Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Физика и магия вакуума. Древнее знание прошлых цивилизаций. - Игорь Иванович Прохоров на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Физика и магия вакуума. Древнее знание прошлых цивилизаций.

Введение 

     Человечество всегда интересовалось такими странными, необычными и необъяснимыми явлениями, как телепатия, телекинез, путешествия в прошлое и будущее и т. д. Материализм, захлестнувший Европу в 18-20 веках, объявил все феномены с приставкой пара- или сверх- в лучшем случае заблуждениями необразованного ума, а в худшем случае — сознательным обманом. Несмотря на окончательный приговор материалистической науки, вера в чудеса никогда не умирала. В последнее время под напором новых и непредвзятого анализа старых фактов, изложенных в античных и средневековых рукописях, глухая оборона ортодоксально настроенных представителей академической науки начинает давать трещины. С другой стороны последние успехи квантовой физики, психологии, космологии и других наук позволяют бросить новый свет на те явления, которые старая наука трактовала ошибочно, а в ряде случаев даже дать этим явлениям вполне логическое объяснение.

     Автор не задавался целью изложить как можно больше сведений в пользу существования сверхъестественных феноменов, чтоб убедить скептика в их реальности. Как сказал один мудрец: «Убеждается лишь тот, кто уже убежден». Каждый желающий может сам найти нужные примеры в книгах других авторов. Цель настоящей книги состоит в том, чтобы попытаться объяснить многие из необычных явлений с некоторых единых научных позиций, прежде всего с позиций новой физики. Насколько это удалось — судить читателю.

     Конечно, совсем без примеров обойтись невозможно. И они в книге будут. К сожалению, многие факты, найденные нами в Интернете и книгах других авторов, являются выдумкой или ошибочным восприятием реальности испуганным очевидцем (померещилось что-то в темноте, рассказал потом своим знакомым об этом и пошла гулять очередная история по Интернету). Но я не буду выяснять, какие из этих фактов реальны, а какие выдуманы. И вот почему.

     Всех ученых можно условно разбить на три категории: генератор идей, интеллектуал, критик. Генератор идей — это человек, который постоянно выдает новые идеи. Таких людей в научном мире очень мало, не более 5% от общего числа. Но именно от них в основном зависит, как быстро будет двигаться вперед научно-технический прогресс и будет ли двигаться вообще. Интеллектуал доводит высказанные генератором научные и технические идеи до победного конца и реализует их в готовый продукт. Среди ученой братии их большинство, до 90% от общей массы. Конечно, интеллектуал тоже может выдать какую-нибудь интересную идею, но случается это намного реже по сравнению с генератором и потому погоды не делает. Наконец критик ищет слабые места в высказанных идеях и гипотезах, шероховатости, ошибки и неточности. И почти не бывает случаев, чтобы критик выдал кардинально новую интересную идею. Кем именно станет молодой человек, вступающий в область науки, зависит от его психологии. Образование в этом вопросе почти никакой роли не играет.

     Автор настоящей книги является типичным генератором идей. А анализ фактов на предмет их достоверности — это работа критика. Если я начну выполнять работу критика, тогда у меня не останется времени на то, чтобы работать в своей области, в области генерирования новых идей. Поэтому приходится принимать многие факты так, как я нашел их в литературе.

     Конечно, не все можно объяснить в одной книге. Область загадочного настолько обширна и настолько разнообразны имеющиеся факты, что дать объяснение всем фактам и феноменам в принципе невозможно. Нельзя объять необъятное. Поэтому всегда останутся явления и факты, никак не объясняемые с точки зрения той парадигмы, которой я придерживаюсь.

     Содержание настоящей книги можно условно разделить на чисто научную и научно-популярную части. Научное содержанием книги сосредоточено в главах от первой до пятой. Здесь приводятся формулы, графики и результаты расчетов. Она будет интересна ученым и специалистам, а также тем, кто «дружит» с формулами и графиками. И эту часть можно условно назвать «Физика вакуума». Научно-популярная часть содержится в шестой, седьмой и восьмой главах. И по своему объему она значительно превосходит научную половину книги. В ней нет формул, графиков и расчетов. Она будет интересна всем, кому интересны загадки и тайны нашего мира, а также все необычное и аномальное. Эту часть можно условно назвать «Магия вакуума». А объединяя оба названия вместе, мы получаем «Физика и магия вакуума».

Ключом к разгадке большинства аномальных феноменов, если даже не всех, служит информация, излагаемая в первой и частично во второй главах. Поэтому тот, кто не поленится вникнуть в дебри физики первых двух глав, потом сможет достаточно легко понимать метафизику многих аномальных явлений. А кто-то сможет даже самостоятельно объяснить некоторые аномалии еще до того, как прочитает соответствующий раздел в книге. В противном случае придется просто верить автору на слово.

     Некоторые из описанных явлений (выход из тела, телепатия, телекинез и другие) были опробованы мною на собственном примере. Другие более сложные феномены (путешествия во времени, телепортация) еще не освоены. Поэтому там, где я имею собственный опыт, наряду с чисто физическими объяснениями будут приведены примеры из этого опыта и полезные рекомендации. В других случаях дается только теория.

     Многие скептики после прочтения данной книги будут обвинять меня в лженауке, незнании школьного курса физики и даже в сознательном обмане. Так происходило всегда в прошлом и будет происходить в будущем. Слишком много нового излагается в настоящей книге, настолько нового, что не всякий человек сможет «переварить» полученную информацию. По этому поводу еще основатель квантовой теории немецкий физик Макс Планк высказал очень интересную мысль. По его мнению новые идеи не потому завоевывают место под Солнцем, что они кого-то убеждают, но просто по причине ухода из жизни стариков, придерживающихся привычных взглядов и концепций. А приходящая им на смену молодежь усваивает новые идеи сразу в готовом виде.

     Я столкнулся с этой проблемой сразу, как начал публиковать в Интернете отдельные статьи на темы настоящей книги и освещать старые научные проблемы с новых позиций. Многие молодые люди сразу принимали мою позицию. Но люди старшего поколения (и особенно академические ученые) в подавляющем большинстве стали обвинять меня в обмане, подтасовках и лженауке. Я ни с кем спорить не стану, т. к. давно уже понял, что истина в споре не рождается, в спорах рождаются только ругань и склоки. А ругаться я ни с кем не хочу. Поэтому я просто публикую свои результаты в области новой физики и объяснения многих феноменов, которые с позиций старой традиционной физики кажутся невозможными. Пусть читатель сам решает, насколько верна позиция, излагаемая в данной книге.

     А теперь приступим к анализу того, что до сих пор считается невозможным.

Глава 1. Физика, космология.

     Физика как наука содержит сравнительно много разделов по сравнению с другими научными дисциплинами. Механика, оптика, электричество, термодинамика, кристаллография, ядерная физика, теория относительности и многие иные разделы настолько специализированы, что знатоку в одной области трудно (а подчас невозможно) работать в иных областях. Общепринятым является мнение, что лишь некоторые разделы физики находятся в стадии непрерывного развития — например, теория элементарных частиц — а большинство разделов проработаны настолько тщательно, что никаких новых открытий там сделано быть не может. Особенно это касается самой старой отрасли физики — механики.

     Такая точка зрения является ошибочной. Именно в механике содержатся зерна совершенно новых представлений на природу реальности, которые могут кардинально изменить всю физику. Механика является фундаментом физики и малейшие изменения в ней ведут к автоматическому изменению многих кажущихся незыблемыми положений других разделов. Изменения некоторых постулатов механики уже давно назрели, т. к. в свое время они были сформулированы неверно. Но ошибочность этих постулатов стала видна совсем недавно.

     Человеческому сознанию присущи многие стереотипы и ограничения мышления. Какие-то из них никак не сказываются в научной работе исследователя, другие оказывают заметное влияние. Один из наиболее значительных стереотипов, играющий отрицательную роль в процессе научного познания и являющийся причиной многих ошибок современной науки, можно сформулировать следующим образом: если я чего-то не вижу своими глазами (не чувствую, не могу измерить или зафиксировать своими приборами и т. д.), значит этого не существует. Такое ограничение мышления можно назвать стереотипом слепоты. Подобный подход значительно сужает круг наших поисков: если мы заранее отвергаем существование некоторого явления лишь по той причине, что не можем зафиксировать его своими приборами, тогда растет вероятность ошибки в наших попытках объяснить некоторые феномены, в которых может участвовать данное явление.

     Мы многое не видим глазами и не можем до сих пор фиксировать своими приборами. Мы не видим даже воздух, которым дышим. А тысячу лет назад мы были не в состоянии фиксировать гравитационное и электрическое поле, но эти поля прекрасно существовали сами по себе, не обращая внимание на наше незнание об их сути. Отдавая себе отчет в такой особенности человеческого мышления, автор настоящего труда старается в своей работе придерживаться иного правила: может существовать нечто, чего я не вижу своими глазами (не чувствую, не могу измерить или зафиксировать своими приборами и т. д.), но что реально существует и проявляет себя в разных феноменах. Это правило можно назвать правилом предварительного знания. Такой подход более плодотворен: предполагая существование того, что на данном этапе не поддается обнаружению, и анализируя полученные результаты с этой точки зрения, мы можем в будущем понять, как можно обнаружить и зафиксировать предполагаемое явление.

     Стереотип слепоты особенно сказывается в исследовании физических концепций, не имеющих вещественной природы. Одна из таких концепций — энергия. Именно в вопросах энергии было допущено наибольшее количество ошибок нашей наукой. Самые первые ошибки были сделаны Галилеем и Ньютоном. С тех пор эти ошибки стали настолько привычными, настолько въелись в наше сознание, что уже не воспринимаются как ошибки даже после приведения многочисленных доказательств. По этой причине многие энергетические процессы трактуются наукой неверно или вообще никак не объясняются, т. к. в принципе не поддаются объяснению со старых позиций. Рассмотрим несколько таких процессов с участием энергии.

1.1 Парадоксы энергии

     Парадокс №1. Представим себе обычный ящик с двумя трубами, по одной из которых в ящик вливается вода, по другой она выливается. Часть воды в ящике каким-то образом преобразуется в электромагнитное излучение и выбрасывается наружу. Если в ящик подается 10 кг воды в секунду, а перерабатывается в излучение 2 кг воды в секунду, тогда каков будет расход в отводной трубе? Наверное, даже первоклассник ответит, что по отводной трубе будет уходить 8 кг воды в секунду. Теперь заменим трубы на электрические провода, а ящик на электролампочку, и рассмотрим ситуацию заново. По одному проводу в лампочку поступают электроны, по другому проводу они из лампы уходят. Если мы полагаем, что свет в лампочке возникает за счет преобразования электрического тока в излучение, то есть за счет потребления электронов, тогда из лампочки по другому проводу будет уходить электронов меньше, чем в нее поступает. А что покажут измерения? Они покажут, что сила тока (то есть количество электронов, проходящих в единицу времени через сечение провода) во всех проводах одинаково. Следовательно, сколько электронов вошло в лампочку по одному проводу, ровно столько же с точностью до единицы уйдет по другому. Тогда за счет чего светит лампочка?

     Электромагнитное излучение — это разновидность материи. А материя не может возникнуть из абсолютной пустоты, но только из другой разновидности. К тому же преобразование электронов в электромагнитное излучение противоречит так называемому закону сохранения лептонного заряда. Согласно этому закону, электрон может исчезнуть с испусканием гамма-кванта только в реакции аннигиляции со своим антиподом, с позитроном. Но в ламочке никаких позитронов как носителей антиматерии быть не может.

     В ходе обсуждения этой проблемы с одним оппонентом им было высказано мнение, что лампочка может светить за счет преобразования напряжения. Да, напряжение на выходе из лампы меньше, чем на входе. И на первый взгляд может показаться, что напряжение переходит в световое излучение. Однако, напряжение является только характеристикой, а характеристику невозможно преобразовать в разновидность материи. Например, если мы сжигаем в топке кусок угля, что преобразуется в тепло: сам уголь или его теплотворная способность? Если второе, тогда уголь в топке должен остаться целым, а его теплотворная способность обратится в нуль. В реальности все же сгорает уголь, а теплотворная способность лишь покажет, сколько тепла будет выделяться. С напряжением должна наблюдаться аналогичная картина: в световое излучение будет преобразовываться что-то более реальное, а напряжение лишь покажет, как много этого реального перейдет в излучение.

     Энергия тока также не может быть преобразована в световое излучение. В крайнем случае ее можно преобразовать в энергию светового потока, но не в сам свет. Ибо энергия есть всего лишь характеристика подобно напряжению, а свет является разновидностью материи. Характеристику невозможно преобразовать в материю. Поэтому данная проблема оказывается не решаемой, если оставаться в старых научных рамках.

     Парадокс №2. Другой парадокс прекрасно известен всем военным. Если солдаты идут строевым шагом по мосту, в конструкциях моста могут возникнуть резонансные колебания и мост рухнет. По этой причине при переходе моста солдатам всегда отдается приказ сбить шаг и идти вразброд, в этом случае мост остается целым. Для разрушения моста требуется огромное количество энергии, которое не может появиться просто так из пустоты. Когда солдат ударяет по мосту своим сапогом, он сообщает ему некоторую энергию. Ясно, что сила, с которой солдат ударяет по мосту (и энергия, сообщаемая мосту солдатом), не зависит от того, идет ли он в ногу со всеми или нет. Тогда почему мост разрушается в случае марширующей колонны и остается целым при шаге вразброд?

     Общепринятая точка зрения заключается в том, что при шаге вразброд энергии, передаваемые мосту отдельными солдатами, взаимно нейтрализуются. Ошибочность такого объяснения очевидна (по крайней мере мне). Если некто ударил по мосту один раз и сообщил ему энергию Е1, а затем другой ударил вторично и передал энергию Е2, какова будет общая энергия: Е1+Е2 или Е1—Е2 ? Любой ответит, что общая энергия будет равна сумме отдельных составляющих. А для того, чтобы отдельные энергии взаимно нейтрализовались, необходимо чтоб общая энергия была равна их разности.

     Например, тепло есть одна из форм энергии. И если одна порция энергии может нейтрализовать другую, тогда мы могли бы наблюдать интересный феномен. Наливаем в стакан воду и слегка ее подогреваем, то есть сообщаем воде первую порцию тепла. Продолжаем воду нагревать, то есть сообщаем ей вторую порцию тепла. Но вторая порция нейтрализовала первую, и вода охладилась. Кто-нибудь наблюдал подобный феномен?

     Взаимно нейтрализоваться могут только векторные величины, то есть величины, которые имеют направление. Например, силы. Когда некоторая сила действует в одном направлении, а другая направлена ей навстречу, они друг друга взаимно нейтрализуют. Что касается энергии, она относится к разряду скалярных, то есть не зависящих от направления. Скалярные величины в принципе не могут нейтрализовать друг друга, и этот факт прекрасно известен  ученым (даже электрические заряды, будучи скалярными величинами, друг друга нейтрализовать не могут, а взаимно нейтрализуются носители зарядов с изменением своей природы, например реакции электрон + позитрон или отрицательный ион + положительный ион).

Хорошим примером скалярной величины является плотность. Может ли кто-то смешать два вещества разной плотности таким образом, чтобы одна из них компенсировала другую, и суммарная плотность стала бы равной нулю? Ясно, что нет. Но именно такое объяснение предлагает нам академическая наука относительно моста, разрушающегося под сапогами марширующих солдат.

     Причина такого феномена заключается в следующем. Необходимость во что бы то ни стало объяснить непонятное явление ведет к тому, что приходится придумывать объяснение ошибочное, а затем стараться не замечать сделанную ошибку. Человечество вышло в космос, опустилось в глубины океана, расщепило атом, расшифровало геном и не может объяснить, почему разрушается мост под солдатскими сапогами. Такая ситуация оказывается чрезвычайно обидной для нашего самолюбия. Вот эта глубоко затаенная обида на собственную слабость в трактовке самых простых вещей заставляет наших ортодоксальных ученых придумывать любое пусть даже ошибочное объяснение, лишь бы не признавать собственное незнание.

На самом деле при шаге вразброд нейтрализуются не энергии, сообщаемые мосту солдатами, а колебания моста. Любые колебания относятся к разряду векторных величин, то есть происходящих в некотором направлении, и потому они могут быть нейтрализованы другими колебаниями противоположной фазы. Если в процессе колебательного движения пролет моста движется вверх, а солдат в этот миг ударяет по нему сапогом, он тем самым компенсирует это движение. Когда солдат слишком много и они идут вразброд, они своими сапогами сообщают совершенно разные колебания мосту, которые взаимно нейтрализуются. Но тогда откуда берется энергия, которая разрушает мост в случае строевого шага?

     Парадокс №3. Следующий энергетический парадокс мало кому известен, т. к. он был открыт в ходе научных экспериментов и сведения о нем не вышли за границы научных отчетов. Незадолго до начала перестройки ученые Всесоюзного машиностроительного института провели такой опыт. Они разгоняли до высоких скоростей железную болванку, имитирующую снаряд, и направляли ее на броневую плиту. Ученым было интересно узнать, какая часть кинетической энергии снаряда тратится на разрушение брони. После завершения опыта производилось тщательное измерение поверхности всех осколков брони и вычисление того количества энергии, которое необходимо для образования всех этих осколков. Уже первый опыт дал потрясающий результат: оказалось, что при разрушении брони выделялось примерно в 3-5 раз больше энергии, чем несла с собой летящая болванка. Подобные эксперименты проводились раз за разом и каждый раз условия опыта ужесточались, чтобы исключить все возможные причины ошибки. Но итог всегда оставался неизменным: при разрушении брони в ней выделялось энергии заметно больше, чем могла сообщить ей летящая болванка. Мне не известно, какое объяснение дали ученые института этому феномену.

     В Америке в это же время проводились похожие эксперименты. И был получен такой же результат. Но если у нас выделяемая при ударе болванки с плитой энергия превышала кинетическую энергию летящей болванки в 3-5 раз, то у американцев этот показатель иногда достигал 10. Однако это было уже в далекие годы перестройки и даже до нее. А самый последний результат, полученый неким Роем Паттерсоном в экспериментах с никелевыми шариками и ставший мне известным несколько лет назад, составляет 950-980 раз. Такой результат уже невозможно списать на неточность измерений, на что иногда упирают оппоненты.

     С развитием Интернета появились новые возможности получения интересной информации. И поиск в Интернете показал, что похожий эффект обнаружил белорусский физик Ушеренко  еще в 1970х годах. Он разгонял самые обычные песчинки до очень высоких скоростей и направлял их на свинцовую плиту. Большинство песчинок отлетали от мишени в сторону, но примерно одна из тысячи прожигала мишень насквозь. Расчеты показали, что для подобного прожигания мишени требуется энергия, превышающая кинетическую энергию песчинки в десятки тысяч раз. Приверженцы традиционных взглядов пытаются сегодня объяснить огромную глубину проникновения песчинок в материал мишени тем, что песчинки попадали в микротрещины, существующие в любом образце. Но любая микротрещина потому и называется микротрещиной, что она не может пронизывать металл на всю глубину. К тому же исследование срезов показало, что эти глубокопроникающие песчинки именно прожигают металл, а не просто путешествуют внутри трещины.

     Ушеренко не решился заявить о полученном результате вслух, потому что в этом случае его могли бы уволить из института в связи с профессиональной некомпетентностью. И сообщил о своем открытии уже после развала СССР и эмиграции в Израиль. Сегодня по материалам его исследований получены патенты на создание бестопливных источников тепла и энергии. Но и эти эксперименты белорусского ученого оказались не первыми.

     В 1952 году (по другим данным, в 1955 году) некто Александров из Горного Института сделал потрясающий доклад на заседании Академии Наук. Он сообщил, что если взять шарик из закаленной стали и сбросить его с высоты 10 метров на массивную плиту из такой же закаленной стали, то шарик после удара отскочит на высоту 13-14 метров. И не только сообщил об этом результате, но и демонстрировал его в своей лаборатории всем желающим. Объяснить такой результат никто не мог, т. к. он противоречил (и до сих пор противоречит) традиционным представлениям. Но спорить с демонстрационной установкой тоже никто не мог. Именно по этой причине Александрову удалось зарегистрировать свое открытие в Госреестре открытий СССР под №13 «Закономерности передачи энергии при ударе» (редчайший случай, когда ученому удается добиться официальной регистрации явления, которое противоречит академическим взглядам).

     Не смотря на официальную регистрацию, явление постарались «забыть» из-за нестыковки с традиционными представлениями. И «забыли» очень основательно, почти на полвека. Сегодня этот результат иногда пытаются объяснить разрывом связей между атомами металла при ударе шарика об основание и переходом энергии закалки в кинетическую энергию отскакивающего шарика. Но если такое происходит, тогда после многочисленных повторных падений и отскоков шарика от плиты металл и плиты и шарика должен разрушаться. А этого не происходило.

     И как тогда быть с песчинками и свинцовой мишенью в экспериментах Ушеренко, где ни о какой закалке не может быть речи? Окончательно прояснить источник энергии в этих и других подобных опытах можно, если позволить шарику постоянно прыгать на мишени и снимать производимую им энергию до тех пор, пока она в сотни раз не превысит энергию, необходимую для расплавления шарика. Если мы достигнем такого результата, значит при ударе выделяется энергия физического вакуума. Если же шарик разрушится или остановится раньше, тогда правы окажутся традиционалисты со своей точкой зрения о микротрещинах, энергии закалки и т. д.

     Парадокс №4. В 70х годах прошлого столетия на некоторых предприятиях отечественной промышленности использовались так называемые печи аэродинамического нагрева. Конструкция печей была до невероятности проста: в обычном цилиндрическом сосуде вращался пропеллер, перемешивающий воздух по всему объему сосуда. При этом наблюдался интересный феномен: в единицу времени внутри сосуда выделялось почти на 10-20% больше тепла по сравнению с мощностью на валу пропелера. И снова встает вопрос: откуда берется избыточная энергия? Об этом явлении писал даже журнал «Техника-молодежи», но объяснения настоящим фактам найдено не было.

     Некоторые наши оппоненты утверждают, что подобный результат был получен из-за неучета сдвига фаз между силой и напряжением тока, так называемый косинус фи. Поэтому сразу обращаю внимание тех, кто готов принять такое объяснение, на тот факт, что в экспериментах измерялась не электрическая мощность из розетки, а мощность на валу пропеллера. Пусть даже из розетки потреблялась энергия в несколько раз больше того, что выделялось внутри печи, но в саму печь может проникнуть лишь та энергия, которая поступает через вращающийся вал.

     Парадокс №5. Еще один энергетический парадокс касается некоторых процессов, протекающих в природе. Те ученые, которые занимаются изучением смерчей и ураганов, часто заявляют, что с точки зрения современной физики подобных природных процессов просто не может существовать, т. к. выделяющаяся в них энергия превосходит все, что наша наука может предложить. Иногда в популярной литературе можно прочитать, будто причиной возникновения смерчей и ураганов являются процессы выделения тепла при конденсации водяного пара в верхних сравнительно холодных слоях атмосферы. Однако, если провести строгий энергетический анализ всех процессов, приводящих к образованию смерчей и ураганов, то окажется, чо тепло конденсации почти на порядок меньше того, что несут с собой эти процессы. Тогда за счет какой энергии существует ураган?

     Парадокс №6. И последний энергетический парадокс касается нашей планеты. Земля своим магнитным полем постоянно взаимодействует с магнитным полем заряженных частиц, летящих от Солнца. Взаимодействие двух магнитных полей, одно из которых вращается, всегда приводит к торможению и остановке вращения. Но Земля вращается непрерывно в течение более 4х миллиардов лет. При этом палеонтологи выяснили, что в далеком прошлом, когда динозавров еще не было, а жизнь процветала только в море, длительность земных суток очень слабо отличалась от того, что мы имеем сегодня. Более того, как будет показано в других главах, наша Земля вследствие некоторых процессов с участием гравитационной энергии непрерывно расширяется и с момента начала мезозойского периода увеличила свой радиус примерно в 1.5 раза, в результате чего скорость ее вращения должна заметно упасть, а продолжительность суток во столько же раз вырасти. Если этого не происходит, тогда следует признать, что при вращении Земли в ней выделяется некоторая энергия, которая раскручивает земной шар и тем самым компенсирует тормозящее влияние магнитного поля потока солнечных частиц и процесса распухания земного шара.

     Перечисленные парадоксы являются лишь небольшой частью того, что было найдено. Нет необходимости приводить их все. Даже того, что было только что описано, уже достаточно, чтобы понять следующее: в наших представлениях о природе энергии что-то не в порядке, где-то мы допускаем ошибку. Еще А.Эйнштейн в свое время говорил так: «Даже десяток экспериментов, давших положительный результат, еще не может подтвердить правильность теории. Но всего один эксперимент, давший отрицательный результат, может теорию опровергнуть». У нас набралось таких экспериментов с отрицательным результатом намного больше одного. Следовательно, нам необходимо заново пересмотреть свои взгляды на природу энергии и найти ту ошибку, которая кроется в базовых положениях академической науки.

1.2. Природа энергии

     Что такое энергия? Академическая формулировка энергии звучит следующим образом: энергия есть возможность выполнения работы. Хотя подобное определение в принципе правильно, оно крайне неудачно по той причине, что работа и энергия имеют одинаковую природу. Это видно из размерности: работа и энергия измеряются в джоулях. В математическом плане работа — это всего лишь разность энергий: А = Е1 — Е2. Поэтому определять энергию из работы есть то же самое, как определять энергию из самой себя. Необходимо найти новое определение понятию энергии. И это можно сделать через деформацию.

     Обратим внимание на тот факт, что все формы энергии (за исключением потенциальной и кинетической) имеют общую черту, заключающуюся в их связи с деформацией. Давайте рассмотрим последовательно несколько различных форм энергии.

Механическая. Когда мы растягиваем резиновый шнур, сдавливаем любой предмет, закручиваем гайку до упора, мы во всех случаях совершаем работу, тратим энергию, и производим деформацию того предмета, на который воздействуем. Здесь связь между энергией и деформацией выступает в самом явном виде.

     Тепловая. Данная форма энергии фактически является суммарной кинетической энергией многих атомов или молекул, составляющих физический объект. И все, что справедливо для кинетической энергии, оказывается справедливым для энергии тепловой. Если в реальности идея кинетической энергии является ошибкой и вместо нее существует иная форма энергии, связанная с деформацией (а ниже это будет показано), тогда тепловая энергия также окажется связанной с деформацией некоторого объекта.

     Химическая. Эта форма энергии выделяется в ходе химических реакций. А любая химическая реакция ведет либо к изменению количества электронов у атома или иона, либо к распаду молекулы на составляющие атомы, либо к синтезу молекулы из отдельных атомов. Во всех трех случаях происходит деформация электронных оболочек атомов и молекул. Таким образом, химическая энергия также показывает связь с деформацией.

     Ядерная. Она выделяется либо в ходе распада атомов радиоактивных веществ, либо в ходе расщепления ядра урана или плутония, либо в ходе слияния ядер водорода и образования ядра гелия. Как и в предыдущем случае, мы снова сталкиваемся со связью энергия-деформация.

     Поэтому возможны две альтернативы: 1) связь энергии с деформацией существует на самом деле, а понятия кинетической и потенциальной энергии ошибочны и в реальности таких форм энергии не существует; 2) связь энергии с деформацией является кажущейся и на самом деле ее нет, а потенциальная и кинетическая энергии существуют в реальности. Правильной оказалась первая альтернатива. Потенциальная и кинетическая энергия в реальности не существуют, вместо них присутствуют иные формы энергии, которые оказываются связанными с деформацией. И ниже это будет показано.

     Подобный анализ можно выполнить применительно ко всем известным формам энергии и всегда мы будем сталкиваться со связью энергия-деформация. Единственное исключение, как было отмечено ранее, это потенциальная и кинетическая энергия. Поэтому можно предложить следующее определение понятия энергии: энергия есть количественная мера хаотически-деформированного состояния материи, описывающая данное состояние интегральным образом. Формула энергии выглядит как

                (1.1.1)

Здесь деформированное состояние материи тражается дифференциалом dx, а интегральный способ описания — интегралом. При этом интеграл является определенным от 0 до х. Причина появления в определении понятия «хаотический» будет объяснена позднее, когда мы перейдем к проблеме информации.  Кстати, подобное определение энергии позволяет дать аналогичное определение термину силы: сила есть количественная мера хаотически-деформированного состояния материи, описывающая данное состояние дифференциальным образом.

     Разница между силой и энергией, таким образом, состоит лишь в способе описания: интегральный способ для одного, дифференциальный для другого. Такое различие между двумя основополагающими понятиями физики заметным образом сказывается на способе решения физических задач: начинать надо всегда с энергетического описания феномена и затем переходить к силовому описанию. Энергетический способ описания проще и понятнее, но он менее информативен. Так происходит потому, что в природе энергии уже заложен интеграл. Поэтому энергетическое описание феномена осуществляется с помощью алгебраических уравнений, а не дифференциальных. А решение алгебраических уравнений всегда проще. Но за простоту приходится платить тем, что часть информации ускользает от нашего внимания. Например, энергетическое описание движения камня, брошенного под углом к горизонту, позволяет найти отдельные точки траектории (максимальную высоту подъема и дальность броска), но ничего не говорит о форме самой траектории. Силовое описание феномена требует использования дифференциальных уравнений, решение которых заведомо труднее. Однако, оно позволяет поймать такие детали, которые ускользают  при энергетическом описании.

     Следует особо подчеркнуть тот факт, что энергия является всего лишь характеристикой, формой описания. Иными словами, энергии как реальности не существует. Существуют лишь различные формы деформации материи, переходящие друг в друга, а мы пытаемся описать эти переходы с помощью понятия энергии. Поэтому в принципе не может существовать эффекта преобразования энергии в массу, к чему так привыкли физики и о чем они постоянно говорят. Причины такого положения вещей будут объяснены в других разделах.

1.3. Ошибочность понятий потенциальной

и кинетической энергий

     Формула потенциальной энергии записывается как произведение массы предмета m на ускорение свободного падения g = 9.81 м/сек; и высоту подъема предмета над основанием h (EР= mgh), в то время как кинетическая энергия — это половина произведения массы предмета на квадрат его скорости (EК=mv;/2). Потенциальная энергия играет роль своеобразного аккумулятора, в который можно слить любую энергию, а затем при необходимости получить ее обратно. Традиционно считается, что когда мы поднимаем некоторый груз, мы тратим свою энергию, производя работу над данным грузом, и выполняемая работа преобразуется в его потенциальную энергию. Чем больше высота подъема h, тем больше величина выполненной работы, тем больше потенциальная энергия. А когда поднятое тело начинает падать, потенциальная энергия преобразуется в кинетическую и выделяется в момент удара падающего груза о препятствие. Кинетическая энергия считается связанной с движением и рассматривается как своеобразная энергетическая характеристика движения.

     Но смотрите, какая неувязка получается при таком объяснении. Пусть у нас на столе лежит некий груз и мы отсчитываем высоту подъема h от уровня поверхности стола. В этом случае h = 0 и потенциальная энергия данного груза также равна нулю. Однако, мы можем отсчитывать высоту h от уровня пола и тогда потенциальная энергия будет другой. А если мы начнем отсчитывать высоту h от уровня земли в данной местности или от уровня моря, появятся новые значения потенциальной энергии. Вообще говоря, мы можем выбрать совершенно произвольный уровень отсчета высоты h и тогда значение потенциальной энергии также становится произвольным. Иначе говоря, потенциальная энергия теряет статус реальности.

     Чтобы выпутаться из этой нелепой ситуации, академическая наука утверждает, будто потенциальная энергия действительно не обладает статусом реальности (то есть не имеет физического смысла), но реальностью обладает разность этих энергий Е1 — Е2. На первый взгляд такое объяснение кажется приемлемым, т. к. разность энергий Е1 — Е2 не зависит от уровня отсчета и потому одинакова для всех уровней. Но совершенно не ясно, откуда берется физический смысл у разности двух величин, если сами величины такого смысла не имеют. Ведь это аналогично ситуации, когда мы от одного безразмерного числа отнимаем другое безразмерное число, а в итоге получаем размерную величину.

     С кинетической энергией наблюдается схожая ситуация. Кинетическая энергия зависит от скорости, а скорость будет различной в зависимости от положения наблюдателя (то есть различной в разных системах отсчета). Пусть мы имеем некоторую систему координат, в которой находится неподвижный предмет. Так как его скорость в этой системе равна нулю, тогда и кинетическая энергия равна нулю. Перейдем к другой системе координат, движущейся относительно первой. В новой системе предмет уже имеет некоторую скорость, значит обладает кинетической энергией. Но ведь работа над ним не совершалась. Так откуда появилась энергия у предмета, если работа над ним не совершалась? Или пример с поездом, птицей и пассажиром. Для неподвижно стоящего наблюдателя скорость летящей птицы одна, а для едущего в поезде пассажира она будет иной. Для пассажира поезда птица может даже казаться летящей в обратном направлении, если скорость поезда достаточно велика и птица отстает. Таким образом, кинетическая энергия подобно потенциальной теряет статус реальности и оказывается полностью зависящей от произвольного положения наблюдателя.

     Рассмотрим пример с потенциальной и кинетической энергиями, в котором наблюдаются явные несуразности: свободное течение воды сверху вниз в вертикально поставленной трубе постоянного проходного сечения. Согласно академической точке зрения, потенциальная энергия некоторого выделенного элементарного объема воды при падении с уровня h1 до уровня h2 уменьшается на величину mg(h1 –  h2) или mg;h и трансформируется в кинетическую энергию mv;/2, что должно проявляться в форме увеличения скорости воды. Но вследствие того, что проходное сечение трубы неизменно, скорость воды в ней также одинакова на всех уровнях. Следовательно, кинетическая энергия не меняется. Тогда куда уходит потенциальная энергия?

Иногда можно услышать от оппонентов, что потенциальная энергия тратится на преодоление гидравлического сопротивления трубы, то есть на преодоление трения.  

     Даже если полагать, что такой ответ правилен (а в реальности он ошибочен, т. к. в данном случае трение преодолевается без затрат энергии и ниже это будет показано), все равно не ясно, куда уходит потенциальная энергия. Если мы предположим, что она преобразуется в тепло, это очень легко проверить экспериментально. Например, при падении воды с высоты 100 метров и пребразовании потенциальной энергии в тепло температура воды будет повышаться на 0.24 градуса, что легко фиксируется приборами. Если кому-то интересно провести подобные опыты, пусть выполнит их и убедится, что температура воды не изменится.

     С другой стороны, теплота трения должна зависеть от коэффициента трения: чем больше трение, тем больше выделится тепла. Однако, коэффициент трения не зависит от высоты падения, он определяется только нашими субъективными усилиями в ходе изготовления трубы. Мы можем использовать в своих экспериментах трубу с очень грубо обработанной внутренней поверхностью, то есть высоким трением. Или можем использовать трубу с исключительно гладкой внутренней поверхностью. В этом случае количество выделяемого тепла должно зависеть от степени обработки внутренней поверхности и меняться для разных труб. Но если высота падения для всех труб неизменна, тогда потенциальная энергия снижается также на одну и ту же величину и оказывается одинаковой для всех труб. Как тогда быть?

     Наконец, такое объяснение перехода потенциальной энергии в тепло противоречит самым основным положениям и формулам физики. Для выделения тепла в воде над ней необходимо произвести работу. Вспомним, как записывается формула выполняемой работы: A = FL. Расписывая силу через второй закон механики, получаем A = maL. Откуда мы видим, что работа выполняется лишь в том случае, если ускорение а не равно нулю. А в нашем случае оно в точности равно нулю, т. к. скорость течения в трубе постоянного сечения не меняется. И если утверждать, что потенциальная энергия текущей в трубе воды должна переходить в тепло, тогда это вступает в противоречие либо с формулой выполняемой работы, либо с формулировкой второго закона механики.

     Невозможно найти ключ к разгадке этих парадоксов, если исходить исключительно из старых представлений и концепций. Но настоящие феномены легко объясняются с помощью замены потенциальной энергии на энергию гравитационного поля, а кинетической энергии — на энергию физического вакуума. И затем, как развитие данной концепции, появятся объяснения для многих других феноменов и парадоксов.

     Начнем с самого начала: с энергетического анализа прямолинейного равномерного движения. Пусть на столе лежит неподвижно некоторый предмет. Его кинетическая энергия равна нулю (относительно стола, конечно). Начнем толкать предмет ладонью в горизонтальном направлении. Теперь его скорость и кинетическая энергия не равны нулю. Вопрос: откуда появилась энергия у предмета? Наверное, всякий ответит, что она появилась за счет нашей мускульной энергии. На строгом языке физики это будет звучать так: энергия движущегося предмета растет за счет энергии того объекта, который заставляет данный предмет двигаться. В рассмотренном примере — наша рука. А может ли быть такая ситуация, когда мы двигаем предмет, но его кинетическая энергия росла бы не за счет нашей мускульной энергии, а за счет собственной энергии химических связей? Ясно, что нет. Здравый смысл подсказывает, что установленное только что правило должно быть универсальным и не иметь никаких исключений (в точных науках вообще исключения из правил отсутствуют, на то они и называются точными).

     Теперь перейдем от горизонтального движения к вертикальному. Пусть наш предмет свободно падает сверху вниз. Объектом, который заставляет предмет двигаться, является в данном случае гравитационное поле Земли. Если следовать только что сформулированному правилу, тогда кинетическая энергия падающего предмета должна расти за счет энергии гравитационного поля. Но академическая точка зрения состоит в том, что кинетическая энергия падающего предмета растет за счет собственной потенциальной энергии. Налицо противоречие между строгой логикой и традиционными представлениями.

     Понятие потенциальной энергии было выдвинуто Галилеем, когда он сбрасывал различные предметы с наклонной Пизанской башни и задался вопросом: откуда падающее тело черпает свою энергию? Галилей заметил, что прежде чем сбросить тело с башни, он должен тело на башню поднять и при этом выполнить некоторую работу. Поэтому он вполне закономерно предположил, что выполняемая работа тратится на увеличение некоторой скрытой энергии, которая в процессе дальнейшего падения трансформируется в явную кинетическую энергию. Позже ее назвали потенциальной (хотя во времена Галилея понятие «энергия» еще не использовалось, а говорили о «живой силе», но физический смысл «живой силы» был именно энергетическим). Но Галилей ошибся. В его случае сработал стереотип слепоты, о котором упоминалось в самом начале данной книги. Результаты Галилея можно объяснить с двух различных позиций: 1) при подъеме материального тела выполненная работа тратится на увеличение скрытой энергии данного тела, а дальнейшее падение тела сопровождается переходом этой скрытой энергии в энергию явную, связанную с движением; 2) при подъеме материального тела выполненная работа тратится на увеличение энергии некоторой среды, взаимодействующей с телом, а дальнейшее падение тела сопровождается переходом энергии этой среды в энергию движения тела. Галилей выбрал первую точку зрения, которая стала официальной позицией классической науки.

     Вторую ошибку допустил Ньютон, дав неправильный вывод формулы потенциальной энергии. Он рассуждал следующим образом: «… пусть я имею тело массой m, неподвижно лежащее на моей ладони. Буду поднимать ладонь вверх крайне медленно и равномерно, так чтобы кинетическая энергия предмета практически отсутствовала, а подъемная сила F была бы равна силе веса FG. Выполненная работа равна A = ;FG ;h = mgh. Куда она исчезла, если кинетическая энергия практически отсутствует? Она пошла на увеличение скрытой потенциальной энергии, которая в свою очередь может перейти в кинетическую энергию, если позволить телу свободно падать...».

Ошибка такого рассуждения состоит в следующем. Когда на тело действуют различные по величине и направлению силы F1, F2, F3,.... а их результируюшая сила есть FS, для вычисления общей работы, производимой всеми силами вместе, необходимо использовать результирующую, а не одну из частных сил. Ньютон использовал как раз частную силу — силу веса, — что и является его ошибкой. Так как результирующая сила в данном случае равна нулю, при правильном расчете мы получим нулевую работу. Это означает, что работа над поднимаемым телом не производится и его энергия не меняется. Если энергия равнялась нулю на поверхности Земли, она будет оставаться равной нулю независимо от высоты подъема. Иными словами, потенциальной энергии не существует.

     Настоящий вывод может показаться ошибочным, т. к. из практики нам известно, что при подъеме любого предмета всегда производится работа и затрачивается энергия. Но весь фокус в том, что работа может выполняться вовсе не над поднимаемым телом.

     Известно, что при перемещении тела в потенциальном поле из точки 1 в точку 2 совершается работа, равная произведению разности потенциалов данного поля на некоторый параметр, характеризующий взаимодействие тела с этим полем. Для гравитационного поля соответствующая формула выглядит как

                (1.3.1)

где m — масса тела, ;1 = ;M/R1 и  ;2 = ;M/R2 — потенциалы поля. Приводя к общему знаменателю, получаем

                (1.3.2)

где R2 – R1 = h  - расстояние между точками 1 и 2 по вертикали или высота подъема. Если мы рассматриваем случай h<<R (R – радиус Земли), можно принять R1;R и R2;R. Тогда

                (1.3.3)

Вследствие того, что комплекс ;M/R; есть не что иное, как ускорение свободного падения  g = 9.81 м/сек;, мы окончательно получаем

                (1.3.4)

     Может показаться, что мы получили противоречие: в первом случае работа равнялась нулю, во втором случае она равна классическому значению mgh. На самом деле противоречия нет, т. к. речь идет о совершенно разных объектах. В первом случае мы использовали силы, прилагаемые к телу, и расстояние, проходимое телом. То есть мы отвечали на вопрос: какая работа производится над телом? И выяснили, что она равна нулю. Во втором случае мы использовали потенциалы поля и расстояние между точками поля. То есть мы отвечали на вопрос: какая работа производится над полем? И выяснили, что она равна классическому выражению mgh. Окончательный вывод получается следующим: при подъеме любого тела в гравитационном поле работа совершается над полем и тратится на увеличение энергии поля.

     Настоящий вывод можно получить другим способом, исходя из самых общих взглядов. Когда мы поднимаем тело, мы преодолеваем сопротивление силы тяжести. Следовательно, при энергетическом способе анализа данного феномена мы должны преодолеть сопротивление того объекта, который порождает силу тяжести. Им является гравитационное поле. Поэтому работа должна выполняться над гравитационным полем Земли, а не над поднимаемым предметом.

     Полученные результаты элементарно просты и могли быть получены еще в эпоху Ньютона и Галилея. Тем не менее, ошибка в форме идеи потенциальной энергии дожила до настоящего времени. Почему? Причина этого кроется в человеческой психологии.

     Галилей был обречен на ошибку, т. к. в его время не существовало идеи гравполя и потому он в принципе не мог дать правильный ответ на вопрос о том, откуда падающее тело черпает свою энергию. Ньютон мог бы исправить допущенную Галилеем ошибку. Но лишь усугубил ее, т. к. не был готов к признанию того факта, что гравполе обладает энергией, потому что в его время царило убеждение, будто существует только механическая энергия и только вещественные объекты могут обладать такой энергией. Это убеждение о невозможности для гравитационного поля обладать какой-либо энергией сохранилось до наших дней. Даже сегодня можно найти в самых серьезных и подробных физических справочниках определение гравитационной энергии как механической энергии предмета, помещенного в гравитационное поле. Согласно такому определению, само гравитационное поле энергией не обладает.

Рис. 1.3.1. Две различные формы связи: А — вещественная связь в форме пружины;

В — полевая связь в форме гравитационного поля

     Выполним следующий мысленный эксперимент. Пусть мы имеем некоторое тело, основание и связывающую их пружину (рис. 1.3.1). Потянув за тело, мы увидим, что пружина стала растягиваться, то есть деформироваться. И мы делаем вывод, что выполняемая работа тратится на деформирование пружины, то есть работа совершается над пружиной даже не смотря на то, что объективно мы воздействуем не на нее. Заменим пружину гравитационным полем и снова потянем за тело. Официальная точка зрения утверждает, что теперь работа будет выполняться не над связью между телом и основанием, а над самим телом. Таким образом, мы получаем, что физическая природа связи между телом и основанием (пружина или гравитация) определяет тот объект, над которым совершается работа. Такая ситуация не может считаться нормальной: физическая природа связи может определять количество выполняемой работы, но не объект, над которым работа будет совершаться.

     В данной ситуации снова срабатывает стереотип слепоты. Мы имеем глаза, чтобы видеть пружину и налагаемые на нее деформации. Видя, что наше воздействие на тело ведет к деформации пружины, а не тела, мы делаем правильный вывод о том, над каким объектом выполняется работа. Но мы не имеем органов чувств, чтобы видеть гравитационное поле. И потянув за тело с гравитационной связью, мы никакой деформации не увидим. Мы увидим только то, что тело меняет свое положение в пространстве. Поэтому делаем неправильный вывод об объекте, над которым только что выполнили работу. В реальности гравитационное поле также будет деформироваться. Но деформацию поля невозможно увидеть глазами, вот почему в этой области до сих пор царят ошибки.

     Что касается кинетической энергии, ее ошибочность следует из тех опытов по столкновению железной болванки с металлической плитой, о которых было написано в разделе 1.1. Обратим также внимание на тот факт, что замена скорости v на изменение скорости ;v в формуле кинетической энергии позволяет получить согласующиеся с логикой результаты при рассмотрении многих явлений механики. Эти особенности заставляют нас предполагать, что вместо кинетической энергии предмета существует энергия какой-то среды, в которой движется предмет и над которой производится работа. Эта среда носит в физике название физический вакуум (в античной Греции ее называли апейроном, в средневековье она называлась эфиром, в Индии ее до сих пор называют акаша).

     Сразу следует заметить, что нельзя путать понятия «физический вакуум» и «технический вакуум». Технический вакуум — это синоним пустоты. В то время как физический вакуум — это другое название некоторой среды, заполняющей все пространство Вселенной и содержащей в себе огромнейшую энергию. В настоящей книге слово «вакуум» всегда будет пониматься во втором смысле, хотя приставка «физический» часто будет опускаться.

     Сегодня идея физического вакуума является общепризнанной в ядерной физике и теории элементарных частиц. Реальность физвакуума подтверждается такими хорошо известными явлениями, как эффект Казимира, эффект Лэмба, изменение заряда движущегося электрона и т. д. Однако за границы квантовой механики и ядерной физики данная идея до сих пор не вышла и в других разделах физики (например, в механике) она практически не известна. В ядерной физике физвакуум рассматривают как источник элементарных частиц и не более. То, что он может взаимодействовать также с объектами макромира, до сих пор не признается (хотя эффект Казимира, в котором за счет вакуумных осцилляций слипаются две пластины достаточно больших размеров, никем не отвергается). Но тогда остаются не решаемыми те энергетические парадоксы, с описания которых начинается эта книга. Решение этих и других загадок физики оказывается возможным, если мы полагаем, что: 1) вакуум взаимодействует не с материальными объектами как таковыми, а с электрическим, магнитным и гравитационным полями этих объектов; 2) физвакуум содержит энергию, он может накапливать или отдавать ее в ходе различных процессов; 3) над вакуумом можно производить работу и отдавать в него различную энергию путем ускоренного движения материального тела; 4) вакуум может производить работу над материальным предметом и отдавать ему свою энергию путем замедленного движения; 5) изменение энергии вакуума сопровождается деформацией его структуры.

     То, что говорится в первом постулате о невозможности взаимодействия вакуума с материальными телами, не противоречит третьему и четвертому постулатам об изменении энергии вакуума путем неравномерного движения материального тела. Вакуум действительно не взаимодействует с материальными телами, т. к. любой материальный объект для него  прозрачен как стекло для света, но он взаимодействует с полями, которые формируют эти объекты. Любое гравитационное или электрическое поле не может существовать само по себе без некоторого носителя, которым является материальное тело. Движение тела сопровождается движением гравитационного или электрического поля, создаваемого этим телом, а вакуум взаимодействует с этими движущимися полями. Поэтому не является ошибкой утверждение об изменении энергии вакуума путем неравномерного движения материального объекта.

     Настоящие постулаты позволяют объяснить все отмеченные выше энергетические парадоксы, а также решить многие иные загадки физики. Например, они объясняют природу сил инерции. Вакуум, как иная любая среда, оказывает сопротивление вносимой в него деформации. Это сопротивление проявляется в форме сил трения: любое тело, движущееся в жидкой или газовой среде, деформирует структуру среды, в результате чего возникает ответная реакция среды, которая состоит в торможении тела и исключении таким образом любой деформации. Например, плывущий корабль деформирует водную гладь и создает волны на поверхности воды, а вода создает ответную реакцию в виде сил трения, на преодоление которых приходится тратить энергию. Когда некоторый элементарный объем воды, бывший ранее неподвижным, входит в контакт с корпусом корабля, он всегда начинает двигаться (отбрасывается в сторону), то есть начинает ускоряться. Следовательно, мы можем сказать, что согласно второму закону механики на этот объем со стороны корпуса действует сила, равная произведению массы элементарного объема на создаваемое ускорение. А в соответствие с третьим законом механики данный объем создает силу, действующую на корпус. Эта противодействующая сила и проявляется в форме трения. При этом не играет никакой роли, как будет двигаться корабль: ускоренно, равномерно или замедленно. В любом случае он заставляет воду двигаться ускоренно. По этой причине трение возникает всегда.



Поделиться книгой:

На главную
Назад