Петр Путенихин
Радиус наблюдаемой Вселенной и горизонт Вселенной
Одним из основных результатов астрономических наблюдений являются красное смещение и яркость различных объектов во Вселенной. По этим данным определяют расстояние до наблюдаемого объекта и скорость его удаления. В отношении этих наблюдений в литературе часто упоминается обстоятельство, которое обычно формулируется как "взгляд в прошлое". Если некоторая галактика, сверхновая находится на большом удалении, свет от неё движется до Земли какое-то достаточно большое время. В момент получения наблюдателем этого света галактика находится уже на другом, большем удалении, чем в момент вспышки. Возникает закономерный вопрос: что следует принять за "удалённость галактики"?
Очевидны три варианта. Первый вариант — удалённость сверхновой в момент вспышки. Эту удалённость и следует считать действительной,
Самой большой удалённостью является вторая, поскольку за время света в пути пространство между звездой и Землёй все время возрастало. Третья удалённость учитывает время света в пути
В пользу первого варианта удалённости сверхновой свидетельствует то, что фотоны, несущие информацию о ней, своеобразная фотография, удаляются от галактики сразу же после взрыва и становятся полностью независимыми от неё. Если, например, вспышка имеет синий цвет, а после неё, через какое-то время галактика становится красной или вообще гаснет, то на Земле будет получена именно "синяя" фотография. Именно этот поток фотонов и будет нести информацию об удалённости и скорости удаления галактики
Вместе с тем яркость вспышки непосредственно не является показателем удалённости галактики в момент её регистрации. Это связано с тем, что в процессе движения фотоны проходят путь
Движение по вытягивающейся трассе
Рассмотрим это явление подробнее. Для наглядности и упрощения вычислений вместо сверхновой и расширяющегося пространства Вселенной рассмотрим автомобиль, движущийся по непрерывно вытягивающейся трассе (рис. 10.1). Пусть авто движется со скоростью
Пусть авто движется со скоростью
Рис. 10.1
Условно принимаем, что движение авто и расширение дорожки происходят поочерёдно. Находим, что за первый интервал времени авто переместится от начальной точки на расстояние
После этого отрезок R0, путь, пройденный по дорожке, испытывает указанное расширение. Таким образом, за следующие два интервала времени удалённость авто от начальной точки увеличивается до нового значения
За четвёртый и пятый интервалы времени расстояние
Далее этот новый
Здесь и в дальнейшем открывающие скобки в левой части уравнения мы не будем дублировать, чтобы не перегружать уравнение, просто помним, что число крайних левых скобок равно числу правых скобок.
Для удобства, наглядности ограничимся на этом этапе десятью слагаемыми. Теперь для ещё большей наглядности уравнения последовательно раскроем скобки:
Число слагаемых, как мы и рассчитывали, равно 10, но число интервалов времени больше — 19. Понятно, что общее время движения T равно сумме всех интервалов Δt = t, поэтому можно записать T = (2n-1)t. Здесь мы учитываем, что все интервалы времени равны. Выносим общий множитель за скобки, а последнее слагаемое преобразуем в однотипную форму, добавив ему эквивалентный множитель, равный единице:
Для лучей видимости закономерности меняем последовательность слагаемых на противоположную:
Закономерность очевидна, поэтому можем записать уравнение в общем виде для любого количества интервалов времени и числа слагаемых:
Рассмотрим особый случай: авто достигает конечной точки, финиша. Это значит, что рассматриваемое уравнение, сумма ряда будет равна увеличившейся по указанному закону исходной дистанции, растягивающейся трассы. Поскольку начальная удалённость финиша была S0, то через время T она увеличится до значения:
Рассматриваемое условие запишем в виде:
Перепишем правое равенство немного короче, в одну строку:
Для графических построений удобнее немного иная форма записи правой части уравнения, в виде, напоминающем исходное уравнение со множеством скобок. Для краткости оставим справа только слагаемые в скобках:
Теперь выделим последовательно множители в правой части
Замечаем закономерность и записываем окончательно:
С множителем
Для исключения ошибок, для проверки точности уравнения выполняем обратное действие, раскрываем скобки:
То же самое для уравнения с множителем
Видим, что последовательности явно ведут к верному результату. Однако для большей уверенности рассмотрим, как и выше, вариант с числом слагаемых n = 10:
Вновь, заметив закономерность, записываем для n=10:
Проверяем ряд, как и ранее, раскрывая скобки: