Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (КИ) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Большая Советская Энциклопедия (КИ)

Ки Хаджар Деванторо

Ки Хаджа'р Деванто'ро (Ki Hadjar Dewantara), псевдоним деятеля индонезийского национального движения Суварди Сурьянинграта (1889—1959).

Киаксар

Киакса'р (греч. Kyaxáres, Иран. Увахштра), царь Мидии в 625/624—585/584 до н. э. При нём Мидия превратилась в крупную державу Передней Азии, был положен конец гегемонии скифов на С. Передней Азии, в союзе с Вавилонией в 616—605 разгромлена Ассирия, присоединены территории Маны, Урарту, между 590—585 — восточная часть Малой Азии.

Кианг

Киа'нг (Equus hemionus kiang), непарнокопытное млекопитающее семейства лошадей. Географическая форма (подвид) кулана . Крупное стройное животное; высота в холке около 140 см. Уши длиннее, чем у лошадей, но короче, чем у ослов. Грива короткая, стоячая; хвост с кистью длинных волос на конце. Каштаны (роговые мозоли) — только на передних ногах. Спина и бока красновато-коричневые; нижняя часть светлая, беловатая. К. населяет пустынные нагорья Центральной Азии (Кашмир, Ладакх, Тибет). Живёт небольшими табунами. Питается травой. Самки рождают по 1 жеребёнку. Очень осторожное животное. Отличается быстрым бегом, неутомимостью. Местное население охотится за К. ради мяса и кожи. К. приручается с трудом.


Илл. к ст. Кианг.

Кианит

Киани'т (от греч. kyanós — тёмно-синий, лазоревый), дистен, минерал, силикат, химический состав Al2 [SiO4 ] O. Содержит до 63,1% Al2 O3 , иногда примеси окислов железа или хрома до 2%. Кристаллизуется в триклинной системе, образуя вытянутые столбчатые или пластинчатые кристаллы и их агрегаты. Цвет от зеленовато-голубого до тёмно-сине-зелёного и жёлтого, иногда бесцветен. Характерна резкая анизотропия твёрдости: параллельно удлинению кристалла она равна 4,5, а в поперечном направлении до 7,5; плотность 3560—3680 кг/м 3 . К. образуется при глубинном метаморфизме богатых глиноземом осадочных пород, встречается также в кварцевых жилах, контактных зонах пегматитов. Применяется как ценное высокоглинозёмистое сырье для огнеупорных и кислотоупорных изделий, изоляторов свечей для двигателей внутреннего сгорания и др.

Кианто Илмари

Ки'анто (Kianto) Илмари (7.5.1874, Пулккила, — 27.4.1970, Хельсинки), финский писатель. Родился в семье пастора. Окончил Хельсинкский университет. Магистр философии (1900). Стипендиат Московского университета (1901—03). Автор сочинений автобиографического характера: «На ложном поприще» (1896) — об армейской службе автора, «От берегов Кианты — через Каспий» (1903), «Из руки молодого человека» (1904), «Сын пастора» (1928), «Московский магистр» (1946) — о его юности. В социально-критических романах К. «Красная черта» (1909) и «Иосэппи из Рюсюранта» (1924) показана тяжёлая жизнь трудящихся Финляндии в начале 20 в.

  Соч.: Omat koirat purivat, [Hels.], 1948; Jki — Kianto muistelee, [Hels.], 1956; Vali-tut teokset, Hels., 1956; Mies on luotu liikkuvaksi, [Hels.], 1957.

  Лит.: Laurila V., Ilmari Kianto, Hels., 1944; Kauppinen E., Ilmari Kianto. Johdanto Ilmari Kiannon, Hels., 1970: Laitinen K., Suomen kirjallisuus 1917-1967, Hels., 1970.

Киачели Лео

Киаче'ли Лео (псевдоним; настоящие имя и фамилия Леон Михайлович Шенгелая) [7(19).2.1884, с. Обуджи, ныне Цаленджихского района, — 19.12.1963, Тбилиси], грузинский советский писатель. Родился в дворянской семье. Учился в Харьковском университете на юридическом факультете (1904—05). Был участником Революции 1905—07 в Кутаисской губернии. В 1907 бежал из кутаисской тюрьмы, нелегально жил и учился в Москве. В 1912 уехал в Швейцарию, учился в Женевском университете. После Февральской революции 1917 вернулся в Грузию. Печататься начал в 1909. Роман «Тариэль Голуа» (1917) о событиях Революции 1905—07 — одно из лучших в грузинской литературе произведений на историко-революционную тему. Роман К. «Кровь» (1927) рисует путь революционного крестьянства к большевикам. Роман «Гвади Бигва» (1938; Государственная премия СССР, 1941) с большой художественной силой изображает жизнь грузинской колхозной деревни. Теме Великой Отечественной войны 1941—45 посвящен роман «Человек гор» (1948). К. принадлежат также новеллы «Княжна Майя» (1927), «Алмасгир Кибулан» (1928), «Хаки Адзба» (1933) и др. Сочинения К. переведены на многие языки народов СССР и иностранные яз. Награжден орденом Ленина, 2 др. орденами, а также медалями.

  Соч.: Избр. произв., Тб., 1955; Избранное, М., 1957.

  Лит.: Ломидзе Г., Художник и время. (Л. Киачели и его герои), «Вопросы литературы», 1958. № 4.


Л. Киачели.

Кибальников Александр Павлович

Киба'льников Александр Павлович [р. 9(22).8.1912, дер. Орехово, ныне Волгоградской обл.], советский скульптор, народный художник СССР (1963), действительный член АХ СССР (1954). Член КПСС с 1963. Председатель правления Московского отделения Союза художников РСФСР (1963—66). Монументалист, портретист. Работы К. отличаются выразительностью психологических характеристик. Произведения: портреты Н. Г. Чернышевского (бронза, 1948; Государственная премия СССР, 1949), И. В. Сталина (гипс, 1950; Государственная премия СССР, 1951), В. В. Маяковского (бронза, 1954), П. М. Третьякова (мрамор, 1962) — все в Третьяковской галерее; памятники — Н. Г. Чернышевскому в Саратове (бронза, гранит, открыт в 1953), В. В. Маяковскому в Москве (бронза, гранит, открыт в 1958; Ленинская премия, 1959); мемориальный комплекс «Брестская крепость-герой» в Бресте (совместно со скульпторами А. О. Бембелем и др., архитектор В. А. Королём и др.; бетон, камень, металл; открыт в 1971). Награжден орденом Трудового Красного Знамени и медалями.

  Лит.: Тупицын И., Кибальников, М., 1958.


А. П. Кибальников. Памятник В. В. Маяковскому в Москве. Бронза, гранит. Открыт в 1958.


А. П. Кибальников.

Кибальчич Николай Иванович

Киба'льчич Николай Иванович [19(31).10.1853, г. Корон, ныне Черниговской обл., — 3(15).4.1881, Петербург], русский революционер, народоволец, изобретатель. Сын священника. С 1871 учился в Петербургском институте инженеров путей сообщения, с 1873 — в Медико-хирургической академии. С октября 1875 до июня 1878 находился в тюрьме по обвинению в революционной пропаганде. После освобождения в мае—июне 1879 входил в группу «Свобода или смерть», образовавшуюся внутри «Земли и воли» , а затем стал (август 1879) агентом исполнителем комитета «Народной воли» . К. принадлежит одна из важнейших теоретических статей в народовольческой публицистике — «Политическая революция и экономический вопрос» («Народная воля», 5 февраля 1881). К. заведовал лабораторией взрывчатых веществ исполнительного комитета «Народной воли». Являясь «главным техником» организации, участвовал в подготовке покушений на царя Александра II. 17 марта 1881 арестован. По делу 1 марта 1881 приговорён к смертной казни. Повешен вместе с А. И. Желябовым , С. Л. Перовской и др. первомартовцами. Находясь в тюрьме, за несколько дней до казни К. разработал оригинальный проект реактивного летательного аппарата, предназначенного для полёта человека (впервые опубликован в 1918, «Былое», № 4—5). В проекте К. рассмотрел устройство порохового двигателя, управление полётом путём изменения угла наклона двигателя, программный режим горения, обеспечение устойчивости аппарата и др. Именем К. назван кратер на обратной стороне Луны.

  Лит.: Черняк А. Я., Кибальчич — революционер и ученый, М., 1960.


Н. И. Кибальчич.

Кибартай

Киба'ртай, город в Вилкавишкском районе Литовской ССР. Расположен у границы с Калининградской областью. Железнодорожная станция на линии Каунас — Калининград, в 89 км к Ю.-З. от Каунаса. Заводы: торгового оборудования и железобетонных конструкций. Город — с 1856.

Кибдо

Кибдо' (Quibdó), город на З. Колумбии, на р. Атрато. Административный центр департамента Чоко. 50 тыс. жителей (1971). Шоссе соединён с Боготой. Центр горнодобывающего района (золото, платина и др.). Лесные промыслы (сбор каучука, орехов тагуа). Винокурение, лесопиление. Основан в 1654.

Кибела

Кибе'ла, фригийская богиня, олицетворение производительных сил природы, почитавшаяся также под именем «Великой матери», или «Матери богов». Культ К., наряду с культами Митры и Исиды , широко распространился в Малой Азии, Греции, Италии, потом по всей Римской империи (с 204 до н. э. культ К. как государственный был установлен в Риме). В честь К. жрецами справлялись мистерии с обрядами, в которых важную роль играли самоистязания, омовение кровью жертв и самооскопление. В Римской республике оргиастический характер малоазийского культа претерпел значительные ограничения.


Кибела. Изображение римского времени. Мрамор. Национальный музей. Неаполь.

Кибель Илья Афанасьевич

Ки'бель Илья Афанасьевич [6(19).10.1904, Саратов, — 5.9.1970, Москва], советский математик, гидромеханик и метеоролог, член-корреспондент АН СССР (1943). Окончил Саратовский университет (1925). В 1925—43 сотрудник Главной геофизической обсерватории; в 1943—58 работал в Центральном институте прогнозов (с 1949 профессор); в 1958—61 в институте прикладной геофизики; с 1961 в Вычислительном метеорологическом центре СССР (с 1965 Гидрометеорологический центр СССР). Основные труды в области гидродинамических краткосрочных прогнозов погоды, газовой динамики и теоретической мезометеорологии (локального прогноза погоды). В 1940 составил замкнутую упрощённую систему уравнений динамической метеорологии и первым предложил практический метод гидродинамического прогноза полей давления и температуры на срок порядка суток. Предложил метод использования полных уравнений гидротермодинамики в прогнозе погоды (1955—58). Основал школу гидродинамических краткосрочных прогнозов погоды. Награжден орденом Ленина, 2 другими орденами, а также медалями. Государственная премия СССР (1941).

  Соч.: Теоретическая гидромеханика, 6 изд., т. 1 — 2, М., 1963 (совм. с Н. Е. Кочиным и Н. В. Розе); Введение в гидродинамические методы краткосрочного прогноза погоды, М., 1957.

  Лит.: Илья Афанасьевич Кибель. [Некролог], «Извещение АН СССР. Сер. физика атмосферы и океана», 1970, т. 6, № 11.

Кибернетика

Киберне'тика (от греч. kybernetike — искусство управления, от kybernáo — правлю рулём, управляю), наука об управлении, связи и переработке информации .

  Предмет кибернетики. Основным объектом исследования в К. являются так называемые кибернетические системы. В общей (или теоретической) К. такие системы рассматриваются абстрактно, безотносительно к их реальной физической природе. Высокий уровень абстракции позволяет К. находить общие методы подхода к изучению систем качественно различной природы, например технических, биологических и даже социальных.

  Абстрактная кибернетическая система представляет собой множество взаимосвязанных объектов, называемых элементами системы, способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией. Примерами кибернетических систем могут служить разного рода автоматические регуляторы в технике (например, автопилот или регулятор, обеспечивающий поддержание постоянной температуры в помещении), электронные вычислительные машины (ЭВМ), человеческий мозг, биологические популяции, человеческое общество.

  Элементы абстрактной кибернетической системы представляют собой объекты любой природы, состояние которых может быть полностью охарактеризовано значениями некоторого множества параметров. Для подавляющего большинства конкретных приложений К. оказывается достаточным рассматривать параметры двух родов. Параметры 1-го рода, называемые непрерывными, способны принимать любые вещественные значения на том или ином интервале, например на интервале от — 1 до 2 или от —¥ до +¥. Параметры 2-го рода, называемые дискретными, принимают конечные множества значений, например значение, равное любой десятичной цифре, значения «да» или «нет» и т.п.

  С помощью последовательностей дискретных параметров можно представить любое целое или рациональное число. Вместе с тем дискретные параметры могут служить и для оперирования величинами качественной природы, которые обычно не выражаются числами. Для этой цели достаточно перечислить и как-то обозначить (например, по пятибалльной системе) все различимые состояния соответствующей величины. Таким образом могут быть охарактеризованы и введены в рассмотрение такие факторы, как темперамент, настроение, отношение одного человека к другому и т.п. Тем самым область приложений кибернетических систем и К. в целом расширяется далеко за пределы строго «математизированных» областей знаний.

  Состояние элемента кибернетической системы может меняться как самопроизвольно, так и под воздействием тех или иных входных сигналов, получаемых им извне (из-за пределов рассматриваемой системы), либо от других элементов системы. В свою очередь каждый элемент системы может формировать выходные сигналы, зависящие в общем случае от состояния элемента и воспринимаемых им в рассматриваемый момент времени входных сигналов. Эти сигналы либо передаются на др. элементы системы (служа для них входными сигналами), либо входят в качестве составной части в передаваемые за пределы системы выходные сигналы всей системы в целом.

  Организация связей между элементами кибернетической системы носит название структуры этой системы. Различают системы с постоянной и переменной структурой. Изменения структуры задаются в общем случае как функция от состояний всех составляющих систему элементов и от входных сигналов всей системы в целом.

  Таким образом, описание знаков функционирования системы задается тремя семействами функций: функций, определяющих изменения состояний всех элементов системы, функций, задающих их выходные сигналы, и, наконец, функций, вызывающих изменения в структуре системы. Система называется детерминированной, если все эти функции являются обычными (однозначными) функциями. Если же все эти функции, или хотя бы часть их, представляют собой случайные функции, то система носит название вероятностной, или стохастической. Полное описание кибернетической системы получается, если к указанному описанию знаков функционирования системы добавляется описание её начального состояния, т. е. начальной структуры системы и начальных состояний всех её элементов.

  Классификация кибернетических систем. Кибернетические системы различаются по характеру циркулирующих в них сигналов. Если все эти сигналы, равно как и состояние всех элементов системы, задаются непрерывными параметрами, система называется непрерывной. В случае дискретности всех этих величин говорят о дискретной системе. В смешанных, или гибридных, системах приходится иметь дело с обоими типами величин.

  Разделение кибернетических систем на непрерывные и дискретные является до известной степени условным. Оно определяется глубиной проникновения в предмет, требуемой точностью его изучения, а иногда и удобством использования для целей изучения системы того или иного математического аппарата. Так, например, хорошо известно, что свет имеет дискретную, квантовую природу. Тем не менее, такие параметры, как величина светового потока, уровень освещенности и др. принято обычно характеризовать непрерывными величинами поскольку, постольку обеспечена возможность достаточно плавного их изменения. Другой пример — обычный проволочный реостат. Хотя величина его сопротивления меняется скачкообразно, при достаточной малости этих скачков оказывается возможным и удобным считать изменение непрерывным.

  Обратные примеры еще более многочисленны. Так, выделительная функция почки на обычном (неквантовом) уровне изучения является непрерывной величиной. Однако во многих случаях довольствуются пятибалльной характеристикой этой функции, рассматривая ее тем самым как дискретную величину. Более того, при любом фактическом вычислении значения непрерывных параметров приходится ограничиваться определенной точностью вычислений. А это означает, что соответствующая величина рассматривается как дискретная.

  Последний пример показывает, что дискретный способ представления величин является универсальным способом, ибо имея в виду недостижимость абсолютной точности измерений, любые непрерывные величины сводятся в конечном счете к дискретным. Обратное сведение для дискретных величин, принимающих небольшое число различных значений, не может привести к удовлетворительным (с точки зрения точности представления) результатам и поэтому на практике не употребляется. Таким образом, дискретный способ представления величины является в определённом смысле более общим, чем непрерывный.

  Разделение кибернетических систем на непрерывные и дискретные имеет большое значение с точки зрения используемого для их изучения математического аппарата. Для непрерывных систем таким аппаратом является обычно теория систем  обыкновенных дифференциальных уравнений, для дискретных систем — алгоритмов теория и автоматов теория . Ещё одной базовой математической теорией, используемой как в случае дискретных, так и в случае непрерывных систем (и развивающейся соответственно в двух аспектах), является информации теория .

  Сложность кибернетических систем определяется двумя факторами. Первый фактор — это так называемая размерность системы, т. е. общее число параметров, характеризующих состояния всех её элементов. Второй фактор — сложность структуры системы, определяющаяся общим числом связей между ее элементами и их разнообразием. Простая совокупность большого числа не связанных между собой элементов с повторяющимися от элемента к элементу простыми связями, ещё не составляет сложной системы. Сложные (большие) кибернетические системы — это системы с описаниями, не сводящимися к описанию одного элемента и указанию общего числа таких (однотипных) элементов.

  При изучении сложных кибернетических систем, помимо обычного разбиения системы на элементы, используется метод укрупнённого представления систем в виде совокупности отдельных блоков, каждый из которых является отдельной системой. При изучении систем большой сложности употребляется целая иерархия подобных блочных описаний: на верхнем уровне такой иерархии вся система рассматривается как один блок, на нижнем уровне в качестве составляющих системы блоков выступают отдельные элементы системы.

  Необходимо подчеркнуть, что само понятие элемента системы является до известной степени условным, зависящим от ставящихся при изучении системы целей и от глубины проникновения в предмет. Так, при феноменологическом подходе изучения мозга, когда предметом изучения является не строение мозга, а выполняемые им функции, мозг может рассматриваться как один элемент, хотя и характеризуемый достаточно большим числом параметров. Обычный подход заключается в том, что в качестве составляющих мозг элементов выступают отдельные нейроны. При переходе на клеточный или молекулярный уровень каждый нейрон может, в свою очередь, рассматриваться как сложная кибернетическая система и т.д.

  Если обмен сигналами между элементами системы полностью замыкается в ее пределах, то система называется изолированной или замкнутой. Рассматриваемая как один элемент, такая система не имеет ни входных, ни выходных сигналов. Открытые системы в общем случае имеют как входные, так и выходные каналы, по которым они обмениваются сигналами с внешней средой. Предполагается, что всякая открытая кибернетическая система снабжена рецепторами (датчиками), воспринимающими сигналы из внешней среды и предающими их внутрь системы. В случае, когда в качестве рассматриваемой кибернетической системы выступает человек, такими рецепторами являются различные органы чувств (зрение, слух, осязание и др.). Выходные сигналы системы передаются во внешнюю среду через посредство эффекторов (исполнительных механизмов), в качестве которых в рассматриваемом случае выступают органы речи, мимика, руки и др.

  Поскольку каждая система сигналов, независимо от того, формируется она разумными существами или объектами и процессами неживой природы, несет в себе ту или иную информацию, то всякая открытая кибернетическая система, равно как и элементы любой системы (открытой или замкнутой), может рассматриваться как преобразователь информации. При этом понятие информации рассматривается в очень общем смысле, близком к физическому понятию энтропии (см. Информация в кибернетике).

  Кибернетический подход к изучению объектов различной природы. Рассмотрение различных объектов живой и неживой природы как преобразователей информации или как систем, состоящих из элементарных преобразователей информации, составляет сущность так называемого кибернетического подхода к изучению этих объектов. Этот подход (равно как и подход со стороны др. фундаментальных наук — механики, химии и тому подобное) требует определенного уровня абстракции. Так, при кибернетическом подходе к изучению мозга как системы нейронов обычно отвлекаются от их размеров, формы, химического строения и др. Предметом изучения становятся состояния нейронов (возбужденное  или нет), вырабатываемые ими сигналы, связи между нейронами и законы изменения их состояний.

  Простейшие преобразователи информации могут осуществлять преобразование информации лишь одного определённого вида. Так, например, исправный дверной звонок при нажатии кнопки (рецептора) отвечает всегда одним и тем же действием — звонком или гудением зуммера. Однако, как правило, сложные кибернетические системы обладают способностью накапливать информацию в той или иной форме и в зависимости от этого менять выполняемые ими действия (преобразование информации). По аналогии с человеческим мозгом подобное свойство кибернетических систем называют иногда памятью.

  «Запоминание» информации в кибернетических системах может производиться двумя основными способами — либо за счет изменения состояний элементов системы, либо за счет изменения структуры системы (возможен, разумеется, смешанный вариант). Между этими двумя видами «памяти» по существу нет принципиальных различий. В большинстве случаев это различие зависит лишь от принятого подхода к описанию системы. Например, одна из современных теорий объясняет долговременную память человека изменениями проводимости синаптических контактов, т. е. связей между отдельными составляющими мозг нейронами.  Если в качестве элементов, составляющих мозг, рассматриваются лишь сами нейроны, то изменение синаптических контактов следует рассматривать как изменение структуры мозга. Если же наряду с нейронами в число составляющих мозг элементов включить и все синаптические контакты (независимо от степени их проводимости), то рассматриваемое явление сведется к изменению состояния элементов при неизменной структуре системы.

  ЭВМ как преобразователи информации. Из числа сложных технических преобразователей информации наибольшее значение для К. имеют ЭВМ. В более простых вычислительных машинах — цифровых электромеханических или аналоговых — перенастройка на различные задачи осуществляется с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных ЭВМ такие изменения производятся с помощью «запоминания» машиной в специальном устройстве, накапливающем информацию, той или иной программы её работы.

  В отличие от аналоговых машин, оперирующих с непрерывной информацией, современные ЭВМ имеют дело с дискретной информацией. На входе и выходе ЭВМ  в качестве такой информации могут выступать любые последовательности десятичных цифр, букв знаков препинания и др. символов. Внутри машины эта информация обычно представляется (или, как говорят, кодируется) в виде последовательности сигналов, принимающих лишь два различных значения.

  В то время как возможности аналоговых машин (равно как и любых других искусственно созданных устройств) ограничены преобразованиями строго ограниченных типов, современные ЭВМ обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.) могут быть выполнены ЭВМ после введения в нее составленной должным образом программы. Эта способность ЭВМ достигается за счет универсальности ее системы команд, т. е. элементарных преобразований информации, которые закладываются в структуру ЭВМ. Подобно тому, как из одних и тех же деталей собираются любые дома, из элементарных преобразований могут складываться любые, сколь угодно сложные преобразования буквенно-цифровой информации. Программа ЭВМ как раз и представляет собой последовательность таких элементарных преобразований.

  Свойство универсальности ЭВМ не ограничивается одной лишь буквенно-цифровой информацией. Как показывается в теории кодирования , в буквенно-цифровой (и даже просто цифровой) форме может быть представлена (закодирована) любая дискретная информация, а также — с любой заданной степенью точности — произвольная непрерывная информация. Таким образом, современные ЭВМ могут рассматриваться как универсальные преобразователи информации. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг.

  Свойство универсальности современных ЭВМ открывает возможность моделирования с их помощью любых др. преобразователей информации, в том числе любых мыслительных процессов. Такая возможность ставит ЭВМ в особое положение: с момента своего возникновения они представляют основное техническое средство, основной аппарат исследования, которым располагает К.

  Управление в кибернетических системах. В рассмотренных до сих пор случаях изменение поведения ЭВМ определялось человеком, меняющим программы ее работы. Можно, однако составить программу изменения программы работ ЭВМ и организовать ее общение с внешней средой через соответствующую систему рецепторов и эффекторов. Таким образом, можно моделировать различные формы изменения поведения и развития, наблюдающиеся в сложных биологических и социальных системах. Изменение поведения сложных кибернетических систем есть результат накопления обработанной соответствующим образом информации, которую эти системы получили в прошлом.

  В зависимости от формы, в которой происходит «запоминание» информации, различают два основных типа изменения поведения систем — самонастройку и самоорганизацию. В самонастраивающихся системах накопление опыта выражается в изменении значений тех или иных параметров, в самоорганизующихся — в изменении структуры системы. Как указывалось выше, это различие является до некоторой степени условным, зависящим от способа разбиения системы на элементы. На практике обычно самонастройка связывается с изменениями относительно небольшого числа непрерывных параметров. Что же касается глубоких изменений структуры рабочих программ ЭВМ (которые можно трактовать как изменения состояний большого числа дискретных элементов памяти), то их более естественно рассматривать как пример самоорганизации.

  Целенаправленное изменение поведения кибернетических систем происходит при наличии управления. Цели управления сильно меняются в зависимости от типа систем и степени их сложности. В простейшем случае такой целью может быть поддержание постоянства значения того или иного параметра. Для более сложных систем в качестве целей возникают задачи приспособления к меняющейся среде и даже познания законов таких изменений.

  Наличие управления в кибернетической системе означает, что её можно представить в виде двух взаимодействующих блоков — объекта управления и управляющей системы. Управляющая система по каналам прямой связи через соответствующее множество эффекторов передает управляющие воздействия на объект управления. Информация о состоянии объекта управления воспринимается с помощью рецепторов и передаётся по каналам обратной связи в управляющую систему (см. схему)

  Описанная система с управлением может, как и всякая кибернетическая система, иметь также каналы связи (с соответствующими системами рецепторов и эффекторов) с окружающей средой. В простейших случаях среда может выступать как источник различных помех и искажений в системе (чаще всего в канале обратной связи). В задачу управляющей системы входит тогда фильтрация помех. Особо важное значение эта задача приобретает при дистанционном (телемеханическом) управлении, когда сигналы передаются по длинным каналам связи. Основной задачей управляющей системы является такое преобразование поступающей в систему информации и формирование таких управляющих воздействий, при которых обеспечивается достижение (по возможности наилучшее) целей управления. По виду таких целей и характеру функционирования управляющей системы различают следующие основные типы управления.

  Одним из простейших видов управления является т. н. программное управление . Цель такого управления состоит в том, чтобы выдать на объект управления ту или иную строго определенную последовательность управляющих воздействий. Обратная связь при таком управлении отсутствует. Наиболее простым примером подобного программного управления является светофор-автомат, переключение которого происходит в заданные заранее моменты времени. Более сложное управление светофором (при наличии счетчиков подъезжающих машин) может включать простейший «пороговый» сигнал обратной связи: переключение светофора происходит всякий раз, когда количество ждущих автомашин превысит заданную величину.

  Весьма простым видом управления является также классическое авторегулирование (см. Автоматическое управление ), цель которого состоит в поддержании постоянного значения того или иного параметра (или нескольких независимых параметров). Примером может служить система автоматического регулирования температуры воздуха в помещении: специальный термометр-датчик измеряет температуру воздуха Т, управляющая система сравнивает эту температуру с заданной величиной То и формирует управляющее воздействие — k (T — Т о ) на задвижку, регулирующую приток тёплой воды в батареи центрального отопления. Знак минус при коэффициенте k означает, что регулирование происходит по закону отрицательной обратной связи, а именно: при увеличений температуры Т выше установленного порога То приток тепла уменьшается, при её падении ниже порога — возрастает. Отрицательная обратная связь необходима для обеспечения устойчивости процесса регулирования. Устойчивость системы означает, что при отклонении от положения равновесия (когда Т = Т о ) как в одну, так и в другую сторону система стремится автоматически восстановить это равновесие. При простейшем предположении о линейном характере зависимости между управляющим воздействием и скоростью притока тепла в помещение работа такого регулятора описывается дифференциальным уравнением dT/dt = — k (T — То ) , решением которого служит функция Т = То + d -e-kt , где d — отклонение температуры Т от заданной величины Т о в начальный момент времени. Поскольку рассмотренная система описывается линейным дифференциальным уравнением 1-го порядка, она носит название линейной системы 1-го порядка. Более сложным поведением обладают линейные системы 2-го и более высоких порядков и особенно нелинейные системы.

  Возможны системы, в которых принцип программного управления комбинируется с задачей регулирования в смысле поддержания устойчивого значения той или иной величины. Так, например, в описанный регулятор комнатной температуры может быть встроено программное устройство, меняющее значение регулируемого параметра. Задачей такого устройства может быть, скажем, поддержание температуры +20 °С в дневное время и снижение её до +16°С в ночные часы. Функция простого регулирования перерастает здесь в функцию слежения за значением программно изменяемого параметра.

  В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров. Примером может служить система, непрерывно сопровождающая лучом прожектора маневрирующий произвольным образом самолет.

  В т. н. системах оптимального управления основной целью является поддержание максимального (или минимального) значения некоторой функции от двух групп параметров, называемой критерием оптимального управления. Параметры первой группы (внешние условия) меняются независимо от системы, параметры второй группы являются регулируемыми, т. е. их значения могут меняться под воздействием управляющих сигналов системы.

  Простейший пример оптимального управления снова даёт задача регулирования температуры комнатного воздуха при дополнительном условии учёта изменений его влажности. Величина температуры воздуха, дающая ощущение наибольшего комфорта, зависит от его влажности. Если влажность всё время меняется, а система может управлять лишь изменением температуры, то естественно в качестве цели управления поставить задачу поддержания температуры, которая давала бы ощущение наибольшего комфорта. Это и будет задача оптимального управления. Системы оптимального управления имеют большое значение в задачах управления экономикой.

  В простейшем случае оптимальное управление может сводиться к задаче поддержания наибольшего (или наименьшего) возможного при заданных условиях значения регулируемого параметра. В этом случае говорят о системах экстремального регулирования.

  В случае, когда нерегулируемые параметры в системе оптимального управления на том или ином отрезке времени меняются, функция системы сводится к поддержанию таких постоянных значений регулируемых параметров, которые обеспечивают максимизацию (или минимизацию) соответствующего критерия оптимального управления. Здесь, как и в случае обычного регулирования, возникает задача устойчивости управления. При проектировании относительно несложных систем подобная устойчивость достигается за счет соответствующего выбора параметров проектируемой системы. В более сложных случаях, когда количество возмущающих воздействий и размерность системы очень велики, иногда оказывается удобным для достижения устойчивости прибегать к самонастройке и самоорганизации систем. При этом некоторая часть параметров, определяющая характер существующих в системе связей, не фиксируется заранее и может изменяться системой в процессе ее функционирования. Система имеет специальный блок, регистрирующий характер переходных процессов в системе при выведении ее из равновесия. При обнаружении неустойчивости переходного процесса система меняет значения параметров связей, пока не добьётся устойчивости. Системы такого рода принято называть ультраустойчивыми.

  При большом числе изменяемых параметров связей случайный поиск устойчивых режимов может занимать слишком много времени. В таком случае применяются те или иные способы ограничения случайного перебора, например разбиение параметров связей на группы и осуществление перебора лишь внутри одной группы (определяемой по тем или иным признакам). Такого рода системы называют обычно мультиустойчивыми. Большое разнообразие ультраустойчивых и мультиустойчивых систем дает биология. Примером может служить система регулирования температуры крови у человека и теплокровных животных.

  Задача группировки внешних воздействий, необходимая для успешного выбора способа самонастройки в мультиустойчивых системах, входит в число задач узнавания, или, иначе, задач распознавания образов . Для определения типа поведения (способа управления) у человека особую роль играют зрительные и звуковые образы. Возможность их распознавания и объединения в те или иные классы позволяет человеку создавать абстрактные понятия, являющиеся непременным условием сознательного познания действительности и началом абстрактного мышления. Абстрактное мышление позволяет создавать в управляющей системе (в данном случае в человеческом мозге) модели различных процессов, осуществлять с их помощью экстраполяцию действительности и определять свои действия на основе такой экстраполяции.

  Таким образом, на высших уровнях иерархии управляющих систем задачи управления оказываются тесно переплетенными с задачами познания окружающей действительности. В чистом виде эти задачи проявляются в абстрактных познающих системах, также являющихся одним из классов кибернетических систем.

  Существенное место в К. занимает надёжности теория кибернетических систем. Её задачей является разработка методов построения систем, обеспечивающих правильное функционирование систем при выходе из строя части их элементов, разрыве тех или иных связей и др. возможных случайных сбоях или неисправностях.

  Методы кибернетики. Имея в качестве основного объекта исследования кибернетические системы, К. использует для их изучения три принципиально различных метода. Два из них — математико-аналитический и экспериментальный — широко применяются и в др. науках. Сущность первого состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью. В случае уникальности исследуемого объекта и невозможности существенного влияния на него (как, например, в случае Солнечной системы или процесса биологической эволюции) активный эксперимент переходит в пассивное наблюдение.

  Одним из важнейших достижений К. является разработка и широкое использование нового метода исследования, получившего название математического (машинного) эксперимента, или математического моделирования. Смысл его состоит в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его описанием. Описание объекта вместе с программами, реализующими изменения характеристик объекта в соответствии с этим описанием, помещается в память ЭВМ, после чего становится возможным проводить с объектом различные эксперименты: регистрировать его поведение в тех или иных условиях, менять те или иные элементы описания и тому подобное. Огромное быстродействие современных ЭВМ зачастую позволяет моделировать многие процессы в более быстром темпе, чем они происходят в действительности.

  Первым этапом математического моделирования  является разбиение изучаемой системы на отдельные блоки и элементы и установление связей между ними. Эту задачу решает так называемый системный анализ. В зависимости от целей исследования глубина и способ такого разбиения могут варьироваться. В этом смысле системный анализ представляет собой скорее искусство, чем точную науку, ибо при анализе действительно сложных систем приходится априори отбрасывать несущественные (с точки зрения поставленной цели) детали и связи.

  После разбиения системы на части и характеристики их теми или иными множествами параметров (количественных или качественных) для установления связи между ними привлекают обычно представителей различных наук. Так, при системном анализе человеческого организма типичные связи имеют следующую форму: «При переходе органа А из состояния k 1 в состояние k 2 и сохранении органа В в состоянии М орган С через N месяцев с вероятностью р перейдёт из состояния n 1 в состояние n 2 ». В зависимости от вида органов, к которым относится указанное высказывание, оно может быть сделано эндокринологом, кардиологом, терапевтом и др. специалистами. В результате их совместной работы возникает комплексное описание организма, представляющее искомую математическую модель.

  Так называемые системные программисты переводят эту модель в машинное представление, программируя одновременно средства, необходимые для экспериментов с ней. Проведение самих экспериментов и получение различных выводов из них составляют предмет операций исследования . Впрочем, исследователи операций в случае, когда это оказывается возможным, могут применить дедуктивно-математические построения и даже воспользоваться натурными моделями всей системы или ее отдельных частей. Задача построения натурных моделей, равно как и задача проектирования и изготовления различных искусственных кибернетических систем, относится к области системотехники.

  Историческая справка. Первым, кто применил термин К. для управления в общем смысле, был по-видимому, древнегреческий философ Платон. Однако реальное становление К. как науки произошло много позже. Оно было предопределено развитием технических средств управления и преобразования информации. Ещё в средние века в Европе стали создавать так называемые андроиды — человекоподобные игрушки, представляющие собой механические, программно управляемые устройства.

  Первые промышленные регуляторы уровня воды в паровом котле и скорости вращения вала паровой машины были изобретены И. И. Ползуновым (Россия) и Дж. Уаттом (Англия). Во 2-й половине 19 в. требовалось построение все более совершенных автоматических регуляторов. Наряду с механическими блоками в них всё чаще начинают применяться электромеханические и электронные блоки. Большую роль в развитии теории и практики автоматического регулирования сыграло изобретение в начале 20 в. дифференциальных анализаторов, способных моделировать и решать системы обыкновенных дифференциальных уравнений. Они положили начало быстрому развитию аналоговых вычислительных машин и их широкому проникновению в технику.

  Немалое влияние на становление К. оказали успехи нейрофизиологии и особенно классические труды И. П. Павлова по условным рефлексам. Можно отметить также оригинальные работы украинского учёного Я. И. Грдины по динамике живых организмов.

  В 30-х гг. 20 в. все большее влияние на становление К. начинает оказывать развитие теории дискретных преобразователей информации. Два основных источника идей и проблем направляли это развитие. Во-первых, задача построения оснований математики. Еще в середине прошлого века Дж. Буль заложил основы современной математический логики. В 20-е гг. 20 в. были заложены основы современной теории алгоритмов. В 1934 К. Гёдель показал ограниченность возможностей замкнутых познающих систем. В 1936 А. М. Тьюринг описал гипотетический универсальный преобразователь дискретной информации, получивший впоследствии назв. Тьюринга машины . Эти два результата, будучи полученными в рамках чистой математики, оказали и продолжают оказывать огромное влияние на становление основных идей К.

  Вторым источником идей и проблем К. служила практика создания реальных дискретных преобразователей информации. Простейший механический арифмометр был изобретён Б. Паскалем (Франция) ещё в 17 в. Лишь в 19 в. Ч. Беббидж (Англия) предпринял первую попытку создания автоматического цифрового вычислителя — прообраза современной ЭВМ. К началу 20 века были созданы первые образцы электромеханических счетно-аналитических машин, позволивших автоматизировать простейшие преобразования дискретной информации. Резкое усиление интереса к теории дискретных преобразователей информации в 30-х гг. было обусловлено необходимостью создания сложных релейно-контактных устройств, прежде всего для нужд автоматических телефонных станций. В 1938 К. Шеннон (США), а в 1941 В. И. Шестаков (СССР) показали возможность использования для синтеза и анализа релейно-контактных схем аппарата математической логики. Тем самым было положено начало развитию современной теории автоматов.



Поделиться книгой:

На главную
Назад