Петр Путенихин
Гравитационная воронка
1. Гравитационная воронка — анализ заблуждений
Нередко действию загадочной тёмной энергии даётся антигравитационное объяснение, которое ко всему прочему имеет собственную проблему. Рассматривается она как антигравитационная альтернатива гравитации, которая сама не имеет достаточно убедительного объяснения. В классической физике, физике Ньютона нет никаких объяснений того, как именно действует гравитация, почему тела притягивают друг друга. Считается, что эту проблему решает теория гравитации Эйнштейна, общая теория относительности. Однако простого утверждения, что
Отметим, что в литературе приведённая трактовка гравитации встречается довольно часто, но без явного указания на противоречие, отмеченное в цитате: для объяснения гравитационного эффекта привлекается… гравитация. Такое прямолинейное геометрическое объяснение движения массивных тел друг к другу определённо нельзя признать убедительным.
Вместе с тем, можно встретить и иной, корректный взгляд на метафору с резиновым листом. Приведём весьма интересную и показательную беседу корреспондента латвийского "Радио-4" в радиопередаче цикла "Природа вещей" с физиком Марцисом Аузиньшем, действительным членом латвийской академии наук, профессором латвийского университета, заведующим кафедрой экспериментальной физики. Беседа приведена в интернете в виде научно-популярного фильма [2]. В приводимых цитатах мы слова корреспондента будем предварять пометкой Корр, а ответы физика будем предварять инициалами — МА. В цитируемой беседе довольно неожиданно вскрывается действительная суть примера с резиновым листом. Диалог приведём предельно подробно с нашими комментариями, пояснениями, чтобы отчётливо показать, насколько сложной и вместе с тем очевидной является эта проблема. Сначала в диалоге пример, метафора с резиновым листом, мембраной приводится в традиционной трактовке:
Корреспондент возражает, хотя возражение имеет несколько иную форму, чем возражения Фландерна:
Суть возражения не совсем ясна, что подразумевается под взаимодействием сверху или снизу, почему они разные, но физик с возражением соглашается
Отметим, что корреспондент считает модель с резиновым листом трёхмерной, хотя физик прямо называл её двухмерной. Далее физик продолжает идею трёхмерного пространства, но пока смысл её, отношение к резиновой мембране по-прежнему не очень понятны
Смысл по-прежнему пока неясен, какое отношение к резиновой мембране имеет идея трёхмерного пространства, какую роль оно играет
Физик продолжает пояснения, но они по-прежнему картину практически не проясняют
Звучит, признаться, весьма загадочно, странно. В трёхмерном пространстве, изотропном, однородном по определению есть и верх-низ, и право-лево, и, наконец, вперёд-назад. Они, собственно, и определяют трёхмерность пространства. Куда же они вдруг исчезли?
Загадочно. Как же быть с декартовой системой координат трёхмерного пространства? Три оси, у каждой своё название, одно из которых, несомненно, может быть право-лево. Понятно, что выбор их исходного направления определяется наблюдателем, системой отсчёта, но это их не устраняет. Пояснения пока ничего не прояснили, поэтому корреспондент повторяет своё возражение практически слово в слово
И здесь в ответе физика появляется пока не очень чёткий, но уже заметный смысловой проблеск
Довольно отвлечённо, туманно, хотя уже можно догадаться…
Корреспондент, похоже, всё ещё не поняла сути двух- или трёхмерности в рассматриваемой схеме резинового листа
Здесь в диалоге произошло небольшое отклонение от основной темы, поскольку речь изначално шла исключительно о
Повторим, что мы столь детально анализируем диалог неспроста. Диалог этот, в конечном счете, ведёт к столь же удивительному, сколь и, по сути, очевидному выводу, поясняющему суть метафоры с резиновым листом. А пока собеседники, вернее, физик проходит вскользь по "очень большой абстракции"
По всей видимости, всё сказанное выше теперь ясно и понятно лишь тому, кто владеет этой сложной темой, предметом, имеет чёткие представления о сути метафоры. А пока мы по-прежнему видим недостаточно чёткие описания
Вот! Вот оно, пусть не чётко сформулированное, даже кажущееся странным утверждение, но именно в этом и состоит главное содержание метафоры: на ней
Пока эта странность, возможно, видна не всем. В представленной модели "верх-низ перестают существовать", поскольку эта ось — не пространственная.
Здесь мы прекращаем цитирование, приведя в заключение только одну фразу из ответа физика, причём даже с некоторым оттенком "вырывания из контекста"
Это
Важно отметить, что ни на одном просмотренном в литературе изображении резинового листа нет обозначения осей координат, а ведь они могли бы прояснить многое. Один из основных вопросов, связанных с наличием осей, состоит в том: какой объект находится в начале координат. От этого объекта зависит, с какого значения начинаются отсчёты осей. Действительно, если начало координат обозначено как ноль, то это прямо означает, что пробное тело m способно достичь этой точки. Такое возможно в случае, если массивное тело газообразное, пылеобразное или жидкое. Но в этом случае возникает связанный вопрос: почему для этой точке на графике, в центре воронки показано самое большое значение кривизны? То есть, соответственно, самое большое значение силы притяжение. Но такого не может быть, поскольку в центре массивного тела гравитация нулевая, в центре — невесомость.
Рис. 1.1. Метафора резинового листа: лист прогнулся под действием тяжёлого тела в центре, вследствие чего малое тело скатывается. Однако представленная схема является двухмерным пространством. Прогиб вниз не является прогибом по третьей координате, а все тела могут двигаться только по плоскости X0Y.
На нашем рис. 1.1 обозначения осей нанесены. На рисунке в виде точки М в начале координат показано большое массивное, гравитирующее тело, тело, которое искривило пространство-время. Сама
Притягиваемое, малое пробное тело m, физически может перемещаться
В следующей точке, куда тело m переместится, сила возрастёт до F2, далее — до F3. Красная линия на рисунке — сечение воронки сил, то есть, график сил в плоскости X0F. Отметим, что третья ось Z не показана, поскольку движения по этой оси нет, движение только в плоскости X0Y. Кроме того, ей просто нет места: все направления осей координат заняты. Иначе говоря, на нашем рисунке в виде
Считается, что изобразить таким же образом трёхмерную модель, все три оси координат невозможно, поскольку тогда нужна четвёртая ось, по которой можно было бы изобразить изменение кривизны пространства-времени, силы притяжения. Однако один способ такого изображения всё-таки есть. Это изображение силы, кривизны в виде скалярного поля.
На рис. 1.2 показано сечение группы сфер, в традиционных декартовых осях координат — XYZ. Сферы расположены с метрическим шагом, как обычные насечки на осях координат. Дополнительно рядом с осями показаны значения кривизны или силы притяжения F1, F2, F3. Каждому радиусу сферы соответствует та или иная кривизна или сила притяжения. В центре сфер показано массивное тело M, к которому притягивается тело m, показанное ранее на рис. 1.1. Тело m теперь может перемещаться в трёхмерном пространстве в любом направлении, но в свободном движении из состояния покоя — только в сторону центра, к точечному телу M.
Рис. 1.2. Трёхмерная метафора, подобие "резинового листа" — набор сфер, каждая из которых имеет радиус, равный текущей координате. Каждой сфере приведено в соответствие значение гравитационной силы, силы в этой точке
Отметим, что изображение кривизны в виде скалярного поля и
2. Структура Черной дыры
Следует заметить, что возникновению такого ошибочного представления о резиновом листе, как трёхмерной поверхности в немалой степени способствует вертикальное расположение оси кривизны, силы притяжения. Мы привыкли, что свободное падение тел на Земле всегда происходит сверху вниз, поэтому и на резиновом листе неосознанно ожидаем, что подвижный шарик также будет скатываться по наклонной поверхности
Для этого рассмотрим ещё один вариант резинового листа, приводимый в литературе так же довольно часто. Это искривление пространства-времени Чёрной дырой. Как и в примере с обычными массивными телами, эта гравитационная воронка также приводится с вертикальным расположением оси кривизны, силы притяжения. Развернём эту ось горизонтально — рис. 2.1.
Рис. 2.1. Если расположить ось прогиба резинового листа горизонтально, то метафора теряет смысл. Теперь лист под действием тяжёлого тела в центре прогнуться не может, а малое тело теряет способность к скатыванию. Становится видно, что схема является
Теперь нет оснований заявлять, что тело, находящееся на входе в воронку, будет скатываться в неё. Теперь у нас явно обозначены оси координат двухмерного пространства, вернее, одной из двухмерных плоскостей трёхмерного пространства. Поскольку это плоскость, то движение любого тела возможно только в этой плоскости: здесь, на рисунке это вперёд-назад и вверх-вниз. Конечно, главная смысловая деталь резиновой мембраны — прогиб её под действием массивного тела — в таком варианте пропадает. Вместо этого прогиба появляется двухмерный график силы, кривизны, направленный вправо. Видимо, правильнее говорить не появляется, а в него превращается прогиб листа. Именно это превращение при повороте оси и вскрывает дефектность модели резинового листа. Не обязательно изображать модель с горизонтальной осью кривизны, достаточно мысленно, кратковременно представить эту ось, чтобы увидеть верную картину.
График сил теперь играет чётко ограниченную, определённую, назначенную ему роль. Он показывает, какая сила в каждой точке
Поясним, почему Чёрная дыра изображена таким двойственным образом. Согласно проведённым вычислениям, вещество, оказавшееся под горизонтом событий Чёрной дыры,
По мере роста массы нейтронной звезды растёт так же и радиус её горизонта событий. На первых порах, рис. 2.2a горизонт событий находится внутри "лёгкой" нейтронной звезды. Начиная с момента, когда масса нейтронной звезды превысит примерно 2,5 массы Солнца, гравитационный радиус сравняется с радиусом нейтронной звезды, рис. 2.2б. Теперь любое увеличение массы звезды приведёт к тому, что горизонт событий скроет её, рис. 2.2 в. Фигурально, последняя капля вещества в нейтронную звезду сделает её невидимой.
Рис. 2.2. В процессе коллапса нейтронной звезды она последовательно проходит три этапа. Сначала горизонт событий меньше радиуса звезды и она видна как обычная нейтронная звезда. Моментом коллапса следует считать момент, когда радиус горизонта событий становится равным радиусу нейтронной звезды. На следующем, третьем этапе радиус горизонта событий растёт быстрее, чем радиус нейтронной звезды. Для схлопывания нейтронной звезды в сингулярность нет никаких логических оснований. Анимация [3].
При этом нет никакой
Расчёты показали: чтобы гравитация смогла притянуть нейтроны на поверхности нейтронной звезды сильнее этих внутриядерных сил, радиус звезды должен превысить размены наблюдаемой Вселенной. Но и в этом случае вопрос остаётся открытым: сжав нейтроны до диаметра, меньшего их исходного, сломав эти нейтроны, гравитация столкнётся со следующей структурой элементарных частиц — кварками. Такая "сломанная" нейтронная звезда превратится в звезду кварковую. В этом случае по-прежнему более вероятным, логичным остаётся вариант, что сила отталкивания между кварками будет превышать силу их сдавливания силами гравитации.
3. Диаграммы Минковского
Таким образом, мы видим, что распространённый пример, метафору с резиновым листом и Фландерн и, скорее всего, многие другие читатели трактуют неверно. В метафоре резиновый лист — это лишь образная иллюстрация. На самом деле лист следует рассматривать не как трёхмерное пространство, искривлённое тяжёлым телом. Это пространство
Также следует заметить, что само по себе
Поэтому, видимо, правильнее говорить о наблюдении в искривлённом пространстве-времени
Решить проблему, видимо, позволяет формализм мировых линий, геодезических. Действительно, каждое событие имеет собственную мировую линию или геодезическую. Мы будем рассматривать свободное движение, то есть, мировые линии, являющиеся геодезическими. [3]
Рассматривать это движение в нашем случае удобно на классических диаграммах Минковского. Впервые способ наглядного изображения физической реальности в виде четырехмерного пространства событий, в котором каждая точка представляет собой некоторое событие, определяемое тремя пространственными и одной временной координатами Герман Минковский предложил в 1908 году в докладе «Пространство и время». Эти точки четырехмерного пространства-времени Минковского являются математическими абстракциями, которые не обладают ни пространственным объемом ни временной длительностью. В дальнейшем эти изображения получили название «диаграммы Минковского» и считаются наглядным способом демонстрации сущности специальной относительности и используются для доказательства её истинности.
В общем, универсальном виде диаграмм Минковского имеет примерно вид, как показано на рис. 3.1. Текущий момент времени изображен на диаграмме оранжевой линией «настоящего времени в неподвижной системе отсчета (покоя)» или кратко «настоящее покоя». Тонкие штриховые линии, исходящие из начала координат и имеющие угол наклона к оси времени, равный 45о, ‑ это мировые линии света. Все мировые линии движущихся систем отсчета могут иметь угол наклона к оси времени только меньше 45о.
Рис. 3.1. Диаграмма Минковского для двух движущихся систем отсчета A и B с точки зрения средней, неподвижной системы отсчёта C
Также на диаграммы мы добавили традиционные вспомогательные линии (калибровочные кривые, «семейство гипербол»). В литературе у них нет общепризнанного названия, поэтому для определенности мы называем их изохронами. Такое название вполне допустимо, оно точно отражает смысл этих линий. Изохрона отсекает на всех без исключения мировых линиях ИСО, движущихся из начала координат, отрезки равного времени, прошедшего от начала движения. Понятно, что изохрон на диаграмме Минковского может быть бесчисленное множество — по величине времени, отсекаемого на мировых линиях ИСО. Все они описываются уравнениями гипербол