Повышенное внимание средств массовой информации к подобным случаям преувеличивает реальную угрозу. В 2016 году в Англии и Уэльсе от рук незнакомцев погибли всего четверо детей младше шестнадцати лет. За последнее десятилетие число жертв не превышало девяти в год, а были и годы, когда регистрировался всего один такой случай – или вообще ни одного[40]. Учитывая влияние, которое наш страх оказывает на свободу детей, важно объективно воспринимать эту проблему. Жестокая правда в том, что ребенка скорее могут погубить или подвергнуть насилию знакомые люди, в первую очередь родители, родные или приемные. По оценке Дэвида Финкельхора, директора Центра исследований преступлений против детей в Университете Нью-Гэмпшира, дети, похищенные незнакомыми людьми, составляют «одну сотую процента» от всех пропавших детей в США, а с начала 1990-х годов существенно снизилось общее количество нападений, похищений и других серьезных преступлений против детей[41]. Все эти данные показывают, что, если исключить дорожное движение, дети, гуляющие по улицам и пустырям в окрестностях дома, подвергаются не большей опасности, чем их родители, бабушки и дедушки.
Несмотря на реальное положение дел, в некоторых регионах США считается недопустимым отпускать детей на прогулку без присмотра. Известны случаи, когда полиция арестовывала родителей, обвиняя их в том, что они «подвергали опасности несовершеннолетних», позволяя ребенку одному идти в школу, гулять в парке или сидеть в машине. В защиту здравого смысла в штате Юта в 2018 году был принят закон, официально защищающий тех, кто предпочитает «воспитание с ограниченным родительским надзором», и признающий, что самостоятельность способствует развитию детей. Хорошая новость, но все же это невероятно: чтобы дать детям исследовать мир, как они делали это всегда, потребовался особый закон!
Распространено также мнение, что ограничения, которым подвергаются современные дети, обусловлены не интенсивным дорожным движением и не преувеличенным страхом оказаться жертвой преступника, а цифровыми технологиями и социальными сетями. Откуда у них появится желание выйти из дома, если они могут играть на планшете, болтать с друзьями по WhatsApp или делиться селфи в Snapchat? То, чем бабушки и дедушки занимались на улице или в парке, современные дети по большей части делают в Сети: встречаются с друзьями подальше от родительских глаз и ушей. Но решение уйти в цифровой мир не всегда добровольно. В 2009 году провели исследование, охватившее 3000 детей в возрасте от семи до двенадцати лет в 25 странах; большинство респондентов сказали, что предпочли бы играть на улице, чем где-либо еще, а почти 90 % заявили, что лучше играть с друзьями, чем сидеть в интернете[42]. Однако в большинстве случаев у них нет выбора. Мы почти не даем детям возможности встречаться друг с другом, и неудивительно, что они вынуждены довольствоваться не самым лучшим вариантом.
Недостаток взаимодействия детей с окружающим миром почти наверняка означает, что они что-то недополучают. Да, они могут общаться и свободно бродить по интернету, исследуя его закоулки, но мы – несмотря на все наши сложные технологии – остаемся существами, неразрывно связанными с пространством, созданным эволюцией для движения. Каким-то вещам можно научиться только при взаимодействии с материальным миром – исследуя его размеры, стучась в его двери. Если у нас нет возможности делать это в детстве, когда мы максимально любопытны и минимально ограничены, другого шанса может и не представиться.
Что получают дети от свободной, самостоятельной игры – от удовлетворения своей естественной потребности в исследовании – и чего лишаются, если взрослые ограничивают их в пространстве и не сводят с них глаз? Американский психолог Питер Грей, давний критик современной системы образования, изучающий развитие детей в контексте дарвиновской теории, убежден: тому, что дети узнают посредством игры, невозможно научить другим способом. В своей книге «Свобода учиться» он пишет:
От недостатка свободных игр тело может и не страдать так же, как от недостатка еды, воздуха или воды, но будет страдать душа, замедлится психическое развитие. В играх дети учатся дружить, преодолевать собственные страхи, решать проблемы и вообще контролировать свою жизнь. Именно в играх они осваивают и пробуют применить на практике знания и умения, которые им необходимы для успешного существования в рамках той культуры, в которой они растут. Не важно, что именно мы делаем, сколько игрушек покупаем, сколько проводим времени с пользой или специально учим чему-то детей. Мы ничем не заменим им свободу, которую у них забираем. Не существует других способов научить детей тому, чему они учатся в игре, по собственной инициативе[43][44].
Как и следовало ожидать, один из навыков, которому обучает «свободная игра», – восприятие пространства и уверенность в перемещении по нему. Это основа навигации и поиска пути. Психологи собрали множество свидетельств того, что дети, которым позволено гулять без присмотра взрослых, лучше знают окружающее пространство и обладают лучшим чувством направления[45]. (Это может объяснить, почему люди, выросшие в сельской местности, обычно ориентируются лучше, чем те, чье детство прошло в городах[46].) В одном из исследований выявили, что восьми– и девятилетние дети, регулярно катавшиеся на велосипеде неподалеку от дома, могли нарисовать карту окрестностей более подробно, чем их сверстники, а значит, обладали более высоким для своего возраста уровнем пространственного восприятия[47]. В других исследованиях было показано, что дети в возрасте от восьми до одиннадцати лет, которые сами ходят в школу, могут нарисовать карту местности точнее, чем их сверстники, которых взрослые провожают в школу или отвозят туда на машине[48]. Это демонстрирует разницу между активным и пассивным обучением: дети, которых всюду возят, лишены возможности принимать решения или строить собственные карты. Они перестают быть исследователями.
Способность ориентироваться на местности и прокладывать путь в значительной степени зависит от уверенности в себе. Вы скорее заблудитесь, если поиск пути в незнакомой обстановке заставляет вас паниковать: волнение нарушает процесс принятия решений (более подробно мы рассмотрим это в главе 8). Кроме того, трудно быть уверенным в том, к чему вы не привыкли. Если в юном возрасте вы убедитесь, что прекрасно ориентируетесь в окрестностях своего дома, то будете считать, что найдете дорогу в любом другом месте и что вас не пугает неизвестность. Этому лучше всего учиться в детстве: чем старше и осторожнее мы становимся, тем труднее сделать первый шаг.
Свободная игра уменьшает вероятность того, что мы будем волноваться в незнакомом окружении, а также тренирует наши навыки навигации. Те из нас, у которых в детстве был ограниченный участок освоения, во взрослом возрасте особенно склонны к панике[49]. Эта тенденция сильнее проявляется у девочек. По разным причинам родители ограничивают дочерей в передвижении больше, чем сыновей (в исследовании Роджера Харта, проведенного в Новой Англии, освоенный участок у городских мальчиков оказался в два раза больше, чем у девочек)[50]. Так было всегда, и причина этого – забота о безопасности. Но, как мы увидим в главе 6, это может серьезно повлиять на то, как девочки будут взаимодействовать с окружающим миром, когда вырастут, а также на их способности к пространственному восприятию, от которых зависят возможности во взрослой жизни.
Вскоре после того, как Эд Корнелл начал изучать поведение потерявшихся детей, он пришел к поразительному выводу: до трех-четырех лет ребенок не знает, что такое заблудиться. У малышей одна мысль: «Где мама?» По словам Корнелла, именно это они спрашивают, когда их находят. «Понятие “потеряться” у них не пространственное, а социальное. Они думают о матери, о сестре и так далее», – говорил он. В таком возрасте дети не обращают особого внимания, куда идут, и это может довести до беды – но одновременно делает их отважными исследователями. Малыши радостно бегут за животным в лес, увлекаются каким-то интересным звуком или явлением и идут, не оглядываясь и не думая, как вернуться назад.
Через какое-то время после вопроса о потерявшемся девятилетнем мальчике канадская полиция снова обратилась к Корнеллу, на этот раз с просьбой помочь в поисках трехлетнего малыша, который ушел с заднего крыльца родительского дома. К изумлению родителей, мальчика нашли почти в километре от дома, на стоянке для тракторов; он увлеченно рассматривал сверкающие механизмы и совсем не хотел идти домой. Матери было любопытно, как он туда попал, и поэтому на следующий день Корнелл и Хет попросили мальчика повторить свое путешествие. Малыш повел их вдоль тротуара, перебрался через кучу земли, потом пролез под сломанным забором к качелям, немного задержался, пересек маленький парк и перешел через улицу к тракторной стоянке. Он не собирался туда идти, но одно решение вело к другому, и ребенок остался очень доволен. Несомненно, он учился и ориентироваться в пространстве, потому что, как говорит Корнелл, «непредсказуемые и спонтанные исследования зачастую ведут к формированию навигационных навыков».
Как было бы прекрасно время от времени возвращаться к тем дням бесстрашных прогулок! Естественно, уже существуют приложения для смартфона, способные помочь вам в этом. В XIX веке существовало такое явление, как фланёры, люди, гулявшие без всякой цели. Их современные собратья называют себя психогеографами и получают удовольствие от бесцельного блуждания по городу, во время которого они изучают, как воздействует на них городская среда. Ребекка Солнит, прославляя наши отношения с неизвестным в книге «Путеводитель, помогающий заблудиться» (A Field Guide to Getting Lost), утверждает: когда человек сознательно сбивается с пути, он «полностью контролирует настоящее, а значит, способен пребывать в неопределенности, в тайне… это осознанный выбор, намеренная капитуляция, психическое состояние, которого достигаешь благодаря географии»[51].
Это очень похоже на детство. И следует позаботиться о том, чтобы наши дети «взяли все» от этого времени: период свободы заканчивается приблизительно в четыре года, когда ребенок начинает воспринимать себя как объект в пространстве. Контекст его жизни из социального становится пространственным: «я в этой комнате, комната в этом здании, здание в моем квартале, квартал в моем городе». В этот момент они впервые понимают, что значит потеряться, и начинают испытывать сильный страх. Исследования, которые проводятся уже больше ста лет, показывают: когда дети отваживаются посетить дикую природу, страх потеряться у них сильнее всех остальных[52]. Кеннет Хилл, коллега Корнелла и один из ведущих специалистов в области поведения заблудившихся людей, дает организаторам поисков такой совет:
У детей с четырех лет страх потеряться сильнее всех прочих, и ребенок так напуган, что почти перестает соображать. Очень часто потерявшиеся дети прячутся от тех, кто их ищет, не отвечают на зов и в прямом смысле каменеют, заслышав звуки приближения вертолета, – и, вопреки частому мнению, не только потому, что их учили избегать незнакомцев. Просто в таких условиях всё, что неведомо, рождает страх[53].
Однажды Хилл беседовал с четырехлетним мальчиком, который отсутствовал три дня и которого уже считали погибшим. Мальчик забрался в укрытие и оставался там, пока не улучшилась погода. Когда Хилл спросил, почему он не вышел раньше, ребенок ответил, что видел «одноглазых чудовищ, которые ночью звали меня по имени». Он прятался от спасателей с головными фонарями. Дети видят мир иначе, и любое незнакомое место кажется им загадочным. Но они все равно туда идут. Они ничего не могут с собой поделать.
По мере того как у ребенка развивается мозг, совершенствуются когнитивные функции и расширяется участок освоения, малыш все лучше ориентируется в пространстве и приобретает навыки навигации. Дети постепенно учатся представлять объекты с разных точек зрения, смотреть на ситуацию глазами других людей, узнавать места, в которых уже были, выделять ориентиры, следить за направлением движения, помнить маршруты и позже – понимать, как разные маршруты соотносятся друг с другом. Они начинают рисовать мысленные карты окружающего пространства, что помогает им находить кратчайший путь.
Швейцарский психолог Жан Пиаже впервые сформулировал взгляды на развитие ребенка, которые ныне стали общепринятыми. Согласно его выводам, восприятие пространства у детей формируется постепенно: дети должны понять, что такое ориентиры, прежде чем научатся выбирать кратчайший путь; например, до семилетнего возраста они не могут представить, как выглядит окружающее их пространство с другого ракурса[54]. Другие исследователи убеждены, что этот процесс более гибкий. Они указывают на то, что многие пятилетние дети уже способны понимать изображения, сделанные с помощью аэрофотосъемки, и строить абстрактные модели своего окружения (например, деревни из конструктора LEGO)[55]. Эта точка зрения предполагает, что дети рождаются не только исследователями, но и географами.
Психологи, изучающие поведение детей в реальном мире, заметили, что десятилетний ребенок понимает об окружающем мире то, чего не может понять семилетний. Например, в 1957 году психолог Теренс Ли сообщал, что шести– и семилетние дети из сельских районов Девона, которые ездили в школу на автобусе, испытывали эмоциональные проблемы и с трудом приспосабливались к коллективу – в отличие от тех, кто ходил пешком. Его теория, недавно подкрепленная новыми доказательствами[56], заключалась в том, что в этом возрасте ребенок не способен встроить поездку на автобусе в свое пространственное представление о мире – внутреннюю картину. Связь между школой и домом исчезает, и в результате дети не могут понять степень своей удаленности от матери[57].
Как бы то ни было, даже последователи Пиаже признают, что возраст – не единственный фактор, определяющий навыки ориентации в пространстве. У тринадцатилетних детей уже имеются все когнитивные средства, необходимые для уверенной навигации, но одни справляются с такими задачами лучше, а другие хуже. К этому времени начинают сказываться подход родителей к воспитанию ребенка, свобода передвижения, когнитивные различия и жизненный опыт, и это влияние не исчезает. Все мы рождаемся исследователями, но не все ими остаемся. В конечном счете мы подавляем свою детскую любознательность, подчиняемся рутине, придерживаемся уже знакомых маршрутов. Недавнее исследование, проведенное канадскими психологами, показало, что 84 % восьмилетних детей ориентируются, исследуя окружающую местность и строя мысленную карту – это так называемая «пространственная» стратегия, которую используют почти все опытные взрослые навигаторы. Есть и альтернатива: более замкнутая, «эгоцентрическая», стратегия. Ее суть проста: запомнить и воспроизвести последовательность поворотов. В двадцатилетнем возрасте только 46 % людей используют пространственный подход, а в шестидесятилетнем – 39 %[58]. Очевидно, все мы начинаем со свободы передвижения, но в конце концов выходим на прямую и узкую дорогу. Жизнь умеет подрезать нам крылья.
Трудно сказать, до какой степени ограниченный участок освоения влияет на способности пространственного восприятия и навыки навигации у детей. С учетом того, как важна для здорового развития ребенка свобода передвижения, этот вклад, вероятно, значителен. И поскольку автомобилей на дорогах все больше, а страх родителей перед незнакомцами – даже необоснованный – трудно искоренить, возникает вопрос: можем ли мы хоть как-то утолить естественную потребность ребенка исследовать мир?
В 2002 году географ Роджер Харт, исследование которого, выполненное в 1970-х годах в Новой Англии, так много рассказало нам о склонности детей к поиску кратчайшего пути, опубликовал советы городским властям Нью-Йорка. Как и многие другие города по всему миру, Нью-Йорк становился все более недружелюбным к детям. Чтобы улучшить ситуацию, городские власти начали строить больше детских площадок. Харт, изучавший взаимоотношения детей с окружающим миром, был решительно не согласен с таким подходом – детские площадки, утверждал он, это замкнутая среда, лишающая детей свободы. «Детские площадки не только не удовлетворяют сложные потребности развития ребенка, – писал он, – но и отгораживают детей от повседневной жизни местной общины, хотя участие в ней является основой развития гражданского общества. Необходимо… не увеличивать количество обособленных детских площадок, а делать городскую среду безопасной и дружелюбной для детей, чтобы они могли свободно играть поблизости от дома»[59].
Возможно, для властей Нью-Йорка это предупреждение было лишним, но в других городах к нему прислушались. Местные сообщества и общественные организации в городах всего мира добиваются временного перекрытия улиц, позволяя детям «играть на свежем воздухе». В Великобритании такие благотворительные общества и агитационные группы, как Play England и Playing Out[60], в сотрудничестве с местными властями организовали регулярное перекрытие более чем пятисот улиц. И детям это очень нравится. Одна девочка так рассказала о своих чувствах исследователям из Бристольского университета: «В такие минуты тебе не нужно думать ни о чем другом, и ты просто счастлив». Другая была довольна тем, что нашла место, «где можно бегать и делать что хочешь и ничего тебе не грозит… не нужно все время оглядываться, смотреть по сторонам…»[61].
Игры на улице полезны не только тем, что развивают пространственное восприятие детей и доставляют им радость. Самый ощутимый эффект таких игр – в том, что дети активны и у них снижается риск ожирения. Да и эффект социализации прекрасно виден – дети, живущие на одной улице, знакомятся друг с другом, что усиливает их желание играть вне дома.
В Финляндии дети идут в школу с семи лет, и большинство детских садов придерживается принципа свободной игры, а это значит, что финские дети в возрасте от четырех до шести лет много времени шлепают по грязи и сами себе придумывают игры (похоже, самая любимая – продажа воображаемого мороженого). Финские педагоги убеждены, что решение задач, социальные навыки, умение сдерживать свои порывы и когнитивная гибкость эффективнее формируются в играх без четких правил и структуры, а дети лучше запоминают материал, если обучение доставляет им радость[62]. За пределами Финляндии аналогичный подход порой применяют нетрадиционные независимые школы, работающие на основе вальдорфско-штайнеровской педагогики или по системе Монтессори. Они поощряют исследование, осознание пространства и самостоятельное обучение, а не заранее установленную поэтапную программу, как остальные. Идея, согласно которой свободная игра помогает детям развиваться, – не просто принятие желаемого за действительное; она подкрепляется результатами. В шестилетнем возрасте многие финские дети еще не умеют читать, но в пятнадцать лет демонстрируют одни из лучших в мире результаты тестов по математике и чтению. Недавнее исследование также показало, что финны занимают первое место по навигационным способностям[63], и скорее всего, это не совпадение.
Многим трудно представить, как может выглядеть детство, где не ограничена свобода передвижения. Не так давно я познакомился с двумя людьми, которые очень хорошо это знают. Виктор Грегг во время Второй мировой войны был пехотинцем на передовой, а в момент написания этих строк ему идет сотый год. Он вырос в лондонском районе Кингс-Кросс и большую часть времени играл на улицах и бродил по городу с друзьями. В своих мемуарах «Паренек с Кингс-Кросс» (King’s Cross Kid)[64] он пишет, что в шесть или семь лет ему ничего не стоило уйти на несколько миль от дома, в Ковент-Гарден или Смитфилд, по поручениям матери. И он рисковал, пробираясь через «враждебные» Хакни или Шордич, чтобы стащить немного рыбки с рынка Биллингсгейт, или шел на запад, в Южный Кенсингтон, побродить по музеям. «Мама делала нам пару сэндвичей с джемом и давала пенни на случай, если назад придется ехать. Но пенни мы тратили в первой же кондитерской, – пишет он. – Дом кишел крысами, и мы, дети, оттуда убегали». Не стоит и говорить, что внуки и правнуки Грегга считают, что им повезло, если им дают самим дойти до конца улицы.
Выходит, Грегг с детства умел ориентироваться и бесстрашно искать путь в незнакомых местах. Это пригодилось ему во время войны, когда его направили в Ливийскую пустыню. Два года он сражался в составе союзных сил с итальянской армией и Африканским корпусом Роммеля, а затем его перевели водителем санитарной машины в Группу дальней разведки – разведывательно-диверсионное подразделение, действовавшее в тылу противника, в пустыне, протянувшейся на несколько тысяч километров от долины Нила до Тунисских гор. Он должен был доставлять раненых бойцов на базу группы, преодолевая двух-трехдневный путь по пустыне на грузовом «шевроле» и ориентируясь по компасу, стопке карт и Полярной звезде. Грегг говорит, что это легче, чем кажется: в пустыне полно полезных ориентиров, если знать, что искать – параллельные дюны, могильные холмы и следы предыдущих путешественников. «Ты знаешь: если поедешь на север – упрешься в Средиземное море, а если на юг – в Большую песчаную пустыню. На востоке – дом, на западе – немецкая армия». Грегг отрицает, что обладает талантом навигатора. Но он прошел лучшую из всех возможных школ: детство со свободой передвижения.
В 1996 году Эду Корнеллу снова позвонил офицер полиции: потерялся очередной ребенок. Корнелл и Хет только что опубликовали результаты исследования о закономерностях странствий маленьких детей, указав максимальное расстояние, скорость движения, вероятное направление и другие переменные, которые можно было использовать для оценки маршрута потерявшегося малыша. Корнелл считал, что теперь шансы найти потерявшихся детей гораздо выше, чем в те времена, когда они с Хетом только начинали исследования. Тем не менее он приготовился к худшему. Того девятилетнего мальчика, после пропажи которого они занялись подобными исследованиями, так и не нашли. Это не давало Корнеллу покоя. Ребенок делал лишь то, для чего рожден: разведывал, исследовал, познавал мир, поэтому его трагическая смерть совершенно не укладывалась в голове.
Но офицер полиции обрадовал ученого. Спасательная команда только что нашла потерявшегося трехлетнего мальчика, использовав данные из публикации Корнелла и Хета, – в самый последний момент, когда ребенок был на грани гибели от переохлаждения. Исследование помогло спасти жизнь мальчика. «Я был поражен, – вспоминает Корнелл. – Это было настоящим потрясением. За всю свою карьеру ученого я не испытывал ничего подобного».
В этой главе мы прочли о том, что дети рождаются со склонностью к исследованиям, и если ее поощрять, то они, став взрослыми, свободно ориентируются в окружающем мире. Теперь мы подробнее рассмотрим работу мозга, чтобы понять, как это происходит: какая нейронная магия помогает нам находить дорогу, запоминать маршруты и формировать чувство места. Недавно нейробиологи открыли ряд специализированных клеток, которые позволяют нашему мозгу строить когнитивные карты окружающего мира. Мы в точности не знаем, как работают эти клетки, но совершенно очевидно, что они заняты очень важным делом: без них мы бы постоянно терялись.
3
Мысленные карты
В нейробиологических лабораториях, где исследователи большую часть времени посвящают наблюдениям за мозгом крыс, любимая еда (крыс, а не ученых) – это злаковые колечки для завтрака со вкусом шоколада. Когда исследователям что-то нужно от их мохнатых испытуемых, они достают колечки. Голодная крыса всегда делает то, что от нее требуется. За одним исключением.
Когда крыса впервые оказывается в незнакомом месте, еда ее не привлекает. Охваченное любопытством и страхом, животное обнюхивает новую территорию, прижимаясь к стенам и время от времени выскакивая на открытое пространство; изучить новое место для крысы важнее, чем утолить голод. Нейробиолог Пол Дудченко из Стерлингского университета исследовал процесс обучения животных и долго наблюдал за поведением крыс в лабиринте. «Крысы склонны к неофобии, им не нравится все новое, – говорит он. – Но если поместить их в незнакомую среду – а мы делаем это постоянно, – то они с готовностью исследуют ее, причем всегда одинаковым образом, пока не изучат все пространство».
В этом отношении крысы ничем не отличаются от других животных. Почти все млекопитающие ведут себя в незнакомых местах точно так же. Если у вас есть кошка, попробуйте принести ее в дом своих друзей и понаблюдайте, как она обследует незнакомое место, прежде чем успокоиться или поесть. Люди тоже привыкают к незнакомой обстановке. Самые ненасытные исследователи – дети, если, конечно, им позволить. Похоже, и людям, и животным очень важно познакомиться с новым местом.
Что это за процесс? Что происходит в мозге крысы, когда она исследует лабиринт, или в нашем мозге, когда мы гуляем по незнакомому городу? Эти вопросы занимали нейробиологов и психологов не одно десятилетие, но особое внимание они привлекли к себе после 1971 года, когда Джон О’Киф и Джонатан Достровски, сотрудники кафедры анатомии Университетского колледжа Лондона, обнаружили в мозге крысы нервные клетки, не похожие на все, что исследователи видели раньше[65]. Большинство нервных клеток, или нейронов, возбуждаются – то есть посылают сообщение в другие участки мозга – в ответ на сенсорную информацию, поступающую от тела животного. А эти клетки, напротив, реагировали на положение животного в окружающей среде и активизировались только в определенных местах. О’Киф назвал их нейронами места и предположил, что участок мозга, в котором они расположены, – гиппокамп, по форме напоминающий морского конька, – обеспечивает крысу пространственной системой координат, или когнитивной картой, которая помогает запоминать окружающую среду и ориентироваться в ней.
С тех пор нейробиологи, изучающие мозг крыс, открыли еще несколько типов нейронов, имеющих отношение к восприятию пространства. Существуют нейроны направления головы, которые работают как внутренний компас, сообщая животному, в какую сторону оно смотрит; и нейроны решетки, указывающие на местоположение; и нейроны границы, которые возбуждаются на определенном расстоянии от стены или края. Каким-то образом все эти разные типы клеток работают совместно, чтобы животное могло понять, где оно находится, и, что еще важнее, запомнить, где оно уже побывало.
Если информация, регистрируемая этими нейронами пространства, действительно формирует когнитивную карту – а большинство исследователей описывает это именно так, – то это не настоящая карта: заглянув внутрь гиппокампа, вы не увидите там ничего напоминающего Google Maps для тех мест, которые вы посетили или помните. Нейроны места, направления головы, решетки, границ и другие типы нейронов пространства совместными усилиями формируют у нас картину внешнего мира и позволяют на основе этой информации делать удивительные вещи; без них мы никогда и нигде не могли бы найти дорогу и все время сбивались бы с пути. Но как они это делают и в какой форме хранят воспоминания – все это до сих пор остается загадкой, которую нейробиологи надеются рано или поздно разрешить.
Исследование пространственного восприятия – того, как мозг получает и использует информацию о пространстве, – превратилось в одну из самых быстроразвивающихся областей нейробиологии. В немалой степени этому способствовало то, что Джону О’Кифу за его исследования нейронов места, которым он посвятил четыре десятилетия, присудили Нобелевскую премию по физиологии и медицине. Вместе с ним премию получили Мэй-Бритт Мозер и Эдвард Мозер, первооткрыватели нейронов решетки[66]. Это очень интересная и технологически сложная задача.
Нейробиологам трудно получить разрешение этических комитетов на вживление микроэлектродов в мозг здоровых людей, и поэтому большинство исследований нейронов пространства проводились на крысах или мышах, мозг которых больше похож на наш, чем кажется на первый взгляд. Требуется немалое мастерство, чтобы разместить электроды толщиной с человеческий волос точно в том месте мозга крысы, которое вы намерены изучить. Когда животное восстановится после операции (это занимает несколько дней), исследователи получают возможность записывать импульсы напряжения от отдельных нейронов, так называемые «потенциалы действия», которые вырабатываются, когда нейрон реагирует на поступающую информацию и передает ее дальше по своей сети связей. Другими словами, они могут заглянуть в «материнскую плату» крысы, где обрабатываются ее взаимодействия с внешним миром. После того как О’Киф открыл нейроны места у крыс, другие нейробиологи обнаружили эти клетки у мышей, кроликов, летучих мышей и обезьян, а также у страдавших эпилепсией людей, которым в процессе лечения уже вживили в мозг электроды. Все нейроны места выполняют одну и ту же функцию.
Чтобы понять роль этих нервных клеток, представьте на минуту, что вы – нейрон в гиппокампе крысы по кличке Роланд. Когда Роланд попадает в маленький отсек, где он раньше не был, и начинает принюхиваться, с вами поначалу ничего не происходит. Но, когда он добирается до определенного места в пространстве, вырабатываемое вами напряжение вдруг резко возрастает и остается на этом уровне, пока Роланд не двинется дальше. Вы остаетесь в спокойном состоянии до тех пор, пока крыса не вернется в это особое место, – и ваше напряжение снова выходит на пик. Взглянув на другие нейроны места – ваших соседей по гиппокампу, – вы замечаете, что то же самое происходит и с ними, только в других местах – каждый вырабатывает импульс в определенной зоне, так называемом «поле места».
Через несколько минут Роланд через дверцу попадает в другой отсек, и вы обнаруживаете, что все изменилось. Ваше поле места смещено, поля места соседних клеток перемешаны. Роланд попадает в третий отсек, и все снова меняется: здесь вы не проявляете никакой активности. Затем Роланд, проголодавшись и рассчитывая найти вкусные колечки, возвращается в первый отсек, и поля места в нем располагаются точно так же, как в первый раз. Мозг Роланда подчиняется определенной логике, хотя правила ее довольно сложны.
Переведем этот мысленный эксперимент на язык науки: когда животное попадает в незнакомое пространство и начинает исследовать его, в гиппокампе активизируется уникальная комбинация нейронов места, а когда оно попадает в это же пространство снова, возбуждается та же самая комбинация, причем каждый нейрон активизируется в том же месте пространства, что и раньше; этот паттерн и есть когнитивная карта, сообщающая животному, что оно уже здесь было. О’Киф выяснил, что для того, чтобы освоиться в коробке площадью один квадратный метр, крысе требуется около 32 нейронов места, которые возбуждаются, когда крыса находится в разных частях коробки. Чем чаще животное возвращается в ту или иную область, повторно активизируя ту же самую последовательность нейронов места, тем устойчивее становятся связи между нейронами, а значит, и память. Разные пространства отображаются разными комбинациями нейронов места, то есть разными картами. Нейробиологи, изучающие поведение крыс в лабиринтах, иногда могут с точностью до сантиметра определить местоположение крысы по сигналам от нейронов места – это впечатляющий пример чтения мыслей животных.
Как бы то ни было, когнитивная карта отличается от тех карт, которые вы можете увидеть в Королевском географическом обществе в Лондоне или в Библиотеке Конгресса в Вашингтоне. Гиппокамп не хранит копии последовательной активации нейронов места; эти нейроны возбуждаются только тогда, когда животное находится в соответствующей области[67]. Мозг должен где-то хранить пространственную память, но никто не знает, где он ее хранит и в какой форме.
Нейроны места в гиппокампе – в отличие от своих полей места – явно не похожи на карту: соседние нейроны места не обязательно соответствуют соседним точкам пространства, и распределение полей по нейронам выглядит случайным. Более того, вся эта схема перемешивается – или «составляется новая карта», как выражаются нейробиологи, – когда животное попадает в новую обстановку. До сих пор никто не сумел предсказать, как будут вести себя нейроны места при смене обстановки или где могут находиться соответствующие поля места.
«Отсутствие у нейронов места топографической структуры всегда приводило меня в замешательство, – говорит О’Киф. – Я всю жизнь работал на кафедре анатомии. Если вы посмотрите на кору головного мозга, то клетки, соответствующие пальцу, располагаются рядом с клетками, соответствующими соседнему пальцу, то есть мы видим своего рода топографическое отображение. Но когда перед вами структура, в которой этого не наблюдается, и два нейрона места, отображающие соседние точки пространства, расположены далеко друг от друга, и все это должно быть картой… Это не карта».
В 1998 году покойный Роберт Мюллер, коллега О’Кифа, продемонстрировал случайный характер расположения нейронов места, регистрируя электрическую активность этих нервных клеток у крыс, исследовавших незнакомое пространство. Затем он перезагрузил эти клетки, стерев пространственную память крыс, и снова поместил животных в то же место, чтобы проверить, будут ли возбуждаться те же нейроны места. Оказалось, что нет. Когнитивная карта крысы – схема возбуждения ее нейронов места – была совсем не похожа на первоначальную[68]. Это указывает не только на непредсказуемость отображения в мозге местоположения в пространстве, но и вообще на отсутствие какой-либо предопределенности[69]. Возможно, на то есть серьезная биологическая причина, но в таком случае понять идею гиппокампа как карты еще сложней.
За время, прошедшее с тех пор, как О’Киф открыл нейроны места, стало ясно, что когнитивные карты не просто отображают информацию о пространстве. Если крыса бежит по определенному маршруту, потом поворачивает и бежит назад, когнитивные карты путешествий туда и обратно будут отличаться. В данном случае карта регистрирует не только топографию маршрута, но и направление движения. Как мы увидим, когнитивные карты отображают множество аспектов опыта животного (если по дороге встречается еда или крысе уже знаком этот маршрут, карта тоже будет выглядеть иначе). Нам не выжить без когнитивных карт, но никто точно не знает, что они собой представляют.
Давайте на минуту прервемся и поразмыслим о физическом пространстве. Что это? Реально ли оно? Существует ли оно за пределами нашего восприятия и, если да, откуда нам это знать, если информацию мы получаем только через наши органы чувств? Философы и физики не одно столетие бились над ответами на эти вопросы, но так и не пришли к единому мнению. Поэтому неудивительно, что мы не понимаем, как работает когнитивная карта, то есть как абстрактные отображения в гиппокампе переводятся в геометрическое восприятие пространства. Разрешив эту загадку, мы не только узнаем, как мозг запоминает дорогу из пункта А в пункт Б, но также поймем природу физического мира.
Мы не знаем, как гиппокамп строит свои карты или что это за карты, но их важность не вызывает сомнений. Проще говоря, если бы нейроны места не возбуждались в нашем мозге именно так, как они это делают, мы бы не знали, где находимся. Следующий вопрос состоит в том, на какие характеристики окружающей среды реагирует гиппокамп, – другими словами, почему нейроны места активизируются в одних местах и молчат в других? За время, прошедшее с начала 1970-х, когда О’Киф начал исследовать эти нервные клетки, нейробиологи выяснили, что нейроны места чувствительны к самым разным аспектам окружающей среды и связаны с ориентирами, объектами, цветами, запахами и геометрическими свойствами пространства. Недавно исследователи обнаружили характеристику пространства, которая, похоже, особенно важна для составления когнитивных карт: границы.
По всей видимости, все животные обращают внимание на границы в пространстве. Вспомним, например, лабораторных крыс, жмущихся к стенам[70]. Кошки очень любят коробки и другие ограниченные пространства. Маршруты поиска корма у диких крыс, кроликов, барсуков и оленей зачастую пролегают вдоль заборов, живых изгородей или лесных опушек. Люди – тоже не исключение из правила: на больших городских пространствах, таких как Трафальгарская площадь в Лондоне или внутренний двор парижского Лувра, по краям посетителей собирается больше, чем в центре. Когда волонтеры поисково-спасательных отрядов ищут заблудившихся в сельской местности, они обращают особое внимание на заборы, ручьи, канавы, стены, трубы, линии электропередачи и лесные опушки, потому что в этих местах выше вероятность найти человека.
Но почему? В XX веке Джейн Джейкобс, городской активист и писательница, которая много наблюдала за поведением жителей Нью-Йорка на улицах, отмечала: «Думаю, людей потому привлекают края, что там интереснее всего»[71]. Немало значит и безопасность. В эксперименте с лабиринтом венгерские психологи обнаружили, что люди, испытывающие страх, больше времени проводят по краям, прежде чем отваживаются выйти на середину. И еще у них дольше формируется когнитивная карта пространства, хотя непонятно, в чем причина, – то ли они меньше времени тратят на разведку, то ли страх ослабляет способность к пространственному восприятию, как полагают многие психологи и спасатели[72].
Границы связывают нас с миром и указывают на его структуру. Кроме того, они чрезвычайно полезны для ориентирования. В 1980-х годах Кен Чен, нейробиолог из Сассекского университета[73], обнаружил, что дезориентированные крысы, пытаясь понять, где они находятся и как найти еду, прежде любых других подсказок (визуальные ориентиры, запахи и прочее) использовали геометрическую форму коробки – другими словами, расположение ее границ. Чен помещал своих крыс в черную прямоугольную коробку с белой полосой вдоль одной из внутренних стен и приучал их находить еду в определенном углу. Когда животных выпускали точно в такую же коробку, они часто совершали ошибку и начинали искать еду в противоположном углу по диагонали – то есть игнорировали белую полосу и ориентировались на геометрию (в прямоугольной коробке каждый угол имеет зеркальное отображение напротив)[74].
С точки зрения эволюции животным имеет смысл ориентироваться на границы в окружающей среде, ведь пределы обладают протяженностью и мало меняются. Но каким образом мозг так эффективно встраивает их в пространственную память, в когнитивную карту? В своих первых экспериментах Джон О’Киф отмечал, что поля места привязаны к геометрии окружающего пространства, что помогает объяснить поведение дезориентированных крыс Чена. В 1996 году О’Киф и его коллега Нил Бёрджесс разработали эксперимент для проверки этой связи. Желая узнать, что произойдет с полем места при изменении формы окружающей среды, они поместили крысу в квадратную коробку, а затем расширили ее в одном направлении, превратив в прямоугольную. Поле места, за которым они наблюдали, растягивалось вместе со стенками коробки – другими словами, нейрон места возбуждался не только в маленьком участке в левом верхнем углу, как в то время, когда коробка сохраняла квадратную форму, но и в расширенной, похожей на червя области, часть которой протянулась вдоль верхней стенки[75].
Это открытие изменило взгляды О’Кифа, Бёрджесса и их коллег на нейроны места. Поскольку схемы возбуждения этих нейронов однозначно связаны с геометрией пространства, нейробиологи сделали вывод, что эти клетки должны получать информацию о границах откуда-то еще – возможно, от нейронов другого типа, чья задача, по всей видимости, вычислить положение животного относительно границ и передать данные в нейроны места, помогая последним определить местоположение животного. Ученые назвали эти клетки «граничными векторными клетками» (
Граничные векторные клетки (или просто «нейроны границы», как их обычно называют), открытые Левером, работают в точности так, как было предсказано. Так, у животных типичный нейрон границы в основании гиппокампа активизируется, когда животное находится на определенном расстоянии и в определенном направлении от неким образом ориентированной границы. Например, нейрон границы «А» возбудится, как только животное окажется в 5 сантиметрах к востоку от границы, ориентированной в направлении «север – юг», а нейрон границы «В» – когда оно будет в 20 сантиметрах к северу от границы, ориентированной в направлении «восток – запад», и так далее[80]. Таким образом, в отличие от нейронов места, которые возбуждаются в определенных точках или на участках нечеткой формы, нейроны границы возбуждаются внутри вытянутых полос, схожих с полями страницы: если вы идете вдоль здания, нейрон границы в основании вашего гиппокампа будет все время активен (как и на обратном пути, поскольку на нее не влияет направление движения). Если чуть отодвинуться от стены здания, возбуждаться будет другой нейрон.
Левер и его коллеги не могут точно сказать, как именно нейроны границы определяют ориентацию границ и активизируются на столь точном расстоянии от них. Вполне вероятно, что они получают информацию об ориентации от нейронов направления головы – «встроенного» в мозг компаса, – которые тоже обнаружены в основании гиппокампа (ниже мы рассмотрим их более подробно). При определении расстояния нейроны границы явно реагируют на визуальные стимулы, а также на прикосновение (и возможно, на звук), поскольку могут давать отклик, как только граница будет замечена. Левер считает, что некоторые нейроны могут возбуждаться в нескольких сотнях метров или даже километров от границы (хотя и с меньшей точностью) и что животное полагается на эти маркеры «дальнего действия», когда перемещается по открытому пространству, например в поле или в широкой долине.
В связи с этим возникает вопрос: что именно нейроны границы воспринимают как границу? Все, что затрудняет навигацию, но не обязательно делает ее невозможной, полагает Левер. Известно, что нейроны границы реагируют на вертикальные стены, гребни гор, края утесов и расщелин, но навигационное поведение людей и других животных предполагает, что эти клетки могут быть чувствительными к слабым линейным характеристикам, таким как изменение цвета или текстуры пола, границы теней.
Исследователям предстоит еще многое выяснить, но не подлежит сомнению, что границы и нейроны, которые их определяют, чрезвычайно важны для функционирования нейронов места[81], для формирования пространственной памяти и для эффективной навигации. Можно прокладывать путь и при отсутствии границ, используя ориентиры, и в гиппокампальной области имеются два вида клеток, реагирующих именно на них[82], но реакция мозга на границы настолько спонтанна, что они, по всей видимости, имеют особое значение. Животные, в том числе человек, чаще теряют ориентацию в местах, где отсутствуют границы – или невозможно оценить пройденное расстояние. Нейробиологи показали, что если поместить крысу в коробку, а затем убрать или разрушить стенки, то паттерн полей места полностью меняется, и многие нейроны места просто перестают возбуждаться[83]. Из всех пространственных нейронов в мозге младенца нейроны границы формируются первыми, даже раньше самих нейронов места, – возможно, они являются тем клеем, который скрепляет всю когнитивную карту.
Эдинбург – очень красивый город. Кроме того, там легко проверить у себя чувство направления. От Северного моста, перекинутого через глубокую долину и соединяющего Старый город с Новым, один-единственный пируэт по часовой стрелке приведет вас к Эдинбургскому замку на вершине базальтового утеса, величественным колоннам Национальной галереи Шотландии, к почерневшему от гари готическому монументу Скотта на Принсес-стрит, к куполу крыши Национального архива Шотландии, к Калтон-Хилл, резиденции шотландского правительства, к линии берега на горизонте и длинному склону парка Холируд, к Трону Артура, высшей точке города, и к высоким многоквартирным домам Королевской Мили, которые зимой накрывают тенью большую часть долины.
Наш мозг тратит совсем немного времени, чтобы мысленно охватить подобную панораму. Одного полного круга достаточно, чтобы мы получили представление о том, что нас окружает, о соотношении ориентиров, о направлении на море и так далее. Эта способность ориентироваться по особенностям ландшафта может показаться естественной, но на самом деле это удивительное когнитивное достижение. И мы бы так не смогли, не будь в нашем мозге группы клеток, которые, по всей вероятности, формируются специально для того, чтобы снабдить нас чувством направления: нейронов направления головы.
Нейроны направления головы были найдены в задней части основания гиппокампа рядом с нейронами границы, а также в нескольких соседних областях мозга, в том числе ретроспленальной коре и в энторинальной коре, которая является своего рода интерфейсом для связи между гиппокампом (где расположены нейроны места) и неокортексом (который управляет функциями «высшего порядка», такими как восприятие, мышление и логика). Подобно нейронам границы, нейроны направления головы формируются на самой ранней стадии развития животного, и это значит, что они очень важны для выживания. Они не только позволяют нам ориентироваться в пространстве, но также передают важную информацию о направлении другим пространственным нейронам, в том числе нейронам границы и нейронам решетки (роль которых мы рассмотрим ниже).
Систему нейронов направления головы часто называют внутренним компасом мозга. В отличие от нейронов места и нейронов границы, которые реагируют на структуру окружающей среды, нейроны направления головы активизируются тогда, когда ваша голова повернута в определенном направлении. Разные клетки реагируют на разное направление, а все вместе они охватывают весь диапазон в 360 градусов. Покружитесь, и ваши нейроны направления головы по очереди активизируются, один набор за другим. Система направления головы отличается жесткой координацией: если в какой-либо обстановке клетка В возбуждается правее клетки А, то так будет везде[84].
Как нейроны определяют, что моя голова повернута вправо или влево на определенный угол? Скорее всего, источником этой информации служит вестибулярный аппарат, сеть каналов и полостей внутреннего уха, реагирующая на линейное и угловое ускорение. Вот почему нейробиологи называют систему направления головы
Но аналогия с компасом окажется не совсем точной, если внимательнее присмотреться к тому, как нейроны направления головы формируют чувство направления. Они не реагируют на магнитное поле Земли или на направления по странам света (север, юг, восток, запад), а связаны с ориентирами. Если первым, на что вы обратите внимание в Эдинбурге, будет замок, часть ваших нейронов направления головы свяжет себя с ним, а поскольку система обеспечивает последовательное возбуждение нейронов при повороте на определенный угол, в результате быстро формируется весь «компас» (в котором замок играет роль севера).
Так будет до тех пор, пока вы не уйдете и не окажетесь в другом окружении. Например, если вы зайдете внутрь Эдинбургского замка и начнете бродить по нему в поисках Скунского камня, древнего символа шотландской монархии, система направления в вашем мозге перезагрузится и настроится на внутреннее пространство замка, поскольку уже не может привязаться к первоначальному северу (если только вы не видите его в окно или не обладаете исключительной пространственной памятью). В этот момент вам будет трудно закрыть глаза и уверенно указать направление на Национальный архив или Трон Артура: вестибулярный аппарат способен поддерживать ориентацию только короткое время, а затем ему понадобится новая визуальная информация (или другая сенсорная подсказка)[85].
Зависимость от ориентиров[86] объясняет, почему система направления головы легко путается в незнакомых местах, особенно если мы невнимательны. Приведенный ниже рассказ шведского инженера Эрика Джонсона, который увлекался вопросами навигации, будет понятен каждому, кто терял верную дорогу в городе, твердо уверенный, что знает, куда идет. В 1948 году Джонсон посетил Кёльн. Он приехал на поезде глубокой ночью, немного вздремнул на скамейке прямо на вокзале и направился к Рейну, чтобы сесть на пароход. Когда он не смог найти реку и обратился за помощью к кому-то из прохожих, то, к своему удивлению, услышал, что идет в противоположную сторону:
Я шел в неверном направлении, на восток, а не на запад, как мне казалось. Потом я увидел солнце, восходившее над туманом, окутавшим пароходы.
Система направления головы, однажды настроенная, не склонна менять выбранную ориентацию, как будто это вопрос жизни и смерти (что почти наверняка было справедливо для наших предков, кочующих по саванне). Когда Джонсон сел на пароход и покинул Кёльн, его внутренний компас перестроился, но вечером, после возвращения в город, вернулся в первоначальное состояние: «В мгновение ока мир повернулся на 180 градусов»[88]. Джонсону казалось, что солнце садится на востоке. Выбитый из колеи своей неправильно работающей системой ориентации, он сел на ближайший поезд и уехал из города.
Потерять ориентацию можно где угодно, но чаще всего это происходит в местах, в которых мало заметных ориентиров, например внутри больших зданий, где ограничен обзор и нельзя выглянуть из окна. Особенно это относится к больницам: в 1990 году исследование, проведенное в крупном региональном госпитале в США, показало, что персонал тратит 4500 часов в год, объясняя дорогу людям, заблудившимся в сети одинаковых коридоров[89]. Найти дорогу в таких местах трудно даже здоровым, не говоря уже о тех, чьи когнитивные способности могли ухудшиться из-за болезни или возраста.
Непросто ориентироваться и в городах. Если хотите почувствовать почти мгновенный сбой системы направления головы, попробуйте спуститься по одной из глубоких спиральных лестниц, ведущих на платформы лондонского метро на глубине около 50 метров. Несколько однообразных поворотов, по кругу и вниз – и вы утратите представление о направлении, которым обладали на поверхности. Это как принести компас на рудник, где добывают железную руду. Но если вы повернете назад, ваши нейроны направления головы вернутся в исходное состояние в ту же секунду, как только вы окажетесь в знакомой обстановке; это маленькое когнитивное чудо, которое говорит вам: «Я здесь».
Ориентиры необходимы для нашего чувства направления точно так же, как границы – для чувства места. Но как мозг не теряет ориентации при смене обстановки, например когда мы заходим из сада в дом или с улицы в супермаркет? Если это не магазин IKEA и не Эдинбургский замок, то мы, оказавшись в помещении, обычно не теряем ориентацию, хотя заменяем удаленные ориентиры (такие как дерево или небоскреб) на близкие (окно или картина на стене). Мы способны «настраиваться» на геометрию своего дома, не теряя ориентации во внешнем мире, то есть одновременно держим в уме две пространственные системы координат. Как нам удаются такие когнитивные трюки?
Это происходит в ретроспленальной коре, части мозга, играющей важную роль в преобразовании визуальных подсказок, в частности ориентиров, в информацию о пространстве, которую мозг может использовать для составления когнитивной карты. Нейробиологи обнаружили в ретроспленальной коре два вида нейронов направления головы: одни реагируют на далекие ориентиры, другие – на близкие. Именно возбуждение этих нервных клеток позволяет нам не терять ориентацию по отношению к улице, когда мы входим в дом, и знать, где на втором этаже находится ванная и где мы припарковали машину[90].
У ретроспленальной коры есть еще одна замечательная функция: отличать постоянные, полезные ориентиры от временных и ненадежных. Мир полон потенциальных ориентиров, но совершенно очевидно, что внутреннему компасу нет смысла настраиваться на то, что завтра исчезнет. Ретроспленальная кора сильнее реагирует на неизменные ориентиры, такие как деревья, ветряные мельницы и фонарные столбы, чем на автомобили, радугу и птиц на заборах[91]. Опять-таки в этом есть эволюционный смысл, поскольку потеря ориентации в дикой природе могла дорого обойтись нашим предкам; кроме того, это объясняет разницу в навигационных способностях современных людей. Исследования с помощью методов нейровизуализации показывают, что у людей, хорошо ориентирующихся в пространстве, ретроспленальная кора более чувствительная, чем у тех, кто ориентируется плохо, – и потому таким людям легче находить стабильные ориентиры. Элеонор Магуайр, которая исследует память и способности к навигации в Университетском колледже Лондона, говорила, что регулярно встречает здоровых людей, которые, как ни странно, «не способны определить стабильный ориентир, который никуда не исчезнет». Более того, она относит к этой категории и себя, признаваясь, что плохо ориентируется в пространстве, и приписывая этот недостаток плохой работе ретроспленальной коры. «Я постоянно теряю ориентиры. Поворачиваю за угол, уверенная, что увижу этот ориентир, но его нет! Конечно, он не исчез – его никогда там и не было! Я просто неверно его разместила»[92].
Одна из самых больших загадок когнитивной карты состоит в том, как взаимодействуют друг с другом разные элементы, которые помогают ее создать, – нейроны места, нейроны границы, нейроны направления головы, нейроны решетки и другие, о которых мы еще не знаем[93]. Мы точно знаем, что нейроны места получают информацию о геометрии пространства от нейронов границы, которые, в свою очередь, получают информацию об ориентации от нейронов направления головы, и еще нам известно, что нейроны решетки как-то связаны с расстоянием. Но эти механизмы настолько сложные, а эксперименты, требующие мониторинга отдельных нейронов диаметром около 0,2 миллиметра в мозге крыс или мышей, отнимают столько времени и сил, что общую картину получить пока не удается.
Не так давно Пол Дудченко и его аспирант Родди Гривс[94] выполнили серию экспериментов, чтобы понять, как нейроны пространства взаимодействуют друг с другом и какой вклад они вносят в формирование чувства места. Они сосредоточились на конкретной проблеме: почему крысы, как кажется, не могут отличить друг от друга одинаковые помещения, расположенные параллельно? Исследователи уже выяснили, что при перемещении между четырьмя прямоугольными помещениями, выглядевшими одинаково, нейроны места у крыс возбуждаются одинаково, и можно сделать вывод о том, что животные не различают эти помещения[95]. Дудченко и Гривс предположили, что все дело в одинаковом ориентировании помещений. А нейроны места различат их только в том случае, если эти помещения по-разному ориентировать – другими словами, если нейронам поможет система направления головы животного.
Для проверки своей гипотезы они взяли четыре прямоугольных отсека, разместили в их задней части горшочки с песком, пропитанным разными ароматами (базилик, кориандр, зира и розмарин), и закопали угощение (колечки со вкусом шоколада!) так, чтобы в каждом отсеке награда находилась в разных горшочках. Затем они повторили эксперимент, но теперь отсеки были расставлены полукругом под углом 60 градусов друг к другу. Чтобы добраться до угощения, крысы должны были выяснить, где оно спрятано в каждом из отсеков, например в розмарине в помещении А или в зире в помещении В.
Как и предсказывали Дудченко и Гривс, большинство крыс не могли найти угощение, когда отсеки располагались параллельно. Крысы не видели разницы между ними и не создавали отдельные когнитивные карты, способные подсказать, где в каждом случае искать колечки[96]. Но стоило расположить отсеки иначе, и поиски были гораздо успешнее – животные быстро запоминали, в каких коробках может быть еда. Это подтверждали нейроны места крыс: при перемещении между параллельными отсеками нервные клетки возбуждались в той же последовательности (похоже, животные всегда пользовались одной и той же когнитивной картой), но перестраивались, или «меняли карту» в отсеках, расположенных под углом друг к другу: формируя для каждого из них свою карту[97].