Биограф Ньютона Уильям Стьюкли («Воспоминания о жизни Ньютона», 1752 год) сообщает: «Ньютон сказал мне, что мысль о гравитации пришла ему в голову, когда неожиданно с ветки упало яблоко. “Почему яблоки всегда падают перпендикулярно земле?” — подумал он».
Тем не менее по рабочим тетрадям Ньютона видно, что его теория всеобщего тяготения вовсе не была озарением, а развивалась постепенно. Сам Ньютон в одном из писем 1686 свою запись окончательной формулировки закона тяготения датирует лишь приблизительно: «более 15 лет назад».
Ньютон размышлял о движении Луны. Луна летит по своей орбите вокруг Земли. Со времен Кеплера было известно, что орбита представляет собой замкнутую кривую линию — эллипс. Если бы никакой силы не было, Луна двигалась бы равномерно и прямолинейно. Но эллипс — не прямая линия! И если Луна движется не по прямой, значит, на нее
Раз Луна летает вокруг Земли, естественно было предположить, что источник этой силы связан с Землей.
Вблизи поверхности Земли предмет в свободном состоянии (например, то же яблоко), как и Луна, не движется равномерно: оно падает отвесно с ускорением, двигаясь к центру Земли. Раз есть ускорение, значит, опять работает какая-то сила. Это следует из закона, открытого тем же Ньютоном:
где
Ньютон догадался, что сила, заставляющая Луну отклоняться от движения по прямой, и сила, заставляющая падать яблоко (а также прижимающая к полу самого Ньютона), — это
Это была гениальная догадка и абсолютно правильное решение.
На первый взгляд, движения падающего яблока и Луны совсем не похожи. Яблоко падает к центру Земли, а Луна все время летит вокруг Земли в направлении, перпендикулярном направлению к центру нашей планеты. Но эти движения не похожи только на первый взгляд. Если бы Луна остановилась в своем движении вокруг Земли, она стала бы падать к центру Земли — точно так же, как яблоко. Разница только в том, что у Луны есть большая «горизонтальная» (точнее, перпендикулярная направлению на центр Земли) скорость, благодаря которой Луна, непрерывно падая на Землю, все время «промахивается» и летит мимо, «закругляя» свою траекторию, огибающую Землю. А у яблока такой круговой скорости нет.
А можем ли мы яблоко превратить в Луну? Точнее, заставить его тоже летать, не падая, вокруг Земли, подобно Луне? Ньютон понял, что можем.
Для этого надо бросить яблоко горизонтально (перпендикулярно направлению на центр Земли). Конечно, яблоко упадет, но уже не в том месте, где его бросили, — оно успеет пролететь по кривой некоторое расстояние, пока из-за притяжения Земли не упадет на ее поверхность.
Если же бросить яблоко с большей скоростью, оно пролетит дальше. Но не надо забывать, что Земли круглая. Если придать яблоку очень большую скорость, окажется, что кривизна земной поверхности будет равна кривизне траектории падающего яблока. Это значит, что яблоко, все время падая на Землю под действием ее притяжения, будет стремиться к центру Земли, постоянно огибая Землю и постоянно падая «мимо». Яблоко превратится в спутник Земли — такой же, как и Луна!
Первый в мире искусственный спутник Земли был запущен в СССР 4 октября 1957 года.
Поразительно, что ни Луне, ни яблоку на орбите вокруг Земли не нужен источник движущей силы в виде духа, ангела или ракетного двигателя. На спутник Земли действует
Конечно, Ньютон рассуждал не о яблоке. Его перу — напоминаю, что в те времена писали заостренными птичьими перьями, окуная их в чернила, — так вот, его перу принадлежал рисунок, который американский астроном Чарлз Уитни назвал «самым замечательным рисунком во всей истории науки».
Вместо человека, бросающего яблоко, Ньютон изобразил пушку, стреляющую горизонтально (пушечное ядро летит быстрее яблока под воздействием давления пороховых газов в стволе пушки). Он показал разные траектории ядра в зависимости от начальной скорости полета — по мере увеличения начальной скорости ядро падает дальше, еще дальше и, наконец, при некой скорости становится спутником Земли, двигаясь по круговой орбите. Скорость, при которой тело (хоть яблоко, хоть ядро) движется по круговой орбите на сравнительно небольшой высоте над Землей, не падая, называется
Подобный рисунок Ньютон, бывший к тому же неплохим рисовальщиком, выполнил собственноручно.
Важно, что на рисунке Ньютона пушка установлена на очень высокой горе (на самом деле на Земле таких гор нет и быть не может). Это правильно: ведь ядро может потерять скорость из-за трения о воздух. Как только скорость спутника станет меньше первой космической, кривизна его траектории окажется больше кривизны земной поверхности, и спутник упадет (столкнется с Землей). Поэтому Ньютон начертил гору настолько высокую, что на ее вершине уже нет воздуха. Тогда трение равно нулю и спутник сможет свободно двигаться по окружности. Наверно, рисунок говорит еще и о том, что Ньютон понимал — воздуха в межпланетном пространстве нет.
А что, если скорость ядра окажется больше первой космической скорости? Согласно расчетам Ньютона, ядро будет двигаться по эллипсу, один из фокусов которого окажется в центре масс Земли. Законы Кеплера, описывающие движение тела по эллипсу, будут выполняться. Если продолжать наращивать скорость, эллипсы будут все более и более вытянутыми. Наконец настанет момент, когда длинный эллипс «разорвется» и превратится в разомкнутую траекторию — параболу. Спутник, двигаясь по такой траектории, навсегда покинет Землю и улетит прочь. Соответствующую скорость называют вторая космическая.
Разрыв эллиптической орбиты и вторая космическая скорость.
Что это за сила, которая притягивает яблоко, ядро или самого Ньютона к Земле?
Ньютон предположил, что эта сила зависит от массы тела. Чем больше масса, тем больше сила, с которой тело притягивает к себе другие тела. Анализ движения Луны вокруг Земли позволил вывести формулу для вычисления силы, с которой два любых тела притягиваются друг к другу. Эту формулу теперь знают все, ее изучают в школах на уроках физики. Она выражает закон всемирного тяготения, открытый Ньютоном.
Внимательно рассмотрим эту формулу:
где
Гравитационная постоянная определяет величину силы притяжения между телами. 10−11 — это единица, деленная на огромное число — 10 с одиннадцатью нулями. Таким образом, гравитационная постоянная — это очень маленькое число. Значит, и сила тяготения, которую называют гравитацией, на самом деле очень мала. Более того, она уменьшается с расстоянием, причем очень быстро: в знаменателе расстояние
Любопытно, что две массы
Почему, например, мы явственно ощущаем, как нас притягивает к себе Земля, но не чувствуем, как притягиваются друг к другу два школьника, сидящих рядом за одним столом? Все дело в массе. Гравитационная постоянная настолько мала, что даже если мы перемножим массы двух школьников, после умножения на крошечную гравитационную постоянную результат будет ничтожно мал! Никаким динамометром мы не сможем измерить силу притяжения между школьниками — настолько она мизерна. Но когда в формуле учитывается огромная масса Земли (ее масса в килограммах выражается числом с 24 нулями) — сила будет заметна. Каждый из нас (и Ньютон в том числе) мог ощутить, как сильно Земля притягивает нас к себе. Подпрыгнув, мы не улетаем в космос, а с ускорением падаем обратно.
Согласно теории Ньютона гравитацию испытывают все
Три закона Кеплера являются следствиями закона всемирного тяготения. Студенты — будущие астрономы — выводят эти формулы аналитически. Если мы знаем массы и скорости тел в некий момент времени, формулы позволяют вычислять и положения, и скорости тел для каждого момента времени.
Теория Ньютона прекрасно работает. С ее помощью с высокой точностью рассчитываются положения небесных тел и космических аппаратов, траектории межпланетных зондов, скорость которых меняется с помощью кратковременного включения ракетного двигателя, направленного в нужную сторону. В итоге мы (человечество) научились выполнять виртуозные маневры, перелетать от одной планеты к другой и даже использовать притяжение планет для маневрирования в космосе. Все это может говорить о том, что теория тяготения
Забегая вперед, скажем следующее. Наблюдения в крупнейшие телескопы позволяют сделать вывод, что устройство систем из небесных тел на гигантских расстояниях от нас — такое же, как вблизи Солнца. Это значит, что закон тяготения справедливо называется законом всемирного тяготения. Он действует одинаково во всей наблюдаемой нами части Вселенной. Этот удивительный закон природы носит поистине универсальный характер.
Солнечная система. Рисунок показывает сравнительную величину Солнца и планет. Расстояния от планет до Солнца, а также между планетами переданы условно.
Итак, давайте разберемся еще раз. Согласно теории, разработанной Ньютоном, Вселенная представляет собой гигантский (возможно, бесконечный) объем. Он заполнен звездами. То, что раньше воспринималось как весь мир, теперь превратилось в крошечный фрагмент мира — Солнечную систему, которая включает в себя Солнце и несколько планет, обращающихся вокруг него по эллиптическим орбитам. Расстояния между соседними звездными системами в рамках такой картины мира должны быть огромными. Когда-то Джордано Бруно говорил, что это хорошо: если бы планетные системы были близки друг к другу, их жители могли бы взаимодействовать, но кончилось бы это плохо: сильные победили бы слабых.
Управляет всеми движениями небесных тел одна сила — всемирное тяготение. Все тела притягиваются друг к другу. Все тела, которые обладали низкими скоростями, притянулись к своим массивным соседям и упали на них, в результате массивное тело стало еще больше. Все тела, которые обладают очень высокими скоростями, могут свободно двигаться в пустом пространстве между звездными системами. Те же тела, которые обладали скоростью в пределах от первой до второй космической по отношению к близкому массивному телу, являются спутниками этого тела. Так, планеты Солнечной системы являются спутниками Солнца, Луна является спутником Земли, открытые Галилеем с помощью телескопа объекты возле Юпитера являются его спутниками…
А как же твердые небесные сферы?
Окончательному их разрушению способствовали кометы. Иногда на звездном небе неожиданно появляются странные объекты, напоминающие звезды с хвостами, которые передвигаются на фоне звезд. Их называют кометами (косматыми), и долгое время люди боялись комет, считая, что это предвестники будущих несчастий. Сегодня мы знаем, что кометы — это сравнительно небольшие (по сравнению с планетами) небесные тела, состоящие из водяного льда, замерзших газов и вмороженной пыли. Когда ледяное ядро кометы проходит вблизи Солнца, оно нагревается, начинает «газить и пылить», в результате возникает длинный «хвост», состоящий из частиц газа и пылинок. Особенностью комет является то, что они движутся иногда по очень вытянутым эллипсам.
Заметный даже невооруженным глазом газопылевой хвост выделяет комету на небосводе.
Закон тяготения и его следствия — законы Кеплера — позволяли, анализируя наблюдения движения комет, рассчитать их траектории, описать орбиты, вычислить скорости. Этим занимался, в частности, друг Ньютона астроном Эдмунд Галлей (1656–1742). Его расчеты показали, что вытянутый эллипс одной из комет (она получила имя Галлея) пересекает орбиты всех планет и уходит далеко за орбиту Сатурна! Если бы существовали хрустальные небесные сферы, кометы не могли бы так двигаться — они сталкивались бы со сферами. Ничего подобного мы не наблюдаем. Даже разреженные хвосты комет (мы видим сквозь них звезды) не показывают никаких признаков столкновения с небесными сферами. Это означает, что никаких твердых сфер в небе просто нет.
Комета Галлея. Отмечены положения кометы, очередное максимальное удаление приходится на 2024 год.
Итак, согласно выдающимся достижениям ученых ХVII и XVIII веков, просвещенные люди получили новую картину мира — бесконечную Вселенную, наполненную звездами. Вокруг звезд предполагались (пока еще не были видны) планетные системы. Одна из таких систем — наша Солнечная, в которой были известны шесть планет, на третьей из которых живут мыслящие существа, способные создать в своем сознании эту грандиозную картину мира. Во всей Вселенной действует закон всемирного тяготения, во всей Вселенной время течет одинаково.
Конечно, Ньютон считал, что Вселенная создана Богом. Ученый полагал, что иначе невозможно объяснить удивительные закономерности Солнечной системы — то, что планеты движутся в том же направлении вокруг Солнца, в котором вращается само Солнце. При этом плоскости орбит планет близки друг к другу, в отличие от комет, которые, как показали наблюдения, движутся в любых направлениях и в любых плоскостях. Ньютон не мог объяснить эти закономерности и, будучи очень религиозным человеком, считал, что так могло получиться только благодаря воле Бога.
Такая точка зрения вполне типична. Когда мы сталкиваемся с чем-то непонятным, то приписываем это сверхъестественным силам. Но чем больше мы узнаем, применяя критическое мышление, тем больше явлений и событий удается объяснить естественными природными явлениями. Так вышло и в данном случае, но гораздо позже.
6. Вселенная, которая не меняется
Телескопы становились все совершеннее, и с их помощью можно было увидеть все больше далеких объектов Вселенной. Эти наблюдения создавали впечатление незыблемости, неизменности, постоянства Вселенной. Звезды ровно и мерно светили (так называемые «переменные звезды», явно меняющие свою яркость, были уже известны, но воспринимались как редкие нетипичные исключения). Планеты двигались и (поэтому) тоже меняли яркость, но теперь, после утверждения гелиоцентрической системы в сознании астрономов, ученые понимали, почему это происходит.
Оптические схемы первых телескопов
1. Первый рефрактор Галилео Галилея, 1609 год.
2. Первый рефлектор Исаака Ньютона, 1668 год.
Но, по большому счету, в наблюдаемой Вселенной ничего не происходит. На Земле меняются времена года, вокруг Солнца летают планеты, вокруг планет — их спутники, издали светят звезды. Вселенная выглядит стационарной. Этот термин применяют физики, когда хотят подчеркнуть, что ничто
…Уже в Средние века появлялись люди, которые догадывались, что Вселенная может со временем изменяться, но эта идея была не в почете. Астрономы прежде всего пытались выяснить свойства наполняющих Вселенную небесных тел исходя из ее неизменности.
Параллакс — наблюдаемое смещение объекта относительно фона при изменении точки наблюдения.
Возможности исследователей росли. Телескопы становились все мощнее, увеличивалась их проницающая сила (можно было видеть все более слабые источники света, которые невозможно разглядеть невооруженным глазом). Вместе с размерами и качеством астрономической оптики росла разрешающая способность (можно было рассматривать все более мелкие детали изображений Луны, планет, хвостов комет и загадочных туманных пятен в звездном небе). Впрочем, звезды при наблюдениях в любой телескоп оставались просто точками. Телескопы делали их все более яркими, но увидеть звезду в виде диска с деталями оказалось невозможно. Это означало, что предположения древних были верны: звезды чрезвычайно далеки, а значит, Вселенная невероятно велика. Люди все-таки сумели определить расстояния до ближайших звезд. Как это сделать, было ясно еще полторы тысячи лет назад. Если положения звезды на небе определять много раз в течение года и наносить точки на карту звездного неба, эти точки должны выстроиться в маленький кружок (точнее, эллипс) из-за того, что сама Земля совершает круг в течение года и мы смотрим на звезду из разных точек.
Измерение расстояний в космосе с использованием годичного параллакса Земли. Неподвижные звезды соответствуют карте звездного неба. Положения близкой звезды, многократно нанесенные на карту, образуют эллипс. Показана годичная орбита Земли, лежащая в плоскости эклиптики, и большая ось орбиты. Точки А, В, C, D — некоторые положения Земли на эллиптической орбите Земли и направления на близкую звезду S.
Астрономы пытались заметить этот эффект, но это не удавалось: казалось, что в течение года все звезды остаются на своих местах. Не смогли зафиксировать эффект даже великие астрономы-наблюдатели — Иоганн Кеплер и Вильям Гершель. Для сторонников идеи о центральном положении Земли это было доводом в пользу того, что наша планета неподвижна. Что же касается гелиоцентристов, то они утверждали, что эффект не удается заметить просто из-за огромной удаленности звезд и недостаточной точности определения положения звезды.
Гелиоцентристы оказались правы.
Точнейшие (астрономы применяют слово прецизионные) наблюдения с помощью высокоточного телескопа, изготовленного замечательным немецким оптиком Йозефом Фраунгофером (1787–1826), выполнил немецкий астроном и математик Фридрих Бессель (1784–1856). Он-то и получил золотую медаль Лондонского астрономического общества за первое в истории подтвержденное определение расстояния до звезды 61 в созвездии Лебедь. Оказалась, что она находится на чудовищном расстоянии в 90 триллионов (девятка и тринадцать нулей после нее означают девяносто миллионов миллионов) километров. Чтобы не связываться со множеством нулей, астрономы сегодня используют единицу длины под названием световой год (это примерно десять триллионов километров — расстояние, которое свет со скоростью 300 000 км/с проходит за один год.) Согласно современным данным, звезда 61 Лебедя расположена в 11,36 светового года от нас.
Созвездие Лебедь с указанием звезды 61 и расстояния до нее
Это не самая близкая к нам звезда. В комплексе Альфа Кентавра в Южном полушарии есть слабая звездочка, которую назвали Проксима, то есть «ближайшая» по-гречески. Расстояние до нее равно 4,2 светового года (свет от нее идет к нам 4,2 года). Ближе звезд нет (кроме Солнца).
Так мы узнали, что среднее расстояние между соседними звездами в нашей области Вселенной составляет несколько световых лет. Для сравнения — свет от Солнца идет к нам чуть больше восьми минут. Звезды действительно оказались чрезвычайно далекими объектами — поэтому они и выглядят всего лишь как яркие точки, поэтому мы и не могли на протяжении двух тысяч лет определить расстояние даже до ближайшей из них.
Российский популяризатор астрономии Михаил Шевченко сравнил представления о расстояниях до звезд, существовавшие в разные времена.
Если выражать эту величину в километрах, то Анаксимандр считал, что до звезд 200 тысяч км (на самом деле это примерно половина расстояния до Луны). Согласно Архимеду, до сферы неподвижных звезд — 40 миллионов километров (на самом деле это примерно кратчайшее расстояние до планеты Венеры). Пожалуй, одному Аристарху из череды великих греков удалось сделать близкую к реальности оценку — по его представлениям, расстояние до сферы неподвижных звезд составляет 10 триллионов километров, то есть один световой год (напоминаю, что до ближайшей звезды Проксимы 4,2 светового года). Птолемей давал оценку в 100 миллионов км (на самом деле это в полтора раза меньше, чем до Солнца). Замечательный арабский ученый Абу Райхане аль-Бируни (973–1048) писал про 140 миллионов км (это чуть меньше расстояния от Земли до Солнца). Великий наблюдатель Тихо Браге полагал, что до звезд 90 миллионов километров (еще меньше, чем по Птолемею).
Если расстояния в космосе представить в масштабе 1 см : 200 тыс. км, то расстояние от Земли до Луны составит 2 сантиметра, расстояние от Земли до Солнца будет равно 750 см, а один световой год составит 50 000 км. Часть рисунка с Землей и Луной выполнена в указанном масштабе 1 см : 200 тыс. км. Диаметр Земли в этом масштабе — примерно 1,5 мм. Прочие расстояния не помещаются на странице.
Мы видим, что почти все предшественники Бесселя существенно занижали расстояние до ближайших звезд, и только измерения великих наблюдателей середины XIX века (почти одновременно с Бесселем измерить расстояние до звезд удалось Вильгельму Струве (1793–1864) в Российской империи и англичанину Томасу Гендерсону (1798–1844), наблюдавшему звезды с мыса Доброй Надежды на юге Африки) дали окончательный ответ на этот вопрос.
Вручая премию Бесселю, президент Лондонского астрономического общества, сын Уильяма Гершеля (тоже выдающийся астроном, как и его отец) Джон Гершель заявил на церемонии:
Он имел в виду работы Бесселя, Струве и Гендерсона.
Но как далеко простирается пространство, наполненное звездами?
После Николая Кузанского и Джордано Бруно мысль о бесконечности Вселенной не казалось невозможной. Новая картина мира постепенно выстраивалась: бесконечная Вселенная наполнена звездами, находящимися на огромных расстояниях (несколько световых лет) друг от друга. Но телескопы, которые быстро совершенствовались, показывали, что в мире существуют не только сравнительно близкие к нам планеты с кометами, обращающиеся вокруг Солнца, а также звезды, подобные Солнцу.
Световое и инфракрасное излучение городов мешает астрономическим наблюдениям.
В те далекие времена, когда в городах еще не было светового загрязнения и яркие ночные фонари не мешали смотреть на ночное небо, в любой точке земного шара можно было увидеть неровную серебристую полосу — Млечный Путь. Ее происхождение пытались объяснить по-разному (испарения, особый тип облака). То, что это скопление звезд, предположил еще Демокрит (ок. 460 – ок. 370 годы до нашей эры), но доказать это в те времена было невозможно. Лишь в 1609 году Галилей посмотрел на Млечный Путь в телескоп и убедился, что это действительно множество звезд.
Млечный Путь над морем.
«Я наблюдал природу и вещество Млечного Пути. С помощью телескопа его удалось обозреть так подробно и с такой зрительной ясностью, что все споры... разрешились!.. Млечный же Путь есть на деле нечто иное, как масса бесчисленных звезд, собранных в скопления…» — писал Галилей в своей книге «Звездный Вестник», изданной в 1610 году.
Но телескопические наблюдения великих астрономов XVII–XVIII веков показали, что в небе помимо звезд можно увидеть слабо светящиеся туманные пятна самой разнообразной формы. Такие пятна получили название небулы, или туманности. Гершель в ходе своих многолетних наблюдений открыл более двух тысяч таких туманностей. Многие из них при разглядывании в сильный телескоп распадались на отдельные звезды, и становилось ясно, что это далекие скопления звезд, подобные фрагментам Млечного Пути. Но многие туманности на звезды не разрешались даже при большом увеличении телескопа. Некоторые из них совсем не походили на плотные скопления звезд, отличаясь и по внешнему виду, и по цвету.
Забегая вперед, укажем, что история изучения туманностей тоже, как и история исследований звезд Галактики, содержит множество имен, названий телескопов и отдельных достижений. Не будем задерживаться и сразу перейдем к результатам.
Сейчас мы знаем, что многие туманности — это огромные облака из газа и пыли. Некоторые из них порождены взрывами звезд (оказывается, отдельные типы звезд способны взрываться), и тогда их сорванные оболочки постепенно рассеиваются в пространстве. Есть и другие типы туманностей — например, гигантские облака разреженного газа (в основном водорода).
Итак, оказалось, что вещество во Вселенной не обязательно должно быть собрано в компактные шары, как звезды и планеты, — оно может быть рассеянным, занимая гигантские объемы пространства, иногда многократно превышающие по размерам расстояния между соседними звездами. Так телескопы позволяли обнаруживать новые типы небесных объектов, которыми, как оказалось, населена Вселенная. До появления сильных телескопов мы об их существовании даже не догадывались.
Важным был и вопрос о структуре Вселенной. Получалось, что почему-то большая часть звезд и туманностей располагалась в пределах узкой полосы Млечного Пути, а вне этой полосы видны лишь отдельные звезды на фоне черного неба. Пространственное распределение звезд было явно неравномерным. Млечный Путь опоясывает все небо, его видно и в Северном, и в Южном полушарии, а это значит, что Солнце вместе со своими планетами (Солнечной системой) находится внутри гигантской плоской системы из множества звезд. Эту систему назвали Галактикой (от греческого слова «галактос» — молоко: многие народы связывали светлую полосу на небе с образом разлитого молока).
Если смотреть на Млечный Путь, мы увидим огромное множество звезд в виде светящейся полосы на небе. Если же смотреть перпендикулярно плоскости Галактики, на пути нашего взгляда (астрономы говорят «на луче зрения») окажется гораздо меньше звезд, поскольку Галактика оказалась по космическим меркам сравнительно тонкой. Между отдельными далекими друг от друга звездами видно черное небо — пустое пространство космоса.
Разное количество звезд в разных направлениях объясняется формой Галактики. Скопление звезд подобно плоскому диску.
Идею о расположении звезд в пределах плоского диска впервые выдвинул английский ученый Томас Райт (1711–1786). Одна из его геометрических моделей предполагала, что форма Галактики напоминает гигантский плоский диск. Любопытно, что Райт допускал существование множества таких дисков, похожих на наш Млечный Путь.
Версию Райта подтвердили наблюдения величайшего английского астронома, в прошлом немецкого музыканта Уильяма Гершеля (1738–1822). Гершель своими руками и при помощи подручных построил несколько телескопов, в том числе крупнейший по тем временам в мире. Он не пропускал ни одной ясной ночи, наблюдая небесные светила на протяжении практически пятидесяти лет подряд. В 1781 году Гершель открыл седьмую планету Солнечной системы, которую назвали Уран. Радиус Солнечной системы сразу увеличился в глазах астрономов почти вдвое.
Телескоп Гершеля — самый большой телескоп своего времени, крупнейший в мире рефлектор с металлическим зеркалом.
Одна из научных задач, которую пытался решить Гершель, — выяснить, как устроен Млечный Путь. Понять, как расположено огромное скопление звезд в пространстве, крайне сложно — подобно тому как трудно бактерии представить себе внешний облик астронома, сидя у него в желудке. Тем не менее такая задача оказалась решаемой.
Гершель исходил из того, что все звезды излучают свет примерно одинаково (обладают примерно одинаковой светимостью), и если блеск звезд различен, то это связано только с различиями в расстояниях до них[16]. Гершель вместе со своей сестрой Каролиной стали подсчитывать количество звезд на разных площадках, на которые они разбили небо. Брат и сестра Гершель полагали, что чем больше слабых звезд в том или ином направлении они обнаружат, тем больше протяженность в этом направлении нашей звездной системы. По результатам своих длительных наблюдений Вильям Гершель построил диаграмму, которая подтверждала: множество звезд Млечного Пути расположено в пространстве в виде гигантской плоской системы.
Галактика Млечный Путь — спиральная система.
Любое изображение нашей Галактики сегодня может быть выполнено лишь на основе обработки результатов наблюдений. Даже если представить, что самый первый космический аппарат в истории космических полетов землян уже более 50 лет удаляется от Земли со второй космической скоростью, имея задачу сделать такую фотографию и прислать ее на Землю, до выполнения снимка должны пройти еще долгие миллионы лет.
Двухсотлетние наблюдения многих астрономов позволили представить структуру нашей Галактики, которую мы называем Млечный Путь, только в XX веке.
В этой книге мы не будем описывать эти наблюдения: они не меняют картину мира, о которой идет речь, а только уточняют ее. Так вот, оказалось, что Млечный Путь устроен существенно сложнее, чем просто плоский диск, как предполагал Райт и доказал Гершель. На самом деле диск нашей Галактики похож на плоскую раскручивающуюся спираль. Два спиральных рукава берут начало от концов центральной перемычки, которую называют бар, и раскручиваются в пространстве. Перемычка проходит через центральное сгущение, которое астрономы называют балдж. Два основных рукава дробятся: астрономы выделяют пять рукавов.
Схема Галактики. Разное количество звезд, наблюдаемое с Земли в различных направлениях, объясняется формой Галактики. Скопление звезд подобно плоскому диску.
Размеры Галактики колоссальны. Диаметр ее, измеряемый по внешним контурам спиральных рукавов, составляет более ста тысяч световых лет[17]. Расстояние от центра Галактики до нашей Солнечной системы составляет примерно 26 тысяч световых лет. Это сложно представить себе: свет от звезд в центральных областях Галактики идет к нам 26 тысяч лет.
Толщина диска Галактики — примерно тысяча световых лет. Как предполагал Демокрит и доказал Галилей, Галактика состоит из громадного количества звезд. Их точное количество мы не знаем. Однако астрономы часто используют не точные числа, а оценки, и этого бывает достаточно. Нам не так уж важно знать с точностью до одной звезды, сколько светил в Галактике. Важнее иное: сколько их с точностью до порядка (количества целых знаков в числе) — сто тысяч? миллион? десять миллионов?
Схема нашей Галактики.
Современная оценка числа звезд в Галактике — 400 миллиардов. Точнее сказать сложно (многие звезды загорожены облаками пыли и газа), но мы твердо знаем, что их, по крайней мере, вдвое меньше триллиона и точно больше трехсот миллиардов. Для наших общих представлений о Галактике такой точности вполне хватает.
Кроме того, известно, что в центре масс Галактики, загороженная облаками газа и пыли, находится сверхмассивная черная дыра (СМЧД). Как и положено черной дыре, она не видна. Ее тяготение настолько велико, что вторая космическая скорость для такого объекта равна скорости света! Даже свет не может покинуть черную дыру (поскольку свет движется со скоростью света и не быстрее). Поэтому СМЧД проявляет себя только своим тяготением — радиотелескопы «видят» (радиоволны проходят сквозь пыль и газ), как в самом центре Галактики вокруг «пустого места» по кеплеровским эллипсам с огромными скоростями движутся несколько звезд. Применяя законы Кеплера и определив скорости движения звезд, можно рассчитать, какова масса объекта, вокруг которого они движутся. Получается около 4 миллионов масс Солнца! Такой невероятной массой может обладать только один тип компактных объектов — сверхмассивные черные дыры.
Завершая описание нашей Галактики, нужно сказать, что она окружена так называемым гало. Гало — это воображаемый шар, окружающий Галактику, в пределах которого не только в плоскости диска Галактики, но и в других (всевозможных) плоскостях вокруг центра Галактики движутся и отдельные звезды, и целые шаровые звездные скопления, насчитывающие примерно по 100 тысяч звезд. Шаровых скоплений в Галактике известно около ста пятидесяти.
Таков наш Млечный Путь.