого гелия это условие выполняется при температуре 3—2 К.

  Согласно представлениям классической механики, с понижением температуры кинетическая энергия частиц любого тела должна уменьшаться. В системе взаимодействующих частиц при достаточно низкой температуре последние будут совершать малые колебания около положений, соответствующих минимуму потенциальной энергии всего тела. При абсолютном нуле температуры колебания должны прекратиться, а частицы занять строго определённые положения, т. е. любое тело должно превратиться в кристалл. Поэтому самый факт существования жидкостей вблизи абсолютного нуля температуры связан с квантовыми эффектами. В квантовой механике действует принцип: чем точнее фиксировано положение частицы, тем больше оказывается разброс значений её скорости (см. Неопределённостей соотношение). Следовательно, даже при абсолютном нуле температуры частицы не могут занимать строго определённых положений, а их кинетическая энергия не обращается в нуль, остаются так называемые нулевые колебания. Амплитуда этих колебаний тем больше, чем слабее силы взаимодействия между частицами и меньше их масса. Если амплитуда нулевых колебаний сравнима со средним расстоянием между частицами тела, то такое тело может остаться жидким вплоть до абсолютного нуля температуры.

  Из всех веществ при атмосферном давлении только два изотопа гелия (4He и 3He) имеют достаточно малую массу и настолько слабое взаимодействие между атомами, что остаются жидкими вблизи абсолютного нуля и позволяют тем самым изучить специфику К. ж. Свойствами К. ж. обладают также электроны в металлах.

  К. ж. делятся на бозе-жидкости и ферми-жидкости, согласно различию в свойствах частиц этих жидкостей и в соответствии с применяемыми для их описания статистиками Бозе — Эйнштейна и Ферми — Дирака (см. Статистическая физика). Бозе-жидкость известна только одна — жидкий 4He, атомы которого обладают равным нулю спином (внутренним моментом количества движения). Атомы более редкого изотопа 3He и электроны в металле имеют полуцелый спин (1/2), они образуют ферми-жидкости.

  Жидкий 4He был первой разносторонне исследованной К. ж. Теоретические представления, развитые для объяснения основных эффектов в жидком гелии, легли в основу общей теории К. ж. Гелий 4He при 2,171 К и давлении насыщенного пара испытывает фазовый переход II рода в новое состояние Не II со специфическими квантовыми свойствами. Само наличие точки перехода связывается с появлением так называемого бозе-конденсата (см. Бозе — Эйнштейна конденсация), т. е. конечной доли атомов в состоянии с импульсом, строго равным нулю. Это новое состояние характеризуется сверхтекучестью, т. е. протеканием Не II без всякого трения через узкие капилляры и щели. Сверхтекучесть была открыта П. Л. Капицей (1938) и объяснена Л. Д. Ландау (1941).

  Согласно квантовой механике, любая система взаимодействующих частиц может находиться только в определённых квантовых состояниях, характерных для всей системы в целом. При этом энергия всей системы может меняться только определёнными порциями — квантами. Подобно атому, в котором энергия меняется путём испускания или поглощения светового кванта, в К. ж. изменение энергии происходит путём испускания или поглощения элементарных возбуждений, характеризующихся определённым импульсом р, энергией e(р), зависящей от импульса, и спином. Эти элементарные возбуждения относятся ко всей жидкости в целом, а не к отдельным частицам и называется в силу их свойств (наличия импульса, спина и т.д.) квазичастицами. Примером квазичастиц являются звуковые возбуждения в Не II — фононы, с энергией , где  — Планка постоянная, деленная на 2p, с — скорость звука. Пока число квазичастиц мало', что соответствует низким температурам, их взаимодействие незначительно и можно считать, что они образуют идеальный газ квазичастиц. Рассмотрение свойств К. ж. на основе этих представлении оказывается, в известном смысле, более простым, чем свойств обычных жидкостей при высоких температурах, когда число возбуждений велико и их свойства не аналогичны свойствам идеального газа.

  Если К. ж. течёт с некоторой скоростью u через узкую трубку или щель, то её торможение за счёт трения состоит в образовании квазичастиц с импульсом, направленным противоположно скорости течения. В результате торможения энергия К. ж. должна убывать, но не плавно, а определёнными порциями. Для образования квазичастиц с требуемой энергией скорость потока должна быть не меньше, чем uc = min [e(p)/p]; эту скорость называют критической. К. ж., у которых uc &sup1; 0, будут сверхтекучими, т.к. при скоростях, меньших uc, новые квазичастицы не образуются, и, следовательно, жидкость не тормозится. Предсказанный теорией Ландау и экспериментально подтверждённый энергетический спектр e(р) квазичастиц в Не II удовлетворяет этому требованию.

  Невозможность образования при течении с u < uc новых квазичастиц в Не II приводит к своеобразной двухжидкостной гидродинамике. Совокупность имеющихся в Не II квазичастиц рассеивается и тормозится стенками сосуда, она составляет как бы нормальную вязкую часть жидкости, в то время как остальная жидкость является сверхтекучей. Для сверхтекучей жидкости характерно появление в некоторых условиях (например, при вращении сосуда) вихрей с квантованной циркуляцией скорости сверхтекучей компоненты. В Не II возможно распространение двух типов звука, из которых 1-й звук соответствует обычным адиабатическим колебаниям плотности, в то время как 2-й звук соответствует колебаниям плотности квазичастиц и, следовательно, температуры (см. Второй звук)

  Наличие газа квазичастиц одинаково характерно как для бозе-, так и для ферми-жидкости. В ферми-жидкости часть квазичастиц имеет полуцелый спин и подчиняется статистике Ферми — Дирака, это так назывемые одночастичные возбуждения. Наряду с ними в ферми-жидкости существуют квазичастицы с целочисленным спином, подчиняющиеся статистике Бозе — Эйнштейна, из них наиболее интересен «нуль-звук», предсказанный теоретически и открытый в жидком 3He (см. Нулевой звук). Ферми-жидкости делятся на нормальные и сверхтекучие в зависимости от свойств спектра квазичастиц.

  К нормальным ферми-жидкостям относятся жидкий 3He и электроны в несверхпроводящих металлах, в которых энергия одночастичных возбуждений может быть сколь угодно малой при конечном значении импульса, что приводит к uc = 0. Теория нормальных ферми-жидкостей была развита Л. Д. Ландау (1956—58).

  Единственной, но очень важной сверхтекучей ферми-жидкостью являются электроны в сверхпроводящих металлах (см. Сверхпроводимость). Теория сверхтекучей ферми-жидкости была развита Дж. Бардином, Л. Купером и Дж. Шриффером (1957) и Н. Н. Боголюбовым (1957). Между электронами в сверхпроводниках, согласно этой теории, преобладает притяжение, что приводит к образованию из электронов с противоположными, но равными по абсолютной величине импульсами связанных пар с суммарным моментом, равным нулю (см. Купера эффект). Для возникновения любого одночастичного возбуждения — разрыва связанной пары — необходимо затратить конечную энергию. Это приводит, в отличие от нормальных ферми-жидкостей, к uc &sup1; 0, т. е. к сверхтекучести электронной жидкости (сверхпроводимости металла). Существует глубокая аналогия между сверхпроводимостью и сверхтекучестью. Как и в 4He, в сверхпроводящих металлах имеется фазовый переход II рода, связанный с появлением бозе-конденсата пар электронов. При определённых условиях в магнитном поле в так называемых сверхпроводниках II рода появляются вихри с квантованным магнитным потоком, являющиеся аналогом вихрей в Не II.

  Кроме перечисленных выше К. ж., к ним относятся смеси 3He и 4He, которые при постепенном изменении соотношения компонентов образуют непрерывный переход от ферми- к бозе-жидкости. Согласно теоретическим представлениям, при чрезвычайно высоких давлениях и достаточно низких температурах все вещества должны переходить в состояние К. ж., что возможно, например, в некоторых звёздах.

  Лит.: Ландау Л. Д. и Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964; Абрикосов А. А., Халатников И. М., Теория ферми-жидкости, «Успехи физических наук», 1958, т. 66, в. 2, с. 177; Физика низких температур, пер. с англ., М., 1959; Пайнс Д., Нозьер Ф., Теория квантовых жидкостей, пер. с англ., М., 1967.

  С. В. Иорданский.

Квантовая механика

Ква'нтовая меха'ника волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

  Законы К. м. составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.



Поделиться книгой:

На главную
Назад