Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Форма реальности - Джордан Элленберг на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Штаны: эйлерова характеристика – 1, два отверстия.

Соломинка: эйлерова характеристика 0, одно отверстие.

Лопнувший воздушный шарик: эйлерова характеристика 1, ноль отверстий.

Нелопнувший воздушный шарик: эйлерова характеристика 2, –1 отверстие.

Способ описать эйлерову характеристику, чтобы она казалась менее странной, – это разность между двумя величинами: числом отверстий четной и нечетной размерности. В целом воздушном шарике, то есть в сфере, дыра есть – в том же смысле, что и дыра внутри куска швейцарского сыра: внутренняя часть шарика – дыра сама по себе. Однако ощущается, что это дыра иного рода, нежели в соломинке. Верно! Это то, что мы назвали бы двумерной дырой. Шарик имеет одну двумерную дыру и ни одной одномерной. Может показаться, что тогда эйлерова характеристика должна быть 1–1 = 0, что не соответствует нашей таблице. Мы упустили, что шарик имеет еще и нульмерное отверстие.

Что это может значить?

Вот тут и вступает в игру теория Пуанкаре и Нётер. Как следует из названия, эйлерову характеристику системно изучал швейцарский математик-универсал Леонард Эйлер, однако он рассматривал только двумерные поверхности. Многие люди, включая Иоганна Листинга, пытались распространить идеи Эйлера на трехмерный случай. Но только после Пуанкаре ученые поняли, как перенести результат Эйлера в пространства размерности более трех. Я не стану запихивать на одну страницу первый курс алгебраической топологии, а просто скажу, что Пуанкаре и Нётер дали общую теорию дыр любой размерности, и в их системе количество нульмерных отверстий в каком-то пространстве – это просто число частей, на которое оно разбивается. Шарик, как и соломинка, представляет собой единый объект, поэтому у него только одно отверстие нулевой размерности. А вот два шарика имеют два нульмерных отверстия.

Это определение может показаться странным, но с ним все работает. Шарик имеет:

1 нульмерное отверстие + 1 двумерное отверстие – 0 одномерных отверстий,

что дает нам эйлерову характеристику, равную 2.

В прописной букве В одно нульмерное отверстие и два одномерных, поэтому ее эйлерова характеристика равна – 1[94]. Разрежьте нижнюю петлю буквы B – и получите букву R, у которой эйлерова характеристика равна 0: у буквы R на одно одномерное отверстие меньше, поэтому число увеличилось на 1. Разрезав петлю буквы R, получите букву K: ее эйлерова характеристика равна 1. Вы могли бы также отрезать ножку у буквы R, получив две буквы P и I; теперь у вас два отдельных куска, поэтому два нульмерных отверстия и одно одномерное в букве P дают 2–1 = 1. Каждый раз, когда вы делаете разрез, вы увеличиваете эйлерову характеристику на 1, и это верно, даже если вы своим разрезом не устраняете одномерную дыру. У буквы I эйлерова характеристика равна 1; разрежьте ее – и получите две буквы I с эйлеровой характеристикой 2. Следующий разрез даст три I и характеристику 3 и так далее.

Что, если вы сошьете вместе нижние отверстия штанов? Не стану вдаваться в подробности, но получившаяся форма в системе Пуанкаре имеет одну нульмерную и две одномерные дыры, что дает эйлерову характеристику –1. Иными словами, в штанах после нашего вандализма столько же отверстий, сколько было и до него. Вы избавились от одного, сшив отверстия у лодыжек, но создали новое, которое теперь находится между штанинами. Убедительно? С удовольствием посмотрел бы на такое рассуждение в Snapchat![95]

Глава 3. Одно название разных вещей

Симметрия – это основа современного понимания геометрии. Более того, то, что мы решаем считать симметрией, определяет, с какой геометрией мы имеем дело.

В евклидовой геометрии симметрии – это движения фигур как твердого тела: любые комбинации сдвигов (переносов), переворачиваний (отражений) и вращений. Язык симметрии позволяет говорить о конгруэнтности (равенстве) более современным способом. Вместо того чтобы сказать: два треугольника конгруэнтны, когда соответствующие стороны и углы равны, мы говорим: треугольники конгруэнтны, если существует движение, которое переводит один в другой. Разве это не более естественно? Действительно, читая Евклида, чувствуешь, что он еле сдерживается (не всегда успешно), чтобы не выразиться именно таким образом.

Зачем в качестве фундаментальных симметрий брать движения? Одна из веских причин состоит в том (хотя доказать это не так-то легко), что именно движения – это то, что вы можете проделывать с плоскостью, сохраняя при этом расстояние между точками; собственно, и слово симметрия происходит от древнегреческого слова συμμετρία (соразмерность), которое образовано из слов συμ- (вместе, с, совместно) и μετρέω (измеряю). Термин, означающий «равная мера», был бы лучше; и действительно, в современной математике словом изометрия (от греческих слов ἴσος – равный, одинаковый, и μετρέω – измеряю) называют преобразования, которые сохраняют расстояние.

Эти два треугольника конгруэнтны,


а потому мы склонны, как и Евклид, считать, что они равны, несмотря на то что на самом деле это два разных треугольника, расположенных в нескольких сантиметрах друг от друга. Это подводит нас к другому изречению постоянно цитируемого Пуанкаре:

Математика – это искусство давать одно название разным вещам.

Подобные проблемы с определениями – часть нашего мышления и речи. Представьте, что кто-то спрашивает вас, не из Чикаго ли вы, а вы отвечаете: «Нет, я из Чикаго двадцатипятилетней давности». Это было бы абсурдной педантичностью, поскольку, говоря о городах, мы неявно подразумеваем симметрию при переносе во времени. В стиле Пуанкаре мы называем Чикаго прошлого и Чикаго настоящего одним и тем же словом.

Конечно, мы могли бы строже Евклида отнестись к тому, что считать симметрией: например, запретить отражения и вращения, оставив только перенос на плоскости без поворотов. Тогда эти два нарисованных выше треугольника уже не были бы равны, поскольку указывают в разных направлениях.

А если оставить вращения, но отказаться от отражений? Вы можете представить это как класс допустимых преобразований, но только в пределах плоскости: вы можете передвигать и поворачивать объекты, но запрещается их поднимать и переворачивать, поскольку это означает запрещенный выход в трехмерное пространство. Согласно таким правилам, мы по-прежнему не можем назвать эти два треугольника одним именем. В левом треугольнике порядок сторон от самой короткой к самой длинной идет против часовой стрелки. Как бы вы ни двигали и не поворачивали эту фигуру, это свойство сохранится, а значит, левый треугольник никогда не совпадет с правым, в котором короткая, средняя, длинная стороны идут по часовой стрелке. Отражение меняет направление по часовой и против часовой стрелки, а переносы и повороты – нет. Без отражения направление обхода короткая, средняя, длинная сторона – это свойство треугольника, которое никакая симметрия не изменит. Это то, что мы называем инвариантом.

У каждого класса симметрий есть собственные инварианты. Движение не может изменить площадь треугольника или любой иной фигуры; в терминах физики мы могли бы сказать, что это закон сохранения площади для движения. Есть и закон сохранения длины, поскольку движение не может изменить длину отрезков[96].

Повороты плоскости понять легко, однако переход к трехмерному пространству значительно усложняет дело. Еще в XVIII веке (опять Леонард Эйлер!) ученые выяснили, что любое вращение трехмерного пространства можно представлять как вращение вокруг какой-то неподвижной прямой – оси. Пока все хорошо, но остается куча вопросов. Предположим, я совершаю поворот на 20 градусов вокруг вертикальной оси, а потом на 30 градусов вокруг оси, указывающей горизонтально на север. Результирующее вращение должно оказаться поворотом на некоторое количество градусов вокруг какой-то прямой, но какой? Получится примерно 36 градусов вокруг оси, направленной вверх и куда-то на северо-северо-запад. Но увидеть это непросто! Человеком, разработавшим гораздо более удобный способ думать об этих вращениях – представлять их в виде своеобразного числа, называемого кватернионом, – был тот самый друг Вордсворта, Уильям Роуэн Гамильтон. Как известно, 16 октября 1843 года Гамильтон с женой шли вдоль Королевского канала в Дублине, когда… Давайте дадим слово самому Гамильтону.

Хотя она время от времени разговаривала со мной, в моей голове шла подспудная работа мысли, которая в итоге дала результат, и не будет преувеличением сказать, что я сразу понял его важность. Казалось, замкнулась электрическая цепь и проскочила искра… Я не смог устоять перед побуждением – каким бы противоречащим философии оно ни было, – проходя по мосту Брумридж, вырезать ножом на его каменной кладке фундаментальную формулу…

Гамильтон большую часть оставшейся жизни изучал следствия из своего открытия. Излишне говорить, что он написал о нем стихотворение. («Наука высших сфер с суровым очарованием чисел и фигур влекла нас за собой, и мы стремились узреть ее нерожденное потомство…» В общем, вы уловили идею.)

СКРОНЧМЕТРИЯ

Мы также можем повернуть ручку в сторону ослабления условий и рассмотреть более широкий спектр преобразований. Мы могли бы разрешить увеличение и уменьшение так, чтобы показанные далее фигуры считались равными.


Некоторые величины, раньше бывшие инвариантами (например, площадь треугольников), в таком более мягком представлении о тождественности уже ими не будут. Однако другие величины (например, углы) инвариантами остаются. На школьных уроках геометрии фигуры, одинаковые в этом более широком смысле, назывались подобными.

А еще мы можем изобрести совершенно новые понятия, с которыми никогда не сталкивались в школе. Мы можем, скажем, разрешить преобразование под условным названием скронч, которое будет растягивать фигуру по вертикали с определенным коэффициентом и одновременно сжимать ее по горизонтали с тем же коэффициентом[97].


При скронче какой-нибудь фигуры ее площадь не меняется. Это очевидно для прямоугольников, ориентированных сторонами по вертикали и горизонтали: поскольку их площадь равна произведению сторон, при скронче высота умножается на какое-то число, а ширина делится на это же число, поэтому произведение останется прежним. Посмотрим, можете ли вы доказать тот же факт для треугольника, что гораздо сложнее!

В скронч-геометрии (скрончметрии) мы называем две фигуры равными, если можем перейти от одной к другой с помощью параллельного переноса и скронча. Два скронч-равных треугольника имеют одинаковую площадь, но два треугольника с одинаковой площадью не обязательно скронч-равные: например, после скронча любой горизонтальный отрезок остается горизонтальным, следовательно, треугольник с одной горизонтальной стороной нельзя сделать скронч-равным треугольнику без горизонтальной стороны.

Даже на плоскости есть большое количество возможных типов симметрии, поэтому охватить их здесь максимально исчерпывающе нереально. Чтобы дать скромное представление об этом «зверинце», приведем диаграмму из авторитетной книги Гарольда Коксетера и Самуэля Грейтцера «Новые встречи с геометрией».

Это дерево во многом похоже на генеалогическое древо, где каждый «ребенок» – частный случай «родителя». Поэтому изометрия (то, что мы называли движением) – это частный случай подобия, а отражения и вращения – частный случай изометрии. «Прокрустово растяжение» – яркий термин Коксетера и Грейтцера для скронча. Аффинные преобразования – те, что получатся, если вы разрешите скронч и подобие. Язык симметрии дает нам естественный способ организовать многие определения в планиметрии (геометрии на плоскости). Упражнение: покажите, что эллипс – это любая фигура, получаемая аффинным преобразованием из круга. Более сложное упражнение: покажите, что параллелограмм – это любая фигура, которая получается аффинным преобразованием из квадрата.


Не существует правильного ответа на вопрос, какие пары фигур «действительно» одинаковые. Это зависит от предмета нашего интереса.

Если нас интересует площадь, то подобия будет недостаточно, поскольку площадь не инвариантна относительно подобия. Но если нас заботят только углы, то незачем настаивать на конгруэнтности: это может быть чересчур трудоемко.

Подобия вполне достаточно. Каждое понимание симметрии порождает собственную геометрию, собственный способ решать, какие вещи отличаются настолько, что лучше не давать им одинаковых названий.

Евклид непосредственно о симметрии почти не писал, но его последователи не могли не задуматься об этом, даже в контекстах, далеких от плоских фигур.

Идея, что при симметрии должны сохраняться те или иные важные величины, естественна для нашего мышления. Линкольн, например, писал в своих личных заметках в 1854 году в весьма геометрическом стиле:

Если А. способен убедительно доказать, что он может по праву поработить B., то почему B. не может воспользоваться тем же аргументом и точно так же доказать, что он может поработить А.?[98]

Линкольн предполагает, что моральная допустимость должна быть инвариантом, подобно площади евклидова треугольника, и не должна меняться только потому, что вы отразили фигуру, чтобы она указывала в противоположном направлении.

При желании мы можем пойти еще дальше, выйдя за рамки школьных уроков. Никаких карандашей, книг и неодобрительных взглядов Евклида! Мы могли бы позволить совершенно произвольно растягивать и сминать фигуры, лишь бы они не рвались; то есть треугольник может стать окружностью или сложиться в квадрат:


но не может стать отрезком, поскольку для этого его пришлось бы где-то разорвать[99]. Звучит знакомо? Этот экстравагантно неприхотливый вид геометрии, где треугольник, квадрат и окружность – одна и та же вещь, и есть топология, созданная Пуанкаре для решения задачи о соломинке. (Ладно, возможно, у него были и другие причины.) Эти симметрии, которые включают в себя все вышеупомянутые типы симметрии, представляют собой непрерывные преобразования, стоящие на ступеньку ниже самой верхней строки в диаграмме Коксетера и Грейтцера. В этой гибкой геометрии не сохраняются ни углы, ни площади. Отпадают все несущественные детали, о которых так заботился Евклид, остается только чистое представление о форме.

АНРИ, Я ДЕФОРМИРОВАЛ ПРОСТРАНСТВО-ВРЕМЯ

В 1904 году в городе Сент-Луис проходила Всемирная выставка[100], посвященная столетию покупки Соединенными Штатами огромной территории Луизианы у Франции (сделка состоялась 101 год назад, но попробуйте устроить такое масштабное мероприятие вовремя!). Выставку, одновременно с которой в городе проходили Олимпийские игры и Национальный съезд Демократической партии, посетило более 20 миллионов человек. Целью была демонстрация того, что Соединенные Штаты, и особенно их центральная часть, готовы к выходу на мировую арену. Событие было увековечено в песне Meet Me in St. Louis («Встретимся в Сент-Луисе»). Из Филадельфии приехал колокол Свободы. Выставлялись картины Джеймса Мак-Нейла Уистлера и Джона Сингера Сарджента. Родившегося в строительной палатке ребенка назвали Louisiana Purchase O’Leary (буквально – Луизианская Покупка О’Лири). Город Бирмингем в Алабаме заказал 17-метровую чугунную статую Вулкана для развития своей сталелитейной промышленности. Легендарный индейский вождь Джеронимо подписывал свои фотографии, а перед толпами появлялась Хелен Келлер[101]. Некоторые утверждают, что именно тогда изобрели мороженое в вафельном стаканчике. А в сентябре прошел Международный конгресс искусств и наук, куда съехались выдающиеся иностранные ученые со всего мира, чтобы пообщаться со своими американскими коллегами там, где впоследствии будет кампус Университета Вашингтона в Сент-Луисе. Присутствовал и сэр Рональд Росс – британский врач, лауреат Нобелевской премии по медицине за открытие механизмов передачи малярии. Приехали и соперничавшие немецкие физики Людвиг Больцман и Вильгельм Оствальд, которые вели сражение за фундаментальную структуру материи: состоит она из дискретных атомов, как думал Больцман, или базовый материал Вселенной – непрерывные энергетические поля, как считал Оствальд? Присутствовал там и Пуанкаре, которому к тому времени исполнилось пятьдесят лет, и он был самым известным геометром в мире. В последний день конгресса он прочитал лекцию на тему «Принципы математической физики» крайне осторожным тоном, поскольку в то время эти принципы подвергались чрезвычайному давлению.

«Существуют признаки серьезного кризиса[102], – сказал Пуанкаре, – которые, казалось бы, указывают на то, что сейчас мы можем ожидать каких-то перемен. Однако поводов для серьезного беспокойства нет. Мы уверены, что пациент не умрет, и даже можем надеяться, что кризис будет оздоровляющим».

Кризис, с которым столкнулась физика, касался проблемы симметрии. Хотелось бы надеяться, что законы физики не изменятся, если вы сделаете шаг в сторону или повернетесь в другом направлении, – иными словами, они инвариантны относительно движений трехмерного пространства. Более того, эти законы в представлении Пуанкаре не должны меняться, если сесть в двигающийся автобус; это просто более сложный вид симметрии, включающий координаты как пространства, так и времени.

Поначалу может показаться неочевидным, что в физике ничего не должно меняться, если наблюдатель будет двигаться, ведь, когда стоишь или двигаешься, ощущения разные, не так ли? Отнюдь. Даже если Анри не едет на автобусе, он стоит на планете Земля, а она с огромной скоростью вращается вокруг Солнца, которое и само по какой-то безумной траектории летит вокруг ядра галактики и так далее. Если не существует абсолютного неподвижного наблюдателя, то нам лучше не принимать физические законы, которые верны только с точки зрения наблюдателя. Они не должны зависеть от его движения.

А теперь о кризисе: похоже, с физикой все обстояло не так. Уравнения Максвелла, великолепно объединявшие теории электричества, магнетизма и света, оказались не инвариантными относительно симметрий, как ожидалось. Самый популярный способ разрешить эту тошнотворную ситуацию – постулировать, что существует абсолютно неподвижная точка отсчета, невидимая основа, именуемая эфиром, – то сукно, по которому катятся все бильярдные шары Вселенной. Тогда истинными законами физики были бы законы, наблюдаемые с точки зрения этого эфира, а не с точки зрения людей на планете. Однако хитроумные эксперименты, предназначенные для обнаружения эфира или измерения скорости прохождения через него Земли, потерпели неудачу. Попытки объяснить этот провал вылились в появление неприятных специальных постулатов вроде сжатия Лоренца – идеи, что длина всех двигающихся объектов уменьшается в направлении их движения. Фундаментальная физика была больна. Пуанкаре завершил свою лекцию попыткой набросать способ избежать опасности:

Возможно, нам придется построить совершенно новую механику, на которую мы можем взглянуть лишь краешком глаза, где инерция будет возрастать со скоростью, а скорость света будет пределом, за который невозможно выйти. Обычная, более простая механика останется первым приближением, поскольку она верна для не слишком больших скоростей, так что старая динамика будет заключена в новой. У нас не должно быть причин сожалеть, что мы верили в старые принципы, – в самом деле, так как скорости, слишком большие для старых формул, всегда останутся исключительными и на практике безопаснее всего будет действовать так, словно мы продолжаем в них верить. Они настолько полезны, что для них следует оставить место. Стремиться полностью их изгнать – значит лишиться ценного оружия. В заключение спешу сказать, что мы еще не достигли этого рубежа и пока еще нет доказательств, что они не выйдут из схватки победителями, в целости и сохранности[103].

Как и предсказывал Пуанкаре, пациент не умер. Напротив, он поднялся с кровати в причудливо измененном виде. В 1905 году, менее чем через год после конференции в Сент-Луисе, Пуанкаре показал, что уравнения Максвелла все-таки симметричны. Однако задействованные симметрии, так называемые преобразования Лоренца, были новыми и смешивали пространство и время гораздо более хитрым способом, нежели «я находился в этом автобусе два часа, так что я в сорока километрах к северу от того места, где был». (Эта разница особенно заметна, когда автобус двигается со скоростью 90 % от скорости света.) С этой новой точки зрения сжатие Лоренца оказывалось не каким-то странным неуклюжим ляпом, а естественной симметрией: то, что какой-то объект может менять длину при столкновении с симметрией Лоренца, не более странно, чем тот факт, что треугольник может менять форму, когда к нему применяется скронч-преобразование. Если вы знакомы с симметриями, то знаете о том, насколько разными могут быть две вещи, называемые «одинаковыми». Пуанкаре был полностью готов к этому скачку, поскольку уже был одним из новаторов в чистой математике, разработавшим формы планиметрии (геометрии плоскости), отличавшиеся от евклидовых, в частности с другой группой симметрий. А «четвертая геометрия» Пуанкаре, которую он сформулировал еще в 1887 году, была не чем иным, как скронч-плоскостью.

Скронч-геометрия включает законы сохранения вертикали и горизонтали: если две точки соединены вертикальным или горизонтальным отрезком, то и после скронч-преобразования это свойство сохранится. Лоренцево пространство-время во многом такое же. Точка в пространстве-времени – это положение и момент времени; особые отрезки, которые сохраняются при симметриях Лоренца, – это отрезки, соединяющие два положения-момента, для которых положения разделены расстоянием, в точности равным преодоленному светом за время между их моментами. Иными словами, в геометрию встраивается скорость света. На вопрос о том, может ли свет добраться из положения-момента А в положение-момент В, есть определенный ответ, который будет одним и тем же независимо от того, сидите вы в движущемся автобусе или нет.

Скронч-плоскость подобна детской версии пространства-времени Лоренца. Вы можете думать о ней следующим образом: так выглядела бы релятивистская физика, если бы у нас вместо трех измерений пространства имелось всего одно, и вместе с одномерным временем получалось бы двумерное пространство-время.

Однако Пуанкаре не разработал теорию относительности. Последнее предложение его лекции в Сент-Луисе объясняет почему. Пуанкаре надеялся, что фундаментально менять физику не придется. С помощью математических исследований он открыл странную геометрию, к которой вели уравнения Максвелла, но у него не хватило смелости проследить весь путь до странной точки на горизонте, на которую они указывали. Он был готов согласиться с тем, что физика может оказаться не такой, как представляли он и Ньютон, но не был готов принять то, что геометрия самой Вселенной может оказаться не той, которую представляли он и Евклид.

То, что Пуанкаре увидел в уравнениях Максвелла, в том же 1905 году увидел и Альберт Эйнштейн. Более молодой ученый был смелее. Именно Эйнштейн «перегеометрил» лучшего геометра мира и перестроил физику в соответствии с указаниями симметрии.

Математики быстро осознали важность новых разработок. Герман Минковский первым проработал эйнштейновскую теорию пространства-времени до ее геометрической основы (поэтому то, что мы называем здесь скронч-плоскостью, на самом деле называется плоскостью Минковского, если вы захотите об этом почитать). А в 1915 году Эмми Нётер установила фундаментальную связь между симметриями и законами сохранения. Нётер жила абстракциями и, став старше, описывала свою диссертацию 1907 года – крайне изобретательную вычислительную работу, включавшую определение 331 инварианта полиномов четвертой степени от трех переменных, – как «дерьмо»[104] и «дебри формул» (Formelngestrupp). Слишком неряшливо и специфично! Модернизация теории дыр Пуанкаре таким образом, чтобы речь шла о пространстве дыр, а не о простом их подсчете, во многом соответствовала ее менталитету и расчистила хаос законов сохранения в математической физике. Поиск величин, которые сохраняются при данной симметрии, почти всегда важный физический вопрос; Нётер доказала, что каждый вид симметрии связан с соответствующим законом сохранения, увязав то, что было беспорядочной кучей вычислений, в аккуратную математическую теорию и решив тем самым загадку, озадачившую самого Эйнштейна.

Нётер уволили из Гёттингенского университета в 1933 году вместе с другими учеными-евреями, и она переехала в США, где стала работать в колледже Брин-Мар, однако вскоре умерла в возрасте всего лишь 53 лет от инфекции после вроде бы успешной онкологической операции. Эйнштейн написал письмо в The New York Times, воздав должное ее работе словами, которые великая специалистка по абстракциям, несомненно, оценила бы:

Она открыла методы[105], которые оказались крайне важными для развития современного молодого поколения математиков. Чистая математика – это в своем роде поэзия логических идей. Разыскиваются самые общие идеи, которые объединяют в простую, логичную и единую форму максимально широкий круг формальных отношений. В этом стремлении к логической красоте обнаруживаются божественные формулы, необходимые для более глубокого проникновения в законы природы.

Глава 4. Фрагмент сфинкса

Вернемся к выставке в Сент-Луисе. Напомним, что среди крупных ученых там присутствовал сэр Рональд Росс, который в 1897 году установил, что малярия переносится укусами комаров-анофелесов. К 1904 году он стал мировой знаменитостью, и идея пригласить его в Миссури для чтения лекции было весьма удачной. Заголовок в газете St. Louis Post-Dispatch гласил: «Человек-комар уже в пути»[106].

Лекция Росса называлась «Логические основы санитарной политики по снижению количества комаров», что, надо признать, не звучит сенсационно. Однако это выступление стало первым проблеском новой геометрической теории, которая готовилась ворваться в физику, финансы и даже изучение поэтических стилей: теории случайных блужданий.

Росс выступал во второй половине дня 21 сентября[107] – как раз тогда[108], когда в другом месте выставки губернатор Ричард Йейтс смотрел парад призового домашнего скота. Росс начал:

Предположим, вам удалось остановить размножение комаров в некоей круглой области, осушив пруды, где развиваются личинки. Это не устранит всех потенциальных малярийных комаров в этой местности, поскольку они могут родиться вне этого круга и прилететь в него. Однако жизнь комара коротка, и никаких целенаправленных устремлений у него нет; он не полетит прямым курсом к центру круга, да и в целом вряд ли заберется далеко вглубь за то короткое время, что ему отведено природой. Поэтому можно надеяться, что в каком-то районе вблизи центра нашего круга не будет малярии, если круг достаточно велик.

Насколько велик? Это зависит от того, как далеко в своих блужданиях может залететь комар. Росс продолжил:

Предположим, что комар рождается в определенной точке, но в течение своей жизни блуждает туда-сюда, влево-вправо, как ему заблагорассудится… Через какое-то время он умирает. Какова вероятность того, что его мертвое тело окажется на заданном расстоянии от места рождения?


Вот диаграмма, которую представил Росс. Пунктирная линия – это движение блуждающего комара; прямая – путь более целеустремленного комара, преодолевшего до своей смерти гораздо большее расстояние. «Всеобъемлющий математический анализ, определяющий этот вопрос, довольно сложен, – сказал ученый, – и я не могу справиться с ним во всей полноте»[109].

В XXI веке можно легко смоделировать путь комара, двигающегося по таким путям, что позволит улучшить диаграмму Росса, рассмотрев не пять этапов перемещения комара, а десять тысяч.


Типичная картина: иногда комар держится какое-то время в одном месте, и его траектория пересекает себя так часто, что почти заполняет все пространство; иногда кажется, что насекомое обретает какое-то чувство направления, и ему удается преодолеть некоторое расстояние. Должен сказать, что наблюдение за анимацией этого процесса затягивает – безо всяких разумных на то оснований.

Росс разобрался только с гораздо более простым случаем, когда комар придерживается прямой линии, выбирая, лететь ему на северо-восток или на юго-запад. Мы тоже справимся! Предположим, что комар живет десять дней и каждый день выбирает, лететь ему километр на северо-восток или километр на юго-запад. Если учесть, что выбор из двух вариантов происходит ежедневно, общее количество возможных карьерных траекторий насекомого равно 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1024, причем все пути равновероятны (при условии, что наш комар беспристрастен). Чтобы комар закончил свои дни в 10 километрах к северо-востоку от места появления, ему нужно десять раз подряд выбрать северо-восточное направление движения, а это означает, что так поступит только один комар из 1024. Такая же крохотная доля всех комаров умрет в 10 километрах к юго-западу от родины. Сколько насекомых окажутся на расстоянии 8 километров? Для этого нужно, чтобы комар совершил определенную последовательность выборов, например:

СВ, СВ, СВ, ЮЗ, СВ, СВ, СВ, СВ, СВ, СВ,

где девять раз будет выбрано одно направление и один раз противоположное. Одинокий ЮЗ может находиться на любом из десяти мест, поэтому 10 из 1024 путей заканчиваются в 8 километрах к северо-востоку и еще 10 – в 8 километрах к юго-западу, то есть всего нужных путей 20. Присмотревшись, можно увидеть, что на внешних окружностях своей диаграммы Росс написал маленькие цифры 2 и 20. Если хотите, можете попробовать нарисовать 45 путей, которые заканчиваются в 6 километрах к северо-востоку от исходной точки, или 210, завершающихся в 2 километрах к северо-востоку, или 252, которые возвращают комара в тот самый зловонный пруд, где он родился. Самым вероятным местом могилы комара будет точка его рождения. Это имеет смысл, поскольку задачу о комарах можно смоделировать, подбросив десять монет: если выпал орел, то мы двигаемся на северо-восток, а если решка, на юго-запад. Итоговое расстояние в 8 километров означает, что выпало 9 орлов и 1 решка; возвращение домой означает 5 орлов и 5 решек, а это в действительности самый вероятный исход при подбрасывании десяти монет. Если вы построите гистограмму для всех результатов, то получится старая добрая колоколообразная кривая нормального распределения, показывающая склонность комаров держаться своих корней.

Однако мы можем узнать больше. Немного поработав, можно вычислить, что за 10 дней комар в среднем преодолеет 2,46 километра. Это типичная продолжительность жизни самцов. Самки комаров живут больше 50 дней и за это время в среднем продвинутся на 5,61 километра. Комар-долгожитель, живущий 200 дней, теоретически мог бы пролететь 200 километров, но в среднем удалится на 11,27 километра от дома. Четырехкратное увеличение жизни увеличивает расстояние всего вдвое. Здесь мы сталкиваемся со свойством, впервые обнаруженным Абрахамом де Муавром в XVIII веке (правда, он изучал не комаров, а подбрасывание монет): среднее отклонение числа орлов от половины при n подбрасываниях монеты определяется квадратным корнем из n. Комар с продолжительностью жизни, стократно превышающей норму, скорее всего, заберется всего лишь вдесятеро дальше своих недолговечных собратьев. Комар может улететь дальше, чем вы ожидаете, но с большой вероятностью этого не произойдет. Шансы, что комар на двухсотый день жизни окажется не ближе 40 километров от дома, составляют всего лишь 3 на 1000[110].

СНЯТО!

Однако 2,46 – это не квадратный корень из 10, а 11,27 – это не квадратный корень из 200! Хорошо-хорошо, я только рад, что вы читаете книгу с карандашом в руке. Более точное приближение состоит в следующем: за первые N дней путешествия комар в среднем улетит на расстояние, примерно равное Проверяем: за десять дней комар пролетает


Весьма близко! А для 200 дней получаем



Поделиться книгой:

На главную
Назад