Например, возьмем множество из 2-х элементов: РАЗ, ДВА (и обчелся). Подмножествами этого множества будут 4 множества(!):
1) РАЗ, ДВА – (любое множество подмножество самого себя)
2) РАЗ
3) ДВА
4) пустое – (т.е. «обчелся»).
Другой пример: А И Б (сидели на трубе)
Подмножествами этого множества из трех элементов будет 8 множеств:
1) А, И, Б
2) А, И
3) А, Б
4) И, Б
5) А
6) И
7) Б
8) пустое
Из четырех элементов получилось бы 16 элементов. И этот ряд можно бесконечно продолжить, как ряд степеней числа 2.
Так вот, Кантор и доказал, что если взять бесконечное множества счетной мощности, например, множество целых положительных чисел и построить (разумеется, умозрительно) множество, содержащее в качестве элементов все подмножества этого множества, то получим мощность
И снова житейский парадокс. Мощность континуума имеет, например, множество точек прямой или множество действительных чисел, что то же самое. Более того, любой отрезок числовой оси, даже такой малюсенький отрезок, как отрезок от 0 до 1, имеет мощность континуума, то есть на нем больше чисел, чем найдется чисел в счетном множестве. А раз этот отрезок имеет мощность континуума, как и вся (бесконечная) прямая и, естественно, любой ее отрезок, то можно сказать, что на отрезке от 0 до 1 ровно столько же точек, сколько на отрезке прямой от Земли до Юпитера.
Здесь тоже часть равна целому, если и часть, и целое имеют мощность континуума. И все они одинаково больше числа звезд на небе или числа всевозможных алгоритмов…
Для бесконечностей существует очень простая арифметика, которая логически следует из предыдущих разговоров. Сложение двух счетных мощностей дает счетную мощность, а для континуумов – мощность континуума. При вычитании из мощности континуума счетной – в остатке мощность континуума. Но вот если вычитать из континуума континуум или из счетной мощности счетную – всякое может получиться в каждом конкретном случае. Тут запросто можно напрячься и придумать свои иллюстрации.
Однако, не все так просто. Бесконечность остается одной из ключевых категорий философии. И математика здесь подливает масла в огонь, показывая все новые грани этой проблемы. Тем более, если говорить не только о бесконечных, но и о бесконечных упорядоченных множествах. Впрочем, желающие могут почитать книжки об очень красивых вещах с немение красивыми романтическими названиями: «кардиналы и ординалы».
Лекция 3. ОПЕРАЦИИ НАД МНОЖЕСТВАМИ
Говорят операции
Основных операций всего три. Это меньше, чем в школьной арифметике. Хотя даже это множество операций несколько избыточное. Операции называются
Начнем с исторической байки.
Аксель Иванович Берг – адмирал и академик, человек со взрывным характером, был одним из первых пропагандистов кибернетики в СССР, когда она еще официально считалась «продажной девкой капитализма». Дискретную математику тогда в технических вузах не изучали из-за полной ее практической бесполезности, а кибернетика уже начинала ею робко пользоваться.
Во время беседы с одним «журналистом по научной тематике», который утверждал, что теория множеств не только не нужна, но и не понятна простому советскому инженеру, Берг прервал беседу и приказал своему шоферу отвести их в ближайший детский садик.
В детском садике дети играли в большом песочнике. Других развлечений в послевоенных садиках было мало. Берг нарисовал в песочнике два больших частично пересекавшихся круга, как это делают со свадебными кольцами на открытках и машинах. (Для тех, кто со свадьбами в жизни не сталкивался, скажем, что с похожим перехлестом рисуют олимпийские кольца).
Далее он сказал: «Пусть в левый круг встанут все, кто любит манную кашу, а в правый – все, кто любит сливовый кисель!». Дети были горазды поесть (послевоенное время голодное), поэтому никто не остался равнодушно стоять в стороне и все забежали в нарисованные круги. Об'единение всех этих маленьких сладкоежек и есть операция об'единения теории множеств.
Но, поскольку почти все дети встали в то место, где круги наложились друг на друга, из-за любви к каше и киселю одновременно, то тем самым продемонстрировали понимание физического смысла операции пересечения двух множеств.
«Ну вот! Не знаю как инженеры, а дети понимают смысл операций над множествами!»,– сказал Берг…
Кстати, здесь роль универсума играл весь песочник.
То, что нарисовал на песке Берг, называют сейчас диаграммами Эйлера-Венна. А то, что находилось на песке за пределами каждого из кругов, было дополнением соответствующего множества, то есть множеством элементов универсума, не принадлежащих к числу любителей данного кушанья (там находились Берг с журналистом).
Если рассмотреть внимательно студенческую группу ух-004, то об'единение множества отличников и спортсменов даст множество под названием «слава группы ух-004». Принципиальное отличие об'единения множеств от школьного сложения не только в том, что студенты – это не числа и мы их не пересчитываем(
Ясно, что пересечение этих множеств даст двух студентов, которые одновременно и отличники и спортсмены. Они, скорее всего, девушки, да еще и красавицы, но красота не использовалась здесь в качестве характеристики, по которой выделялись элементы этих множеств…
Когда у математиков появляются в руках об'екты, а у нас здесь раздолье – любые об'екты можно брать, и операции – а мы основную тройку тоже обозначили, то математики начинают говорить об
Алгебра множеств как небо и земля отличается от школьной, хотя есть некоторые аналогии. В алгебре множеств есть те же названия законов:
Проиллюстрируем сказанное:
Коммутативный закон: Об'единение (пересечение) отличников и спортсменов равно об'единеию (пересечению) спортсменов и отличников.
Ассоциативный закон: От изменения порядка об'единения (пересечения) спортсменов, отличников и красавцев результат не меняется.
Дистрибутивный закон (только экзотическая версия): Об'единение красавцев с пересечением спортсменов и отличников равно множеству, в котором пересекаются об'единения красавцев и спортсменов с об'единеием красавцев с отличниками. (В условных обозначениях это было бы гораздо короче и нагляднее, но мы зареклись насчет формул).
Сложновато воспринимается на слух закон поглощения, который, однако, в ряде случаев позволяет упрощать теоретико-множественные конструкции. Пересечение отличников с об'единением отличников и спортсменов дает множество отличников. Или второй вариант. Об'единение отличников с пересечением отличников и спортсменов дает множество отличников. Тем не мение, если обдумать сказанное, и поразмахивать руками, то справедливость результатов очевидна.
Есть еще закон, название которого почему-то студентов забавляет – он им, видимо, что то-напоминает. А закон этот смело можно отнести к самым важным законам (свойствам). Это закон
Очень по-французски звучит
Очень прост закон
Самыми экзотическими являются два закона:
Противоречия: Пересечение множества спортсменов с дополнением множества спортсменов пусто. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены, то у этого пересечения не может быть общих элементов.
Исключенного третьего: Об'единение множества спортсменов с дополнением множества спортсменов совпадает с рассматриваемым универсумом. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены из универсума, то это об'единение как раз и составляет весь универсум.
Остается только высказать сожаление, что не все математики согласны с этими законами. Еще большее сожаление вызывает то, что у них на это есть весьма веские основания… Не менее веские, чем у сторонников законов.
Несогласные себя называют
Согласным же ничего не осталось, как назвать самих себя
Лекция 4. СООТВЕТСТВИЯ, ОТОБРАЖЕНИЯ, ОТНОШЕНИЯ
Алгеброй далеко не исчерпывается все то, что можно сделать с множествами…
В математике, как и в жизни, различные об'екты могут чему-то соответствовать или не соответствовать. Находиться меж собой в определенных отношениях или наоборот – не находится. И основой формализации, если угодно – математизации, здесь также служат множества.
То есть между множествами могут устанавливаться различные
Человек может соответствовать профессии, зарплата соответствовать должности, наказание – преступлению, оценка – знаниям.
Глядя на многочисленные примеры вокруг мы замечаем, что для определения конкретного соответствия надо определить два множества: множество (область) определения и множество (область) значений. А также определить «пары соответствий». Например, область определения – группа ух-005, сдающая экзамен; область значений – отл, хор, уд, неуд – множество оценок. И множество пар Иванов – отл, Петров – хор, Сидоров – отл. А Хведоров – не явился. Вот вам и готовое соответствие.
Соответствия обладают свойствами.
1. В данном случае соответствие
2. Соответствие
Если бы за один экзамен студенты могли получать несколько оценок, то соответствие было бы
3. Данное соответствие
4. Данное соответствие
5. Соответствие, которое одновременно
Выделение соответствий в отдельную категорию предложили европейцы, а точнее французы, а еще точнее, Николя Бурбаки (это французский Козьма Прутков, состоявший из математиков интеллектуалов). Американская школа считает соответствия частным случаем отношений. А у нас разговор про отношения отдельный – так легче разложить все по полочкам. Так что пришла пора поговорить об отношениях.
В математике, как и в жизни, различные об'екты могут иметь какое-то отношение к другим об'ектам или не иметь.
Родственные отношения, дружеские отношения, дипломатические отношения, равноправные отношения.
Глядя на многочисленные примеры вокруг, мы замечаем, что отношения отличаются от соответствий тем, что определяются на одном множестве. Бессмысленно бы было говорить об отношениях между студентами и оценками. О дипломатических, родственных или любых других отношениях между должностью и зарплатой. Для определения конкретного отношения надо определить множество, и пары, для которых имеет место данное отношение.
Например, на множестве людей отношения «быть братом», «учиться в одной группе» или «быть выше ростом».
Отношения, в силу специфики, характеризуются иным перечнем свойств, нежели соответствия.
1.
2.
3.
4.
5.
6.
Если студенческую группу рассматривать как элемент университета – множества, состоящего из групп, а университет элемент высшей школы – множества, состоящего из университетов, то группа не является элементом высшей школы (там элементы университеты). То есть отношение «принадлежности» нетранзитивно. «Вассал моего вассала -…»
Вернемся к функциональному соответствию (то есть к функции). Если это соответствие к тому же еще и всюду-определено, то оно называется
Если отобразить множество студентов в группе, на множество фамилий в группе, То это скорее всего будет
Мы подошли к одному из самых фундаментальных, может потому и неблагозвучных, понятий и теории множеств, и математики вообще, мы подошли к
Пример. Отобразим множество точек участка земной поверхности на множество точек карты. Сейчас оставим в стороне то, что некое множество точек земной поверхности отобразится в одну точку на карте, в таких случаях неин'ективность – обычное дело. Для нас существенно то что, чем выше точки земной поверхности над уровнем моря, тем в более коричневые точки карты они отображаются.
Таким образом, мы рассматриваем не просто множества элементов. В первом случае здесь между элементами множества существует отношение «выше», а во втором – «коричневее». Где выше в первом – там коричневее во втором. «Выше» и «коричневее» – это отношения заданные на своих множествах.
Отображение земной поверхности
Такое отображение называется
Вернемся к тому, что слово не очень благозвучное, а по американским меркам и громоздкое. Поэтому последнее время все чаше используется более короткий (усеченный) термин – МОРФИЗМ.
Морфизмы играют в математике исключительную роль. Коль скоро математику не без оснований часто отождествляют с математическим моделированием, то приведем афоризм из одной умной философской книжки:
Афоризм в конце лекции провоцирует размышления. Чего бы и хотелось добиться…
Лекция 5. ОСОБЫЕ ОТНОШЕНИЯ
Каждое конкретное отношение обладает сразу совокупностью свойств. Полезно исследовать группы отношений, у которых совокупности свойств одинаковые.
Прежде всего к таковым относятся отношения
Интересно, что каждый об'ект эквивалентен сам себе хотя бы потому, что для самого невероятного об'екта, который ни на что не похож, по отношении к самому себе выполняются рефлексивность, симметричность и транзитивность. Обычно же об'екты не столь уникальны и имеют место множества (любят говорить
Самое важное свойство отношения эквивалентности (то есть свойство отношения, которое само определено с помощью трех вышеупомянутых свойств) покажем на примере. Если взять первозданный хаос, то есть все множество студентов университета, которые болтаются по коридорам, сидят в буфете или в аудиториях, а еще лучше дома или вообще неизвестно где, то отношение «учиться в одной группе»
В качестве лабораторной работы по разбиению рекомендуется разбить тарелку. Желательно, из китайского фарфора. А потом созерцать осколки, каждый из которых будет для фарфоринок классом эквивалентности применительно к отношению «принадлежать одному и тому же осколку»… Это лучше, чем разбивать группы, тем более, что ортодоксальные алгебраисты под «группой» понимают не кучу студентов, а нечто фундаментальное математическое… Но это уже начало другой романтической истории про молоденького французского гения и (увы) дуэлянта – Эвариста Галуа.
Заметную роль в математике играют и отношения