Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (ГИ) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Гибридные животные: 1 — одногорбый верблюд (дромедар); 2 — двугорбый верблюд (бактриан); 3 — нар, гибрид первого поколения между дромедаром и бактрианом.

Гибридная вычислительная система

Гибри'дная вычисли'тельная систе'ма, аналого-цифровая вычислительная машина, комбинированная вычислительная машина, комбинированный комплекс из нескольких электронных вычислительных машин, использующих различное представление величин (аналоговое и цифровое) и объединённых единой системой управления. В состав Г. в. с., кроме аналоговых и цифровых машин (АВМ и ЦВМ) и системы управления, обычно входят преобразователи представления величин, устройства внутрисистемной связи и периферийное оборудование (см. структурную схему на рис.). Г. в. с. — комплекс ЭВМ, в этом её главное отличие от гибридной вычислительной машины, названной так потому, что она строится на гибридных решающих элементах, либо с использованием аналоговых и цифровых элементов.

  В литературе часто к Г. в. с. относят АВМ с параллельной логикой, АВМ с цифровым программным управлением и АВМ с многократным использованием решающих элементов, снабженные запоминающим устройством. Такого рода вычислительные машины, хотя и содержат элементы, используемые в ЦВМ, но по-прежнему сохраняют аналоговый способ представления величин и все специфические особенности и свойства АВМ. Появление Г. в. с. обусловлено тем, что для решения многих новых задач, связанных с управлением движущимися объектами, оптимизацией и моделированием систем управления, созданием комплексных тренажеров и др., возможности отдельно взятых АВМ и ЦВМ оказываются уже недостаточными.

  Расчленение вычислительного процесса в ходе решения задачи на отдельные операции, выполняемые АВМ и ЦВМ в комплексе, уменьшает объём вычислительных операций, возлагаемых на ЦВМ, что при прочих равных условиях существенно повышает общее быстродействие Г. в. с.

  Различают аналого-ориентированные, цифро-ориентированные и сбалансированные Г. в. с. В системах первого типа ЦВМ используется как дополнительное внешнее устройство к АВМ, предназначенное для образования сложных нелинейных зависимостей, запоминания полученных результатов и для осуществления программного управления АВМ. В системах второго типа АВМ используется как дополнительное внешнее устройство ЦВМ, предназначенное для моделирования элементов реальной аппаратуры, многократного выполнения небольших подпрограмм.

  Создание эффективных гибридных комплексов требует в первую очередь уточнения основных областей их применения и детального анализа типичных задач из этих областей. В результате этого устанавливают рациональную структуру гибридного комплекса и формируют требования к его отдельным частям.

  Задачи, которые эффективно решаются на Г. в. с., можно разбить на следующие основные группы: моделирование в реальном масштабе времени автоматических систем управления, содержащих как аналоговые, так и цифровые устройства; воспроизведение в реальном масштабе времени процессов, содержащих высокочастотные составляющие и переменные, изменяющиеся в широком диапазоне; статистическое моделирование; моделирование биологических систем; решение уравнений в частных производных; оптимизация систем управления.

  Примером задачи первой группы может служить моделирование системы управления прокатного стана. Динамика процессов в нём воспроизводится на аналоговой машине, а специализированная управляющая станом машина моделируется на универсальной ЦВМ среднего класса. Вследствие кратковременности переходных процессов в приводах прокатных станов, полное моделирование таких процессов в реальном масштабе времени потребовало бы применения сверхбыстродействующих ЦВМ. Аналогичные задачи часто встречаются в системах управления военными объектами.

  Типичными для второй группы являются задачи управления движущимися объектами, в т. ч. и задачи самонаведения, а также задачи, возникающие при создании вычислительной части комплексных тренажеров. Для задач самонаведения характерно формирование траектории движения в процессе самого движения. Большая скорость изменения некоторых параметров при приближении объекта к цели требует высокого быстродействия управляющей системы, превышающего возможности современных ЦВМ, а большой динамический диапазон — высокой точности, трудно достижимой на АВМ. При решении этой задачи на Г. в. с. целесообразно возложить воспроизводство уравнений движения вокруг центра тяжести на аналоговую часть, а движение центра тяжести и кинематические соотношения — на цифровую часть вычислительной системы.

  К третьей группе относятся задачи, решение которых получается в результате обработки многих реализаций случайного процесса, например решение многомерных уравнений в частных производных методом Монте-Карло, решение задач стохастичемкого программирования, нахождение экстремума функций многих переменных. Многократная реализация случайного процесса возлагается на быстродействующую АВМ, работающую в режиме многократного повторения решения, а обработка результатов, воспроизводство функций на границах области, вычисление функционалов — на ЦВМ. Кроме того, ЦВМ определяет момент окончания счёта. Применение Г. в. с. сокращает время решения задач этого вида на несколько порядков по сравнению с применением только цифровой машины.

  Аналогичный эффект достигается при использовании Г. в. с. для моделирования процессов распространения возбуждения в биологических системах. Специфика этого процесса заключается в том, что даже в простейших случаях требуется воспроизводить сложную нелинейную систему уравнений в частных производных.

  Поиск решения задачи оптимального управления для объектов выше третьего порядка обычно связан с большими, часто непреодолимыми, трудностями. Ещё больше они возрастают, если необходимо отыскать оптимальное управление в процессе работы системы. Г. в. с. в значительной степени помогают устранить эти трудности и использовать такие сложные в вычислительном отношении методы, как принцип максимума Понтрягина.

  Применение Г. в. с. эффективно также при решении нелинейных уравнений в частных производных. При этом могут решаться как задачи анализа, так и задачи идентификации и оптимизации объектов. Примером задачи оптимизации может служить подбор нелинейности теплопроводного материала для заданного распределения температур; определение геометрии летательных аппаратов для получения требуемых аэродинамических характеристик; распределение толщины испаряющегося слоя, предохраняющего космические корабли от перегрева при входе в плотные слои атмосферы; разработка оптимальной системы подогрева летательных аппаратов с целью предохранения их от обледенения при минимальной затрате энергии на подогрев; расчёт сети ирригационных каналов и установление оптимальных расходов в них и т.п. При решении этих задач ЦВМ соединяется с сеточной моделью, многократно используемой в процессе решения.

  Развитие Г. в. с. возможно в двух направлениях: построение специализированных Г. в. с., рассчитанных на решение только одного класса задач, и построение универсальных Г. в. с., позволяющих решать сравнительно широкий класс задач. Структура такого универсального гибридного комплекса (рис.) состоит из АВМ однократного действия, АВМ с повторением решения, сеточной модели, устройств связи между машинами, специального оборудования для решения задач статистического моделирования и периферийного оборудования. Помимо стандартного математического обеспечения ЭВМ, входящих в комплекс, в Г. в. с. требуются специальные программы, обслуживающие систему связи машин и автоматизирующие процесс подготовки и постановки задач на АВМ, а также единый язык программирования для комплекса в целом.

  Наряду с новыми вычислительными возможностями в Г. в. с. возникают специфические особенности, в частности появляются погрешности, которые в отдельно работающих ЭВМ отсутствуют. Первичными источниками погрешностей являются временная задержка аналого-цифрового преобразователя, ЦВМ и цифро-аналогового преобразователя; ошибка округления в аналого-цифровом и цифро-аналоговом преобразователях; ошибка от неодновременной выборки аналоговых сигналов на аналого-цифровой преобразователь и неодновременной выдачи цифровых сигналов на цифро-аналоговый преобразователь; ошибки, связанные с дискретным характером выдачи результатов с выхода ЦВМ. При автономной работе ЦВМ с преобразователями временная задержка, например, не вызывает погрешности, а в Г. в. с. она не только может вызвать существенные погрешности, но и нарушить работоспособность всей системы.

  Анализ погрешностей Г. в. с. имеет значение как для оценки погрешности работы комплекса при решении определённого класса задач, так и для разработки методов повышения точности и эффективности системы. Первичные погрешности автономно работающих АВМ и ЦВМ, входящих в Г. в. с., достаточно хорошо изучены, но оценка погрешности при решении с помощью гибридного комплекса нелинейных задач представляет ещё неразрешенную проблему.

  Лит.: Исследование кибернетических проблем вычислительно-управляющего комплекса блюминга 1300, в кн.: Управление производством. Труды III Всесоюзного совещания по автоматическому управлению (технической кибернетике), Одесса, 20—26 сент. 1965, М., 1967; Гулько Ф. Б., Коган Б. Я., Райскина М. Е., О возможном применении вычислительных машин для изучения механизмов развития заболевания, «Автоматика и телемеханика», 1967, № 8, с. 104—106; Soudack А. С., Little W. D., An economical hybridizing scheme for applying Monte-Carlo methods to the solution of partial-differential equations, «Simulation», 1965, v. 5, № 1, p. 9—11; Bekey G. A., Karplus W. J., Hybrid computation, N. Y., 1968.

  Б. Я. Коган.


Структурная схема универсальной гибридной вычислительной системы: сплошной линией обозначены информационные, а пунктирной — управляющие каналы.

Гибридная интегральная схема

Гибри'дная интегра'льная схе'ма, гибридная микросхема, интегральная схема, в которой наряду с элементами, неразъёмно связанными на поверхности или в объёме подложки, используются навесные микроминиатюрные элементы (транзисторы, полупроводниковые диоды, катушки индуктивности и др.). В зависимости от метода изготовления неразъёмно связанных элементов различают гибридные плёночную и полупроводниковую интегральные схемы.

  Резисторы, конденсаторы, контактные площадки и электрические проводники в Г. и. с. изготовляют либо последовательным напылением на подложку различных материалов в вакуумных установках (метод напыления через маски, метод фотолитографии), либо нанесением их в виде плёнок (химические способы, метод шёлкографии и др.). Навесные элементы крепят на одной подложке с. плёночными элементами, а их выводы присоединяют к соответствующим контактным площадкам пайкой или сваркой. Г. и. с.., как правило, помещают в корпус и герметизируют. Применение Г. и. с. в электронной аппаратуре повышает её надёжность, уменьшает габариты и массу.

  И. Е. Ефимов.

Гибридное соединение

Гибри'дное соедине'ние, четырёхплечая радиоволноводная система, в которой мощность, поступающая в одно (любое) плечо, делится поровну между двумя другими, а в четвёртое плечо не поступает; при подведении к двум каким-либо плечам когерентных колебаний на третьем будет наблюдаться их сумма, а на четвёртом — их разность. Г. с. применяют в сверхвысоких частот технике: делителях и разветвителях мощности для суммирования и вычитания мощностей колебаний, балансных смесителях для подавления шумов гетеродина приёмника, измерительных устройствах, собранных по мостовой схеме, для измерения импедансов (полных сопротивлений) и коэффициент отражения и т. д. Большое разнообразие Г. с. сводят к трём простейшим видам: кольцевому (рис. 1), двойному тройнику (рис. 2) и направленному ответвителю со связью 3 дб. Кольцевое Г. с., или гибридное кольцо, состоит из отрезка замкнутого самого на себя радиоволновода, к которому присоединены отводы. Длину окружности (по среднему радиусу) гибридного кольца выбирают кратной половине расчётной длины волны электромагнитных колебаний в нём, а расстояние (по той же окружности) между отдельными плечами — кратными четверти расчётной длины волны.

  Лит.: Харве И А. Ф., Техника сверхвысоких частот, пер. с англ., т. 1, М., 1965; Jones С. W., Concerning hybrids, «Microwave Journal», 1961, v. 4, № 10, p. 98—104.

  В. И. Сушкевич.


Рис. 1. Гибридное кольцо: 1, 2, 3, 4 — плечи.


Рис. 2. Двойной волноводный тройник: 1, 2, 3, 4 — плечи.

Гибридные горные породы

Гибри'дные го'рные поро'ды, породы, вещественный состав и строение которых не отвечают производным нормальных магм. Г. г. п. обладают неоднородными текстурами и структурами, наличием аномальных парагенезисов минералов, содержат ксенолиты местного и глубинного происхождения. Г. г. п. возникают при: ассимиляции без сохранения   признаков поглощённых обломков и контаминации (загрязнении) с сохранением признаков усвоенных обломков. Образованию Г. г. п. также благоприятствуют раздробленность вмещающих пород, обилие в магме летучих веществ, контрастность в составе вмещающих пород и магм. Для интрузивов гранитов при ассимиляции лавового материала основного состава типичен ряд связанных переходами Г. г. п. (от краев интрузивов к их центр. частям): габбро — габбро-диориты — диориты — кварцевые диориты — гранодиориты — граниты. В этом ряду по направлению к гранитам происходит уменьшение содержания Са. Mg, Fe (материал вмещающих пород) и увеличение роли К, Na, Si (гранитная часть). Явления гибридизма известны и для базальтовых лав, когда в результате ассимиляции метаморфических и др. пород базальтовые лавы приобретают андезитовый состав.

  Лит.: Коптев-Дворников В. С., Явления гибридизации на примерах некоторых гранитных интрузий палеозоя Центрального Казахстана, «Тр. института геологических наук, Петрографическая серия», 1953, в. 148, № 44; Лазаренков В. Г., О процессах нормального гибридизма, «Зап. Всесоюзного минералогического общества», 1962, ч. 91, в. 1.

  В. С. Коптев-Дворников.

Гибридные семена

Гибри'дные семена', семена, образующиеся в результате скрещивания растений, относящихся к разным формам, сортам, линиям, видам и родам. Г. с. часто дают более высокие урожаи, чем негибридные, что связано с явлением гетерозиса. В с.-х. производстве СССР широко используются Г. с. кукурузы, сахарной свёклы, сорго, овощных культур и некоторых кормовых трав. Изучаются возможности использования Г. с. пшеницы, масличных и др. культур. Высевают, как правило, Г. с. первого поколения; во втором и последующих поколениях урожайность их резко падает. Для выращивания Г. с. кукурузы организована специализированная сеть семеноводческих хозяйств и создана техническая база для их обработки. Благодаря применению цитоплазматической мужской стерильности (ЦМС) Г. с. кукурузы выращивают без затрат ручного труда на удаление метёлок. Г. с. сахарной свёклы получают в результате искусственного скрещивания или свободного ветроопыления. Для получения Г. с. триплоидных сортов соотношение рядов устанавливают из расчёта: на 1 ряд тетраплоидных сортов 3 или 4 ряда диплоидных; ряды многосемянных и односемянных сортов размещают в соотношении 1: 5 или 1: 4. При выращивании Г. с. однолетних самоопыляющихся овощных культур необходимость в кастрации отпадает благодаря применению стерильных форм (например, у томатов). У огурцов с этой целью используют в качестве материнских форм растения двудомных сортов.

Гибридные языки

Гибри'дные языки', языки, характеризующиеся генетической неоднородностью лексического состава, морфологических и синтаксических моделей: см. Креольские языки.

Гибридный ракетный двигатель

Гибри'дный раке'тный дви'гатель, ракетный двигатель, работающий на сочетании твёрдых и жидких компонентов топлива. Один из компонентов, находящийся в твёрдом состоянии, как правило, размещается в камере сгорания, в которую подаётся другой (жидкий) компонент. Впервые Г. р. д. разработан в Группе изучения реактивного движения в 1933 (см. Ракетный двигатель).

Гибридологический анализ

Гибридологи'ческий ана'лиз, способ изучения наследственных свойств организма путём скрещивания (гибридизации) его с родственной формой и последующим анализом признаков потомства. Г. а. впервые применил Г. Мендель (1865) для изучения механизма передачи наследственных задатков (генов) от родителей потомкам и для изучения взаимодействия генов у одного и того же организма (см. Менделя законы). В основе Г. а. лежит способность к рекомбинации, т. е. перераспределению генов при образовании гамет, что приводит к возникновению новых сочетаний генов. По этим сочетаниям, которые проявляются в потомстве гибридной особи с определённой частотой, можно судить о генотипе родительской формы, а по генотипу родительской формы можно предсказывать генотип потомства. Так, генотип особи, гибридной по паре аллелей, одна из которых — доминантная А, другая — рецессивная а, можно представить как Аа. Внешне, т. е. фенотипически (см. Фенотип), такая форма (гетерозигота) не отличается от формы с генотипом АА (гомозигота). Гибрид (Аа) формирует гаметы двух типов, каждый из которых несёт аллель А или аллель а. Т. о., гаметы никогда не бывают гибридными. С помощью различных видов скрещивания можно выявить, сколько типов гамет по данному гену формирует организм, и определить его генотип. Если у анализируемой формы (Аа) возможно самооплодотворение (что часто встречается у растений), схематично это будет выглядеть так: ♂ (А+а) ´ ♀ (А+а) (АА + Аа + Аа + аа. При этом в потомстве с определённой частотой появляется новая форма — аа.

  Если самооплодотворения нет, генотип исходной формы выявляют, скрещивая в разных комбинациях её потомков («брат ´ сестра») и анализируя «внучатое» поколение. Др. способ выявления гибридного состояния — анализирующее скрещивание: скрещивание предполагаемого гибрида с рецессивной родительской формой. Г. а. играет важную роль в селекционной практике и племенном деле, т.к. позволяет судить о тождестве фенотипа и генотипа. Здесь Г. а. находит применение в форме «анализа производителей по потомству» с целью выявления у производителей скрытых нежелательных генов. Г. а. применяется также при составлении хромосомных карт (см. Генетические карты хромосом). Знание генного состава хромосомы позволяет путём специальных скрещиваний вводить в геном определённую хромосому или группу генов и создавать формы с нужным генотипом. Этот метод широко применяется в растениеводстве. Г. а. пользуются при изучении взаимодействия генов в первом гибридном поколении (тесты на комплементацию). Г. а. является главным методом генетического анализа.

  Лит.: Руководство по разведению животных, пер. с нем., т. 2, М., 1963; Брюбейкер Дж. Л., Сельскохозяйственная генетика, пер. с англ., М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967.

  Ю. С. Демин.

Гибсон Эдуард

Ги'бсон (Gibson) Эдуард (р. 8.11.1936, Буффало, штат Нью-Йорк), лётчик-космонавт США и учёный. В 1959 окончил Рочестерский университет (штат Нью-Йорк). В 1964 получил степень доктора наук в области машиностроения в Калифорнийском технологическом институте. С 1965 в группе космонавтов. Одновременно вёл научную работу в области физики Солнца и физики плазмы. 16 ноября 1973 — 8 февраля 1974 совместно с Дж. Карром и У. Поугом совершил полёт в космос в качестве члена 3-го экипажа орбитальной станции «Скайлэб», запущенной 14 мая 1973. Полёт продолжался 84 сут 1 ч 16 мин; дважды выходил в открытый космос (10 ч 3 мин).

Гибсона пустыня

Ги'бсона пусты'ня (Gibson Desert), пустыня на З. Австралии, между Большой Песчаной пустыней на С. и Большой пустыней Виктория на Ю. Поверхность — плато высотой 300—500 м, сложенное докембрийскими породами, покрытое щебёнкой — продуктом разрушения древнего железистого панциря. На В. — останцовые кряжи из гранитов и песчаников высотой до 762 м, на З. — солончаки. Осадков менее 250 мм в год, выпадают они крайне нерегулярно. Редкие заросли кустарниковой акации, лебеды, злака спинифекс. Экстенсивное пастбищное скотоводство. Г. п. открыта в 1873 английской экспедицией Э. Джайлса, названа по имени члена экспедиции А. Гибсона.

Гига...

Гига... (от греч. gígas — гигантский), приставка для образования наименований кратных единиц, по размеру равных 10 исходным единицам. Сокращённые обозначения: русское — Г, международное G. Пример: 1 Ггц, (гигагерц) = 10 гц.

Гигант

Гига'нт, посёлок городского типа в Сальском районе Ростовской обл. РСФСР. Ж.-д. станция (Трубецкая) на линии Ростов-на-Дону — Сальск. 10 тыс. жителей (1970). Вырос при зерновом совхозе «Гигант», созданном в 1928. завод с.-х. машиностроения. С.-х. техникум.

«Гигант»

«Гига'нт», спичечно-мебельный комбинат, одно из крупнейших спичечных предприятий СССР; находится в Калуге. Выпускает спички, мебель, древесно-стружечные плиты и строганую фанеру. «Г.» введён в действие в 1931; к 1940 вырабатывал около 10% общего объёма производства спичек в СССР. Во время Великой Отечеств. войны «Г.» был полностью разрушен немецко-фашистскими захватчиками. После освобождения Калуги (30 декабря 1941) началось восстановление «Г.»; в 1949 предприятие было восстановлено. «Г.» оснащен новым оборудованием; технологический процесс изготовления спичек полностью механизирован. В 1957 пущен мебельный цех, в 1960 введён в действие цех строганой фанеры, в 1964 — цех древесностружечных плит. В 1969 выпуск спичек составил 1406 тыс. учётных ящиков. Проектируются реконструкция и расширение спичечного производства.

  А. В. Золотов.

Гигантизм

Гиганти'зм (от греч. gígas, род. падеж gígantos — исполин, гигант), усиление роста человека. Рост выше 190 см может приобретать патологический характер. Великаны выше 200 см встречаются редко, самый высокий человек, описанный в литературе, имел рост 320 см. Г. наблюдается чаще у мужчин, проявляется обычно в 9—10-летнем возрасте или в период полового созревания и продолжается в течение физиологического роста организма. Причины Г. не выяснены: предполагают, что Г. связан с усиленной функцией передней доли гипофиза, продуцирующей гормон роста. Великаны при патологическом росте отличаются слабым здоровьем, до старости доживают редко, психика их нередко приближается к детской, половое влечение отсутствует или снижено: внешне — удлинение конечностей, особенно нижних; голова кажется необычайно маленькой. Бывает парциальный (частичный) Г., характеризующийся увеличением части (например, стоп) или половины тела. Лечение: рентгено- и гормонотерапия, иногда хирургическое. См. также Акромегалия.


Скелет гиганта (рост 220 см), рядом скелет человека ростом 170 см. Внизу — частичный гигантизм стоп.

Гигантопитек

Гигантопите'к (от греч.— gígas, род. падеж gígantos исполин, гигант и pithekos — обезьяна), название рода крупных ископаемых человекоподобных обезьян, обитавших в южных и юго-восточных областях материковой Азии в середине антропогена. Найдены четыре нижних челюсти и свыше 1000 отдельных зубов Г., очень крупных (особенно коренные, которые по объёму в 6 раз больше соответствующих зубов человека). По размерам тела Г. превосходили человека. По некоторым признакам зубной системы (относительно небольшие клыки др.) Г. более сходны с человеком, чем с современными человекообразными обезьянами. Это дало основание некоторым исследователям считать Г. предками людей и предложить т. н. гигантоидную теорию происхождения человека, которая, однако, не получила признания.

  Лит.: Гремяцкий М. А., Мегагнатные плейстоценовые формы высших ископаемых приматов, в сборнике: Ископаемые гоминиды и происхождение человека, М., 1966.

  В. П. Якимов.

Гигантостраки

Гигантостра'ки (Gisantostraca) отряд вымерших животных типа членистоногих; то же, что эвриптериды.

Гигантский олень

Гига'нтский оле'нь, ископаемое млекопитающее, то же, что большерогий олень.

Гигантских кратеров нагорье

Гига'нтских кра'теров наго'рье, вулканическое нагорье в Восточной Африке, на С. Танзании, в области окончания Восточной (Кенийской) рифтовой зоны Восточной Африки, между озерами Натрон на С.-В., Маньяра на Ю.-В. и Эяси на Ю.-З. Образовано 8 потухшими вулканическими конусами и кратерами (кальдерами) обрушения, поднимающимися над общим лавовым цоколем. Высшая точка — г. Лулмаласин (3648 м). Отличительная черта морфологического облика нагорья — огромные размеры кратеров (кальдер), придающие местности исключительное своеобразие («ландшафт лунных цирков»). Крупнейшая кальдера Нгоронгоро достигает 22 км в поперечнике; дно ее частично занято озером. В растительности преобладают саванны. В кальдере Нгоронгоро — заповедник (национальный парк) с богатой фауной крупных млекопитающих. Близ Г. к. н., западнее Нгоронгоро, — ущелье Олдовай, получившее известность благодаря находкам остатков доисторического человека.

Гиганты (звёзды-гиганты)

Гига'нты, звёзды-гиганты, звёзды больших размеров (100—1000 радиусов Солнца) и больших светимостей (100—1000 единиц светимости Солнца), образующие на диаграмме состояния (Герцшпрунга — Ресселла диаграмме) ветвь гигантов, положение которой различно для звёзд плоской и сферической составляющей Галактики (в основном из-за различия в массах). Г. имеют малые средние плотности (10-5—10-7 г/см3) из-за протяжённых разреженных оболочек. Г. являются, по-видимому, обычными звёздами главной последовательности на поздних стадиях развития (стадия горения гелия). У некоторых Г. наблюдается корпускулярная неустойчивость (истечение вещества с поверхности).

Гиганты (мифологич.)

Гига'нты (Gigantes), в древнегреческой мифологии чудовищные великаны, рождённые богиней земли Геей от капель крови бога неба Урана. Гордясь своей силой, Г. восстали против олимпийских богов. Только с помощью циклопов, выковавших перуны (молнии) для Зевса, и Геракла с его не знающими промаха стрелами олимпийцам удалось одержать победу над Г. Битва богов с Г. (гигантомахия) неоднократно служила темой для античного изобразительного искусства: наиболее яркий памятник — знаменитый фриз алтаря Зевса в г. Пергаме (находится в Античном собрании, Берлин).

Гигиена

Гигие'на (от греч. hygieinós— здоровый), наука о здоровье, отрасль медицины, изучающая влияние разнообразных факторов внешней среды (природных и бытовых условий, общественных производственных отношений) на здоровье человека, его работоспособность и продолжительность жизни.

  Г. тесно связана со всеми медицинскими науками, а также биологией, физикой, химией и социально-экономическими науками. В задачи Г. входит научная разработка основ предупредительного и текущего санитарного надзора, обоснование санитарных мероприятий по оздоровлению населённых мест, условий труда и отдыха человека, охрана здоровья детей и подростков, участие в разработке санитарного законодательства, санитарная экспертиза качества пищевых продуктов и предметов бытового обихода. Одна из важнейших задач современности — разработка гигиенических нормативов для воздуха населённых мест и промышленных предприятий, воды, продуктов питания, материалов, из которых изготовляют одежду и обувь с целью создания наиболее благоприятных условий для сохранения здоровья и предупреждения заболеваний, обеспечения высокой работоспособности и увеличения продолжительности жизни. Практическая область применения Г. составляет особый раздел — санитарию.

  В гигиенических исследованиях применяют методы физико-химического изучения внешней среды (воздуха, воды, почвы, пищевых продуктов, строительных материалов, предметов одежды и обуви), бактериологические, биохимические и клинические, демографические исследования с использованием методов санитарной статистики.

  Г. — одна из наиболее древних наук. Элементы санитарных правил можно обнаружить в исторических документах древних рабовладельческих государств. Известны санитарные предписания в своде законов Древней Индии; в них указывалось на необходимость смены белья и одежды, ухода за кожей и зуба рекомендовалась растительная пища и запрещались излишества в еде. В Древнем Египте за 1500 лет до н. э. осуществлялись санитарные мероприятия по оздоровлению населенных мест. В иудейском Моисеевом законодательстве были регламентированы гигиенические правила всех сторон частного и общественного быта древних евреев, На территории др. Хорезма имелись крупные, благоустроенные в санитарном отношении города. В Древнем Риме существовали водопровод, канализация, знаменитые римские термы (бани-купальни). В Новгороде обнаружены остатки городского водопровода (11 в.), построенного из деревянных труб. Водопроводы были в Соловецком монастыре, Троице-Сергиевой лавре (16 в.), Киево-Печерской лавре (17 в.). В Москве самотёчный водопровод из свинцовых труб был построен в 1631. Торговые бани (т. е. бани для общего пользования) устраивались во многих русских городах. В «Домострое» (16 в.) говорилось о хранении готовой пищи, мытье посуды, стирке и смене белья.

  В 16—17 вв. появились лечебники, содержащие гигиенические советы. В 1700 вышел трактат итальянского учёного Б. Рамаццини «Рассуждение о болезнях ремесленников» — первый научный труд по Г. труда. В классическом произведении немецкого учёного И. П. Франка «Система медицинской полиции» (1779—1827) говорилось о социальном значении здоровья. В 1797 появилась «Макробиотика» (искусство продления жизни) немецкого врача К. В. Гуфеланда.

  В России в 18—19 вв. вопросы Г. нашли отражение в трудах М. В. Ломоносова, а также врачей С. Г. Зыбелина, Д. С. Самойловича, М. Я. Мудрова. В сочинении М. В. Ломоносова «Первые основания металлургии или рудных дел» (1763) дано много указаний, направленных на сохранение здоровья рудокопов, сформулирована теория движения воздуха в шахтах, которая легла в основу расчёта естественной вентиляции.

  К середине 19 в. главное внимание гигиенистов было направлено на общественное здравоохранение. Со 2-й половины 19 в., в связи с успехами естествознания и медицины, значительное развитие получили в Г. экспериментальные методы исследования. Экспериментальное направление в Г. связано с трудами немецкого гигиениста М. Петтенкофера. Он создал немецкую школу гигиенистов, из которой вышли такие учёные, как М. Рубнер, К. Флюгге, В. Праусниц и др. В Англии новое направление в развитии Г. нашло отражение в трудах Э. Паркса, во Франции — З. Флёри, А. Пруста, А. Бушарда. Развитие экспериментальной Г. в России связано с именами А. П. Доброславина и Ф. Ф. Эрисмана, заложивших основы развития в России общей, жилищной и школьной Г., гигиены труда и питания. Развиваясь столь же интенсивно, как и в западно-европейских странах, гигиеническая наука в России имела свои особенности. Русские гигиенисты 19 в. широко применяли санитарно-статистические методы исследования. Эрисман и московские земские санитарные врачи Е. А. Осипов, П. И. Куркин, С. М. Богословский создали русскую школу изучения физического состояния и заболеваемости на основе учёта и гигиенической оценки демографических данных (рождаемость, смертность и естественный прирост населения, заболеваемость и физическое развитие, данные санитарно-топографического характера). В 19 в. выдвинулась плеяда видных санитарных деятелей: И. И. Моллесон, Е. М. Дементьев, Д. Н. Жбанков, А. В. Погожев, П. А. Песков, Н. И. Тезяков и др. Важную роль в развитии Г. сыграли Г. В. Хлопин, уделявший много внимания методике гигиенических исследований, и А. Н. Сысин, разрабатывавший многие вопросы общей и коммунальной гигиены. В 18—20 вв. большинство городов Европы и Азии находилось в антисанитарном состоянии. В России положение изменилось коренным образом только после Великой Октябрьской социалистической революции.

  В СССР Г. развивалась в соответствии с требованиями Программы РКП (б), принятой в 1919 на 8-м съезде партии, где были особо подчёркнуты профилактические задачи сов. здравоохранения, определено содержание и направление деятельности санитарных органов страны и работы научно-исследовательских гигиенических учреждений. Основным в научно-практической деятельности сов. гигиенистов является научное обоснование биологического оптимума, которому должна соответствовать внешняя среда, чтобы обеспечить человеку нормальное развитие, хорошее здоровье, высокую работоспособность и долголетие. Для решения этих задач проводятся экспериментальные исследования в лабораториях и натурных условиях, в производственных условиях и бытовой обстановке. В СССР гигиенические мероприятия включаются в планы промышленного, с.-х., жилищного и культурного строительства.

  Расширение задач, стоящих перед Г., усложнение методов гигиенических исследований привели к дифференциации гигиенической науки. Сначала выделились и оформились в самостоятельные научные дисциплины военная и военно-морская гигиена (см. Гигиена военная). Первые труды по военная Г. в России были опубликованы в конце 17 в. Крупный вклад в развитие военно-морской Г. внесли Д. П. Синопсус и А. Г. Бахерахт. Гигиена труда, или профессиональная Г., оформилась в самостоятельная отрасль гигиенической науки во 2-й половине 19 в. Её развитие в России связано с именами Эрисмана, Погожева, Дементьева и др. деятелей фабричной и земской медицины. Большой вклад в развитие Г. труда в СССР внесли С. И. Каплун, В. А. Левицкий, А. А. Летавет, З. И. Израэльсон, Л. К. Хоцянов и др. В послереволюционные годы в научную дисциплину оформилась школьная Г., в процессе дальнейшего развития ставшая гигиеной детей и подростков. Большой вклад в развитие этой дисциплины внёс сов. гигиенист и санитарный деятель А. В. Мольков. Первым научно-исследовательским центром по школьной гигиене был организованный в 1919 институт социальной гигиены. В 1926 создана кафедра школьной гигиены при медицинском факультете 1-го МГУ, а в 1934 при Центральном институте усовершенствования врачей. Гигиена коммунальная развилась благодаря трудам А. Н. Сысина и А. Н. Марзеева: она оформилась в самостоятельную дисциплину в 1933, когда была создана кафедра коммунальной Г. в 1-м Московском медицинском институте (И. Р. Хецров, С. Н. Черкинский). Гигиена питания как предмет научного исследования оформилась в 1922 с созданием первого в СССР Института питания под руководством М. Н. Шатерникова. Первая кафедра Г. питания на санитарном факультете 1-го Московского медицинского института была организована в 1932. Социальная гигиена в СССР оформилась после Великой Октябрьской социалистической революции. Создателем и многолетним руководителем первой кафедры социальной Г. в СССР был Н. А. Семашко. В 1944 в составе АМН СССР был создан Институт организации здравоохранения и социальной гигиены (ныне Всесоюзный научно-исследовательский институт социальной гигиены и организации здравоохранения им. Н. А. Семашко). В связи с расширяющимся из года в год использованием источников ионизирующей радиации в промышленности, сельском хозяйстве и медицине возникла новая проблема — радиационная защита трудящихся и радиационная безопасность населения. Разработкой этих вопросов занимается гигиена радиационная.

  Научную разработку различных гигиенических проблем в СССР вели институты Г. труда, институты коммунальной Г. и институты питания. Старейшее научно-исследовательское учреждение страны — Московское НИИ гигиены им. Ф. Ф. Эрисмана, созданный в 1927. Научно-исследовательская работа в области Г. ведётся также на кафедрах Г. медицинских институтов и институтов усовершенствования врачей.

  Большую роль в развитии Г. играет Всесоюзное научное общество гигиенистов, предшественником которого было Русское общество охранения народного здоровья (1877—1917). Московское общество гигиенистов было создано Ф. Ф. Эрисманом в 1892. В 1925 создано Всесоюзное общество социальной и экспериментальной Г. В 1967 общество гигиенистов насчитывало 11 тыс. членов. Национальные общества по Г. есть во Франции, Англии, ГДР и др.

  В СССР вопросы Г. освещаются в журналах «Гигиена и санитария» (1936—), «Гигиена труда и профессиональные заболевания» (1957—), «Вопросы питания» (1932—), «Советское здравоохранение» (1942—) и др.

  Лит.: Доброславин А. П., Гигиена, Курс общественного здравоохранения, т. 1—2, СПБ., 1882—84; Эрисман Ф. Ф., Курс гигиены, т. 1—3, М., 1877—88; Хлопин Г. В., Основы гигиены, т. 1—2, М., 1921—23; 50 лет советского здравоохранения, [Сб. статей], М., 1967; Handbuch der Hygiene, Bd 1—5, Lpz., 1911—23; Horn К., Allgemeine und kommunale Hygiene, B., [1966].

  Ф. Г. Кротков.

Гигиена авиационная

Гигие'на авиацио'нная, отрасль гигиены, изучающая гигиенические проблемы, возникающие с развитием военной и гражданской авиации. Первые работы по Г. а. были опубликованы в 1910—20. В последующее десятилетие появились оригинальные исследования Н. М. Добротворского по гигиене рабочего места летчика, режиму и нормам лётной работы, гигиене питания, лётной одежды, профилактике профессиональных вредностей.

  Основная задача Г. а. — изучение влияния факторов окружающей среды на организм лётного и инженерно-технического состава, а также пассажиров летательных аппаратов, Одной из задач Г. а. является изучение особенностей труда лётного и технического состава для обоснования рационального режима труда, отдыха и питания, гигиенических мероприятий при работе на радиолокационных установках, при контакте с горюче-смазочными и агрессивными материалами и жидкостями. В задачи Г. а. входит гигиеническое обеспечение различного вида полётов — высотных, в сложных метеорологических условиях, ночных, длительных и т.п. В связи с полетами на сверхзвуковых скоростях и в стратосфере решаются проблемы защиты человека от гипоксии, перепадов барометрического давления и др. Традиционные вопросы Г. а. получили дальнейшее развитие при разработке гигиенических проблем космических полётов — специальных средств защиты человека от неблагоприятного влияния факторов космической среды, создания в кабине космического корабля условий, необходимых для сохранения жизни и работоспособности человека. Возникла необходимость изучения новых вопросов влияния невесомости, защиты от радиационной опасности, обеспечения безопасности при взлёте и посадке космического корабля, сохранения жизни и работоспособности при высадке на др. планеты.

  Как самостоятельная отрасль гигиены Г. а. в СССР сформировалась после организации в 1935 института авиационной медицины РККА им. И. П. Павлова (Москва). В последующие годы проблемы Г. а. разрабатывались во Всесоюзном институте экспериментальной медицины, Военно-медицинской академии им. С. М. Кирова (Ленинград), отделе авиационной медицины Государственного НИИ гражданской авиации СССР и в др. учреждениях. Изучение отдельных гигиенических проблем и преподавание элементов Г. а. ведётся во всех странах, располагающих военной и гражданской авиацией. Врачей-специалистов по Г. а. готовят на кафедре авиационной медицины Центрального института 1364 усовершенствования врачей (Москва) и в Военно-медицинской академии им. С. М. Кирова. Проблемы авиационной и космической гигиены освещаются в «Военно-медицинском журнале» (1823—), журналах «Гигиена и санитария» (1936—), «Вопросы питания» (1932—), «Космическая биология и медицина» (1967—), «Авиация и космонавтика» (1918—), а также в сборниках серии «Проблемы космической биологии» (1962—), издаваемых АН СССР. См. также Авиационная медицина.

  Лит.: Армстронг Г., Авиационная медицина, пер. с англ., М., 1954; Сергеев А. А., Очерки по истории авиационной медицины, М. — Л., 1962.

  И. М. Бузник.

Гигиена военная

Гигие'на вое'нная, отрасль гигиены, в задачи которой входит: изучение влияния различных факторов внешней среды на здоровье военнослужащих; изыскание мер борьбы с отрицательным воздействием этих факторов на боеспособность войск; разработка научно обоснованных норм санитарного обеспечения войск. В военное время в задачи Г. в. входит сохранение боеспособности войск путём осуществления санитарного надзора за условиями их размещения в поле и населённых пунктах, а также в оборонительных сооружениях, за выполнением требований личной и коллективной гигиены, повседневный медицинский контроль за качеством питания солдат и офицеров, наблюдение за обеспечением военнослужащих достаточным количеством доброкачественной воды для питья и приготовления пищи, санитарных и хозяйственных нужд.



Поделиться книгой:

На главную
Назад