Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Силы притяжения, действующие на тело внутри диска - Петр Путенихин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Что интересно и даже удивительно, при учёте "внешних слоёв", обручей такого диска график силы Fx довольно долго растёт почти по закону параболы, а вблизи края диска — скорость роста резко возрастает. Это означает, что сила притяжения внешних частей диска наружу буквально "подавляет" силу притяжения внутренних дисков. Для сравнения построим график сил для диска с гиперболической функцией плотности, плотности, которая убывает от центра диска к его периферии — рис. 2.2.

Для такого частного, специфического распределения плотности диска кривая вращения приобрела вид, явно отличающийся от кеплеровского, рис. 2.3.


Рис. 2.3. Диск с гиперболической функцией плотности имеет кривую вращения, приближающуюся к наблюдаемой кривой вращения галактики Млечный Путь

Начальный участок графика плотности на рис. 2.2 и рис. 2.3 уходит по гиперболе далеко вверх. Его уравнение


Разумнее было предположить, что плотность ρ0 неизменна не только в точке, а на некотором интервале начального участка, в центральной части диска. После корректировки, установки плотности ρ0 на таком участке график приобрёл такой вид рис. 2.4.

Неизменное значение плотности было до r = 0,59 включительно. Внешнее, приблизительное сходство графика с кривой вращения Млечного Пути, несомненно. А если изменить плотность на другом интервале радиусов? Попытки точечного изменения плотности показали, что прямой, пропорциональной связи между графиком плотности и кривой вращения нет. Каждый изгиб графика плотности, изгиб в любой его точке приводит к изменению кривой вращения также и в других её точках.


Рис. 2.4. Диск с гиперболической функцией плотности и отсечённым верхом, максимумом имеет кривую вращения, довольно сильно приближенную к наблюдаемой кривой вращения галактики Млечный Путь


Рис. 2.5. Небольшой выступ на графике плотности ведёт к сильному искажению, всплеску на кривой вращения

Небольшая площадка в области r = 4,5 привела к довольно серьёзной деформации кривой вращения. Пробуем скачкообразно изменить плавность изменения плотности в конце графика, после r = 8.

Плотность была сформирована фактически из двух интервалов (скачок на 8). До 8 показатель степени в уравнении (2.1) n = 0,5, после 8 показатель n = 0,3. Пик на кривой вращения оказался весьма крутым. На графике силы Fx этот скачок существенно меньше, что объяснимо его квадратичной зависимостью. Заметим, что график плотности в конце диска имеет ненулевое значение.


Рис. 2.6. Ступенька на графике плотности ведёт к сильному искажению, пику на кривой вращения

Считая, это не совсем верно, вносим небольшую корректировку в уравнение плотности, сделав её значение на краю диска равной нулю


Формируем новый интервал n = 0,45 после r = 8 и строим диаграммы. Скачок привел к немного уменьшенному эффекту, но по-прежнему с заметным пиком на кривой вращения.


Рис. 2.7. Пик на кривой вращения возникает при любой, даже самой малой ступеньке на графике плотности

Эффекты явно вызваны скачком плотности. Пробуем заменить скачок в r = 8 плавным переходом и для сравнения добавляем скачки на r = 5 и на r = 9,2.


Рис. 2.8. Плавный изгиб, переход на графике плотности ведёт к такому же плавному изгибу на кривой вращения

Просматривается закономерность: скачки плотности всегда приводят к появлению пиков на кривой вращения. Напротив, плавный переход на функции плотности приводит к такому же плавному изгибу кривой вращения. Для новой проверки делаем в области r = 5 параболическую выпуклость на функции плотности. С полученной функцией плотности фрагмент кривой вращения приобрел вид


Рис. 2.9. Плавный параболический изгиб на графике плотности привёл к значительному, но плавному изгибу на кривой вращения

На графике видно, что в точке излома функции плотности на кривой вращения также образуется заметный излом. Но плавность изменения функции плотности по-прежнему приводит к плавному изменению кривой вращения. При этом можно предположить, что на интервале неизменности функции плотности кривая вращения растёт. Общая тенденция к уменьшению значения плотности ведёт к такому же уменьшению и величины скорости на кривой вращения.

3. Подбор функции плотности

Можно отметить, что использование гладких аналитических кривых для функции плотности даёт сглаженное, плавное приближение к кривой вращения Млечного Пути, её графику, формирует достаточно плавную кривую на всём её протяжении. Иначе говоря, переменная плотность позволяет получить кривые вращения с различным уклоном. Таким образом, следует предположить, что можно построить кривую вращение любой формы, в том числе, и максимально похожую на кривую вращения галактики Млечный Путь. В самом деле, спиральный диск галактики вполне можно рассматривать как сплошной, но имеющий переменную плотность вещества.

Проведенные вычисления достаточно отчётливо показали такую возможность корректировки кривой вращения изменением функции плотности. Однако сложность подбора функции плотности, в свою очередь, показала, что для дальнейших построений требуется разработать какой-то механизм, процедуру, облегчающие формирование функции плотности.

Функция плотности, как и все графики на диаграммах, в наших вычислениях состоит из 1000 точек, поэтому изменить их все вряд ли возможно и необходимо. Поэтому мы делим весь интервал функции на 10 участков, на которых криволинейный график функции плотности заменяем прямыми линиями. Использование вместо прямых линий парабол или гипербол оказалось неоправданно сложным, поскольку в некоторых случаях изломы сохранялись и даже возникали неестественные отклонения.

Изменения производим в узлах этих прямолинейных участков, в точках излома, соединения линий. Используем 11 точек, совпадающих с линиями сетки графика: r0, r0,5, r1…r10. Графику плотности в начальной части присваиваем ещё один параметр — значение максимума, пика графика.

Каждый участок задаём координатами начала и конца (xнyн — xкyк). Уравнение линии определяем по этим точкам. Сначала находим коэффициент наклона прямой


Свободный член находим из первого уравнения


Система уравнений для построения обобщенно имеет вид


В первом варианте на начальном интервале мы использовали параболическую кривую, подобранную ранее. Для формирования рабочей функции плотности была использована исходная функция плотности (2.1), график которой после аппроксимации отрезками прямых приобрёл следующий вид


Рис. 3.1. Исходная функция плотности

Используя этот график плотности диска, до его коррекции строим исходную кривую вращения.


Рис. 3.2. Кривая вращения по исходной функции плотности

Отмечаем, что кривая вращения явно, сильно отличается от кеплеровской. Теперь вносим изменение в функцию плотности. Для начала корректируем точку x1


Рис. 3.3. Кривая вращения после деформации исходной функции плотности

Изменение кривой вращения видны достаточно отчётливо. Напомним, что нас интересует функция плотности, приводящая к кривой вращения нашего диска, подобной наблюдаемой кривой вращения галактики Млечный Путь. Последовательно, интуитивно вносим изменения в другие точки функции плотности. График формируемой кривой вращения заметно приближается к кривой вращения галактики.


Рис. 3.4. Первое приближение кривой вращения к эталону

Поскольку пик кривой вращения диска был заметно смещён вправо от пика кривой вращения галактики Млечный Путь, мы увеличили пик плотности диска до 50. Смещение уменьшилось. На следующих рисунках приведены результаты других последовательных эмпирических приближений, подгонки функции плотности




Поделиться книгой:

На главную
Назад