Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Магистр рассеянных наук (математическая трилогия). - Владимир Артурович Левшин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

— Пожар! — вдруг закричал Нулик. — Башня горит!

Башня оказалась колокольней Ивана Великого. Её золотой купол действительно так и пылал на солнце. И опять пришлось нам сделать небольшой перерыв: президент заявил, что не может в одно и то же время обсуждать диссертацию и любоваться видом.

Но вот катер нырнул под арку моста, и Олег ловко возвратил нас к спору между Магистром и Единичкой, которая утверждала, что улица «0,6» длиннее улицы «0,11».

— На этот вопрос отвечу я, — заявил Нулик. — Ведь здесь замешан я сам, Нуль. 0,11 — это одиннадцать сотых. Так? А 0,6 — шесть десятых или шестьдесят сотых. А 60 больше 11. Уж это как пить дать! Выходит, Единичка была права. И не спорьте!

Спорить, впрочем, никто и не собирался, что привело Нулика в отличное настроение. Заодно с хозяином возрадовался и Пончик. Хвост его так и сновал из стороны в сторону! Как метроном: тик-так, тик-так…

Снова объявили перерыв. Катер подходил к Крымскому мосту. Красивый мост! Самый красивый в Москве. Арки его поддерживаются вертикальными стальными струнами. И от этого он похож на арфу…

Полюбовались — и снова вернулись в Пифагорск, на Треугольную площадь…

Нулик никак не желал верить, что расстояние между большим пальцем и мизинцем Магистра двадцать пять сантиметров.

— У меня и десяти сантиметров не наберётся, — сказал он и растопырил свои розовые коротышки.

— Так то у тебя, а ты посмотри у Святослава Рихтера.

— Что ещё за Рихтер? — удивился Нулик.

— Знаменитый пианист, — пояснил Олег. — Он свободно берёт на рояле дециму — ноты от «до» до «ми» следующей октавы. А это побольше четверти метра!

— Сегодня же пойду и проверю, — сердито сказал президент.

Все так и покатились со смеху!

— Вернёмся, однако, к фонтану, — сказал Олег, когда мы успокоились.

— «Вот и фонтан, она сюда придёт!» — продекламировал Сева. (Он очень любит читать стихи. Особенно Пушкина.)

— Перестань, — остановила его Таня. — Если фонтан и площадь — подобные треугольники, как утверждает Магистр, то и соответственные углы у них должны быть одинаковы. А уж двух тупых углов у треугольника вообще быть не может.

— А ещё, — добавил Сева, — зря Магистр назвал фонтан пифагоровым треугольником. Во-первых, треугольник со сторонами 3, 4 и 8 метров уже не пифагоров, а во-вторых… во-вторых, такого треугольника вообще не существует!

Президент посмотрел на него подозрительно.

— Можно подумать, ты знаком со всеми треугольниками на свете!

— Зачем со всеми? Достаточно знать, что сумма двух любых сторон треугольника всегда больше третьей. А 3 + 4, как известно, равно семи. Так что третья сторона не может быть равна восьми. Понятно?

Но президент не унимался. Он хотел знать, что такое пифагоров треугольник и почему его называют ещё египетским.

— Почему, почему… — отмахнулся Сева. — Что я тебе — справочное бюро?

— Египетским треугольником называют треугольник со сторонами 3, 4 и 5, — пояснил Олег. — Это единственный прямоугольный треугольник, стороны которого равны трём последовательным целым числам. О нём знали ещё в Древнем Египте.

— Но при чём здесь Пифагор? — допытывался Нулик.

— А при том, что этот треугольник, как и все, впрочем, прямоугольные треугольники, подчиняется правилу Пифагора: сумма квадратов меньших сторон прямоугольного треугольника равна квадрату большей стороны.

— Проверим, — вздохнул Нулик. — Стороны пифагорова треугольника — 3, 4 и 5. Три в квадрате — девять, четыре в квадрате — шестнадцать, 9 + 16 = 25. А двадцать пять — это и есть пять в квадрате! Выходит, на Пифагора можно положиться.

— Конечно, — неожиданно вмешался я. — Но справедливости ради замечу, что это самое пифагорово правило — или, иначе, теорема — было известно задолго до Пифагора учёным Древнего Вавилона. А Пифагор много путешествовал и, между прочим, бывал и в Вавилоне… Но не будем умалять заслуг Пифагора. Тем более, что знаменит он не одной своей теоремой. Я мог бы многое рассказать о нём, но отложим до другого раза. А сейчас займёмся шуточной задачей, которую Единичка задала нашему Магистру.

— Умная всё-таки девочка! — сказала Таня.

— Вся в тебя, — съязвил Сева и втянул голову в плечи.

— А я что-то ничего не понял, — чистосердечно признался президент.

— Что ж тут непонятного? — возразил Сева. — Раз поезда встретились, значит, в момент встречи они находятся на одинаковом расстоянии от Москвы, как, впрочем, и от Пифагорска.

— Так вот в чём дело! — обрадовался Нулик. — А я-то думал, здесь надо что-то вычислять…

— Катер приближается к конечной остановке, — перебил его Олег, — а мы ещё не покончили со всеми ошибками. Правда, остаётся всего одна — та, которую совершил Магистр, выйдя на Прямоугольную площадь.

— Ах да! — вспомнила Таня. — Он сказал, что в прямоугольнике диагонали взаимно перпендикулярны.

— Слышал звон, да не знал, где он, — подхватил Сева. — Решил, что раз диагонали пересекаются под прямым углом в квадрате, значит, так же пересекаются они и в любом прямоугольнике… Конечно, всякий квадрат — прямоугольник, но не всякий прямоугольник — квадрат.

Громкий лай Пончика возвестил о том, что поездка окончена.

Бедный пёс устал от вынужденной неподвижности и бурно радовался возможности поразмяться. Не мешало поразмяться и нам. Мы покинули катер и отправились по домам пешком.

Диссертация рассеянного Магистра

В ПОГОНЕ ЗА МИНУСОМ

Когда мы примчались на вокзал, я ахнул, закрыл лицо руками и стал думать.

А думать было о чём! Ведь пока мы с Единичкой осматривали город Пифагорск, наш поезд ушёл!! А вместе с ним — все мои математические таблицы, инструменты и ещё… папа Минус.

Единичке было весело, а каково мне? Что я с ней стану делать? Вот я и задумался. И, представьте себе, придумал: надо догнать поезд!

Единичка ещё больше развеселилась: она очень любит приключенческие фильмы с погонями.

— Мы помчимся на ковбойских лошадях! — предложила она.

— Нет, мы полетим в самолёте, — ответил я, и мы тут же поспешили на аэродром.

Там уже стоял самолёт, готовый к отправке. Я попросил пилота чуть-чуть задержаться, а сам побежал в кассу. Но стюардесса остановила меня. Оказывается, на этот самолёт не нужно никаких билетов.

— Значит, мы можем лететь бесплатно? — спросил я.

— Не совсем, — замялась стюардесса и слегка поправила свою пилотку. — Для того чтобы лететь на нашем самолёте, нужно правильно решить задачу, которую вам предложат в пути.

— А если я сделаю ошибку? — спросила Единичка. — Тогда что?

— Всё зависит от того, что за ошибка, — ответила стюардесса. — Если случайная, вам её простят. А если грубая, ну тогда вам придётся остаться на второй…

— На второй год? — испугалась Единичка.

— Нет, на второй рейс, — пояснила стюардесса. — Вас этим же самолётом, не высаживая, отправят обратно в Пифагорск.

— Это невозможно! — заволновался я. — Во-первых, Единичка — отличница; во-вторых, мы догоняем её папу Минуса; наконец, в третьих, я ей помогу решить любую задачу.

— Решать буду я сама! — отрезала Единичка.

Очень самонадеянная особа! По-моему, без подсказки ни один нормальный школьник не проживёт.

Тут я взглянул на номер самолёта, и у меня по спине побежали мурашки. На самолёте чёрным по белому была выведена огромная — шестизначная — цифра: сто тридцать одна тысяча триста тринадцать! Заметьте, цифра 13 повторялась здесь три раза: 131313! Но Единичка заявила, что она ничуть не суеверна, что всё это предрассудки и что, наоборот, всё идёт очень хорошо. Ну что ж, будем надеяться!

Мы поднялись по трапу в самолёт. Он уже был полон пассажирами, главным образом школьниками. Перед каждым из них на столике лежали тетрадки и карандаши.

Я стал рассматривать салон. Повсюду висели портреты великих учёных. Как раз против нас находилось хорошо знакомое мне изображение замечательного английского физика Бойля-Мариотта; его сразу же можно узнать по длинным волнистым волосам, ниспадающим на плечи. Я тут же стал объяснять Единичке, что Бойль-Мариотт открыл известный закон о давлении газа в сосуде, но Единичка почему-то лукаво погрозила мне пальчиком, потом сорвалась с места и убежала во второй салон.

Я, конечно, последовал за ней. Ведь там ей могут задать задачу, она её не решит, и тогда… Даже страшно подумать, что тогда!

Во втором салоне помещался буфет. Буфетчик в белом колпаке и с циркулем в руках радушно угощал Единичку всякими вкусными вещами.

— Советую вам попробовать один из этих шоколадных шариков в серебряной обёртке, — сказал он. — Их здесь, как видите, девять штук. Они изготовлены кондитером-геометром. Да, да! И, можете мне поверить, все девять шариков совершенно одинаковы. Внутри каждого шарика оставлено шаровое отверстие. Для орешка. Уверяю вас, что и отверстия все тоже совершенно одинаковые.

— Люблю орехи в шоколаде! — облизнулась Единичка и протянула руку к вазе.

— Не торопитесь, — остановил ее учёный буфетчик. — Среди девяти шариков с орехом только один. Остальные пусты.

— Но как же я узнаю, какой с орехом?

— А это и есть та задача, которую вам надо решить.

Единичка слегка задумалась, но тут же просияла.

— Всё ясно! — воскликнула она. — Тот шарик, который с орешком, тяжелее остальных. Значит, все шарики надо взвесить.

Молодец, Единичка! Но буфетчик был другого мнения.

— Вы только почти правы, — сказал он. — Шарики действительно надо взвесить. Для этого у меня даже имеются специальные весы (он указал на коромысло с двумя медными чашками). Правда, гирь, к сожалению, нет. Зато весы работают автоматически. Нужно опустить в щель особый жетончик. По одному на каждое взвешивание.

— Так дайте мне поскорее восемь жетончиков! — обрадовалась Единичка.

— Увы! —вздохнул буфетчик. — У меня их только два. Придётся вам обойтись двумя.

Единичка, конечно, сразу скисла, но я поспешил ей на помощь.

— Вот как надо поступить, — сказал я. — Положим по четыре шарика на каждую чашку весов, а девятый оставим в вазе. Если при этом весы останутся в равновесии, значит, шарик, который лежит в вазе, и есть тот, что нам нужен.

— А если весы не останутся в равновесии? — спросил буфетчик.

— Тогда ясно, что шарик с орешком в той чашке, которая перевешивает, — резонно ответил я. — Снимем шарики с другой чашки, больше они нам не нужны. Оставшиеся четыре шарика разложим по два на каждую чашку весов. Ясно, что одна из чашек непременно перевесит. Значит, орешек в одном из этих двух шариков. Теперь кладу каждый из них…

— Простите, — перебил меня буфетчик, — больше вы уже ничего не кладёте. Вы использовали оба жетона.

Конечно, будь на моём месте кто-нибудь другой, он бы непременно рассердился. Но я тотчас нашёл выход: раз орешек в одном из этих двух шариков, разрежем один шарик пополам. Уверен, что мне повезёт и орешек окажется именно в нём.

— А если не в нём? — не унимался дотошный буфетчик.

— Ну тогда ясно, что орешек в другом! — закончил я решение этой запутанной задачи.

Но буфетчик заявил, что это вовсе никакое не решение. Возмущённый его бестактностью, я покинул буфет. А Единичка осталась. Но не прошло и минуты, как она подошла ко мне, держа на одной ладони две половинки шоколадного шарика, на другой — белое ореховое ядрышко, которое тут же отправила в рот.

— Как тебе это удалось? — изумился я.

— Очень просто, — ответила она, тряхнув косичками. — Идите скорей в буфет. Там есть ещё одна ваза с шоколадными шариками. Только их не 9, а 27, и с орешком тоже только один.

— И опять его надо найти двумя взвешиваниями? — спросил я.

— Нет, — ответила Единичка, — я упросила буфетчика дать вам на этот раз три жетона.

Гм! Три жетона на 27 шариков?! Можно ли решить такую задачу?

Размышления мои прервал громкий плач. Какой-то мальчик, склонившись над тетрадкой, обливал её горючими слезами. Оказалось, он не может решить предложенную задачу. Ну, вы уже знаете, что я совершенно не выношу, когда дети плачут.

— Что тебе задано? — спросил я.

— Сократить две дроби, — всхлипывая, отвечал мальчик, — шестнадцать шестьдесят четвёртых и двадцать шесть шестьдесят пятых. А они никак не сокращаются!

— Это же сущие пустяки, — утешил я его. — Обрати внимание на то, что у дроби 16/64 и в числителе и в знаменателе имеется по шестёрке. Так зачеркни же их скорей!

— Спасибо! — обрадовался малыш. — Значит, и во второй дроби, 26/65, тоже можно зачеркнуть по шестерке и в числителе и в знаменателе!


Мальчик тут же записал оба ответа на отдельной бумажке и понёс её к стюардессе. Та мельком взглянула на бумажку и похвалила мальчика за правильное решение.

Два десятка ребячьих голосов крикнули: «Ура!» Польщённый, я вежливо раскланялся. Приятно всё-таки, когда тебя оценили по достоинству. Правда, оказалось, что «ура» кричали совсем по другому поводу. Дело в том, что мальчики (а их ехала целая футбольная команда, да ещё четыре запасных игрока) решили очень трудную задачу.

Стюардесса принесла им три коробки. В каждой лежали разноцветные полосы шёлка. В одной коробке зелёные, во второй — голубые, в третьей — розовые. Каждому из футболистов предлагалось сделать из этих полос вымпел, но так, чтобы у всех игроков, включая запасных, вымпелы были совершенно разные.



Поделиться книгой:

На главную
Назад