Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Воздействие на геосферы Земли – причина изменения климата - Михаил Стефанович Галисламов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

где T – температура электронов, в кельвинах (К), k = 1,380662 эрг/К – постоянная Больцмана, e – заряд электрона, n – концентрация частиц одного знака заряда.

В теории Дебая – Хюккеля ион полностью ионизированного газа принимается за точечный заряд. Если приложить к плазменному объекту внешнее поле, то оно проникает на глубину порядка дебаевского радиуса. Чтобы плазма сохраняла квазинейтральность, ее линейные размеры должны намного превосходить дебаевский радиус (rD). Экранирование кулоновского поля произвольного заряда плазмы на расстояниях rD происходит в результате того, что данный заряд оказывается окруженным частицами с зарядами противоположного знака. Взаимодействие заряженных частиц друг с другом возрастает, когда плотность заряженных частиц растет.

Наиболее важными характеристиками плазмы являются плотность и температура заряженных частиц. Если среда представляет собой не полностью ионизованный газ и плотность заряженных частиц в газе очень мала, то ионы взаимодействуют, в основном, с нейтральными частицами. Большая электропроводность плазмы приближает ее свойства к свойствам проводников. Сильное взаимодействие с внешними магнитными и электрическими полями обусловлено высокой электропроводностью плазмы. В природных условиях на Земле плазма появляется в пламени и, посредством поля, при грозовых разрядах; искусственная – создается при разрядах в газоразрядных лампах. Средняя кинетическая энергия электронов в газоразрядной плазме значительно превышает среднюю энергию нейтральных частиц плазмы. В плазме отсутствует термодинамическое равновесие. В газоразрядной плазме заряженные частицы, входящие в ее состав, непрерывно находятся в ускоряющем электрическом поле. Состояние термически неравновесной газоразрядной плазмы поддерживается ва счет энергии разрядного тока, проходящего через плазму [34].

Особое коллективное взаимодействие частиц, связанное с кулоновскими силами, позволяет рассматривать плазму как особое агрегатное состояние вещества. Эти свойства приводят к возможности возбуждения и распространения в плазме разнообразных колебаний и волн. С прекращением действия внешнего поля, с течением времени исчезает плазменное состояние газа. Исчезновение предоставленной самой себе плазмы называется деионизацией газа.

По мнению ученых, плазма – наиболее распространенное состояние вещества в космосе (звезды, межзвездная среда, ионосферы планет). Большое число природных плазменных космических объектов имеет температуру, которая превышает миллион градусов (100 эВ). Такую плазму называют высокотемпературной. Низкотемпературная плазма широко применяется в радиоэлектронных приборах, плазмотронах, газовых лазерах, других устройствах и в промышленных технологиях. Температура большинства земных и ряда космических объектов, не превышает десяти электрон-вольт [35]. Потенциалы ионизации и диссоциации атомов и молекул лежат между 2–20 эВ.

Электрический заряд, движущийся в атмосфере, образует вокруг себя магнитное поле. Масштабные плазменные структуры достигают в длину нескольких сотен километров. В объемном плазменном образовании (плазмоиде) сосредоточен мощный энергетический потенциал. Его заряд вносит сильное возмущение и изменяет первоначальную конфигурацию электрического и магнитного поля Земли в локальной области пространства. Стрелка компаса отклоняется от своего естественного географического направления.

Когда напряженность электрического поля между положительно заряженной стороной плазмоида и поверхностью земли достигнет критической величины, происходит электрический пробой. Энергия зарядов, накопленной в этой части плазменной структуры, преобразуется в тепловую, звуковую, ударную волну и световое излучение (молнию). Длина наземных молний может быть от 1 до 10 км, длина молний между облаками от 1 до 150 км [36]. Температура в канале разряда может колебаться от 5000 °C до 20000 °C.

10. Искусственно ионизованные области (ИИО)

Основы теории физики плазмы были заложены в начале XX века. В конце 40-х годов прошлого века Раземан и Ланг измеряли энергетическое распределение выходивших электронов. Пропуская моноэнергетический пучок электронов с энергией порядка нескольких кэВ через тонкую алюминиевую фольгу [G. Ruthemann, Ann. Phys. 2, 113 (1948); W. Lang, Optik 3, 233 (1948)], ученый заметил, что большая часть пучка проходила через фольгу без заметных потерь энергии. Но имелась группа электронов, терявших энергию приблизительно 15 эВ [37]. Если алюминий заменялся на другой металл, то наблюдалось то же самое явление, однако характеристические потери энергии менялись от металла к металлу. Оказалось, что часть электронов теряла определенное количество энергии на возбуждение продольных плазменных колебаний внутри металла на частоту ωр характеристической для каждого данного металла. Величина теряемой энергии равна электронному «кванту» энергии ћωр, где ћ – постоянная Планка. Этот квант назвали плазмоном. Теоретическая интерпретация эксперимента, данная Бомом и Пайнсом [D. Ρiηes and D. Воhm, Phys. Rev. 83, 221 (1951); 85, 338 (1952); D. Pines, Revs Mod. Phys. 28, 184 (1956)], положило начало исследованиям плазмы твердого тела. При определенных условиях внутри твердого тела возможно распространение медленных электромагнитных волн, начиная от звуковых, до частот радио и микроволнового диапазона. Природа обеспечила твердые тела (металлы, полуметаллы, полупроводники) почти свободными заряженными частицами.

Плазма непрозрачна для электромагнитных волн, частоты которых меньше плазменной. Проблема распространения волн проявляется и в физике твердого тела. В присутствии статического магнитного поля распространение поперечных электромагнитных волн через плазму твердого тела возникает много новых частот. Появляется такой параметр как угол между направлением распространения волны и магнитным полем. Для описания низкочастотных волн в плазме подходит модель возбуждения волн в заряженной струне, параллельно магнитному полю. Если силовая линия смещается поперек поля, то заряженные частицы вынуждены двигаться в нем подобно бусинкам, насаженным на тонкую струну [38].

В США, Англии и Советском Союзе в период с 1948 по 1958 г. широко проводились исследования плазмы. Особенностью поведения плазмы твердого тела является зависимость массы носителей от ориентации кристаллографических осей. Предполагаются различия между величинами масс подвижных носителей в газоразрядной и твердотельной плазме. В твердом теле электрон имеет эффективную массу m, определяемую периодическим потенциалом решетки. Она изменяется от материала к материалу, составляя от нескольких масс свободного электрона me до сотых долей me. Разнообразие твердых материалов позволяет иметь плазму с такими параметрами, которые невозможны в газе.

Теория описывает практику двух принципиальных способов воздействия на ионосферу – распыление в ней химических реагентов и «накачка» избранных участков сфокусированными пучками радиоволн, «возбуждение» атомов. Так можно создавать локальные, высоко ионизированные области ионосферы, которые располагаются вдоль магнитных силовых линий Земли на огромных расстояниях. Группа ученых Мюнхенского Института космической физики и астрофизики им. Макса Планка провела серию экспериментов с образованием искусственных облаков плазмы в космическом пространстве. Немецкие специалисты изучали их поведение, создавая видимые облака плазмы в магнитосфере Земли. Исследователи исходят из того, что поведение заряженных частиц в электрическом и магнитном полях им известно. Если положительно заряженный ион или отрицательно заряженный электрон попадают в магнитное поле и компонента скорости перпендикулярна к этому полю, то частица начинает двигаться по окружностям вокруг силовых линий. Компонента скорости параллельная магнитному полю не меняется, движение по этому направлению остается неизменным. В случае произвольно направленной скорости заряженная частица движется по винтовой линии, ось которой совпадает с силовой линией поля.

Искусственной созданное облако плазмы позволяет непосредственно увидеть силовые линии поля Земли и движение по ним ионных частиц. В первых экспериментах, проведенных в 1963 г. ракеты поднимались на высоту от 90 до 120 миль (150–200 км). На каждой из запущенных ракет помещалось несколько килограммов стронция. Испарение стронция производилось путем химической реакции. Затем стронций выбрасывался в атмосферу. Появлялись облака только не ионизованного стронция. Следов ионизованного стронция не было обнаружено. Поэтому стали испытывать новые методы испарения более тяжелого щелочного металла – бария. В ноябре 1964 г. проведена серия экспериментов с использованием бария. Десять минут спустя после выпускания парообразного бария облако плазмы ионизованного бария делается видимым с Земли даже невооруженным глазом. Ионизованная часть бариевого облака претерпевает изменения и приобретает сигаровидную форму в отличие от сферического не ионизованного облака. По мнению ученых, существенное искажение сигарообразной формы впоследствии может произойти за счет влияния неоднородных электрических полей. В экспериментах с бариевыми облаками были обнаружены слоистости. Ширина слоев изменялась от половины мили до 6 миль. Наличие слоев напоминает пучок волокон. Эти волокна не сохраняют своего положения в пространстве, а изменяют его в течение нескольких минут. В апреле 1966 г. в пустыне Сахара провели эксперименты на высоте 1200 миль. С французских ракет выпущены два ионизованных облака, каждое из которых состояло из 50 г ионов бария. Они растянулись на расстояние свыше 1200 миль и обозначили силовые линии магнитного поля Земли от центра Африки до центра Европы [39]. Пуски, очевидно, производились с космодрома Хаммагир (31°36′ с. ш. и 2°12′ з. д.) в Алжире, а под центром Европы, надо полагать, подразумевается Лондонский меридиан. Пятью месяцами позже ионное облако было создано на высоте около 570 миль (917 км) над Восточным побережьем США. По мере выпадения частиц в нижнюю часть атмосферы, наблюдалось удлинение ионного облака вдоль силовых линий магнитного поля вплоть до Северной Дакоты. Географические координаты места опыта в [39] не указаны, Можно предположить, что запуск ракет был производен с восточного испытательного полигона на мысе Канаверал Флорида (28,483° с. ш., 80,567° з. д., d = – 0.679°). Если проложить курс от полигона на юго-западную оконечность штата Северная Дакота, азимут составит А ≈ 315 °.

Говорят о направленности облаков по силовым линиям магнитного поля. Однако искусственные плазменные облака двигались в сторону Северного магнитного полюса, а не в направлении экватора. В апреле 1967 г. пять дней подряд на высоте около 140 миль на севере Швеции над населенным пунктом Кируной поздним вечером, или ранним утром, выпускалось ионное облако. Ионные облака демонстрировали дрейфовые движения, направленные иногда к востоку, а иногда к западу. Имелась также компонента скорости и в направлении на юг. В зоне полярных сияний несколько искусственных облаков приобрели удлиненную форму в виде полосы в направлении перпендикулярном магнитному полю. Протяженность такого облака достигала более 120 миль.

В экспериментах ионы отклонялись от траектории вдоль силовой линии. В работе [39] ученые не дают оценки причине смещения облаков из искусственной плазмы поперек силовых линий поля. Чтобы заставить плазменное образование пересекать силовые линии поля, к заряженным частицам должна прилагаться сила электрического поля, действующего в направлении движения. Это предполагает наличие внешнего источника или устройства, способного воздействовать на поле, на заряды и изменять их положение на локальном участке, создавая поперечную компоненту к силовым линиям поля Земли.

Тема исследования поведения плазмы и проведения опытов немецкими учеными, имеет один непонятный аспект. Для запуска метеорологических ракет, требовались космодромы и комплексы с системой обслуживания, разрешение на запуски от специальных служб этих государств. Зачем американцам, имеющим большой опыт работы с плазмой, допускать конкурентов к проведению экспериментов над территориями Алжира (Сахара), Швеции (Кируна), Северной Дакоты (США)? Вероятно, целью Пентагона и ВМС США было стремление скрыть заинтересованность военных в научных исследованиях работе. Немецких ученых использовали «втемную». Они добросовестно выполняли проектное задание и могли не знать, почему перемещение плазмы по силовой линии происходит на восток, на запад или на юг. Это была часть одного крупного проекта военного ведомства. Настоящей целью, по нашему мнению, была проверка влияния технических средств на возможность продвигать искусственные плазменные образования вдоль силовой линии и отклонять их от первоначальной траектории. В таком случае объяснимо смещение объемной плазмы от силовой линии.

11. Современные теории и модели глобальной электрической цепи

Если плазма находится во внешнем электрическом поле, то хаотичное движение ионных зарядов прекращается, образуется направленный ток. Заряды в зависимости от типа (положительные или отрицательные), получают соответствующие ускорения, совпадающие с вектором поля или встречные ему. Происхождение электрического поля атмосферы и понятие глобальной электрической цепи впервые было введено в работе «Квазистатическая модель глобального атмосферного электричества: I. Нижняя атмосфера» [Hays P.B., Roble R.G. (1979). A quasi-static model of global atmospheric electricity: I. The lower atmosphere // J. Geophys. Res. V. 84. № 7. P. 3291–3305.]. Согласно концепции глобальной электрической цепи (ГЭЦ), облака, расположенные в свободной атмосфере, обладают электрической структурой. Грозовые генераторы являются основными источниками электродвижущей силы, поддерживающей потенциал ионосферы. Стадия грозового облака, предшествующая разряду, дает основной вклад в унитарную эволюцию напряженности электрического поля вблизи земной поверхности. Модель, в которой грозовые облака экваториальной зоны земного шара – основной генератор, поддерживающий глобальную электрическую цепь [40], являются базовой для ученых. Современные исследования глобальной электрической цепи сосредоточены на совокупности локальных, региональных и глобальных генераторов электричества атмосферы, включая грозовые. По пути описания процессов установления стационарного состояния электрического поля, шло углубление теории нестационарной модели ГЭЦ.

В работе [41] дана следующая формулировка ГЭЦ: «Глобальная электрическая цепь – распределенный токовый контур, образованный токопроводящими слоями верхнего слоя океана и земной коры и атмосферой, проводимость которой ничтожно мала в пограничном слое, но резко (экспоненциально возрастает с увеличением высоты)». Автор упоминает в работе, что вспышки облако – Земля "нормальной полярности" переносят отрицательный заряд на Землю и заряжают глобальную цепь, тогда как внутри облачные вспышки приводят к ее релаксации. Число «внутри облачных» вспышек значительно превосходит число вспышек облако – Земля. Если принять во внимание, что длина молний может достигать сотни километров, то это уже разряды между облаками.

В природе не существует объективных причин для накопления в локальном пространстве в большом объеме отрицательных зарядов. Согласно закону физики, заряды одного типа должны отталкивать друг друга. Облаку, заряженному отрицательно, намного проще взаимодействовать с положительно заряженной ионосферой, чем с отрицательным зарядом Земли. Только заряды разной полярности способны совершать молниевые разряды на расстояние до сотен километров. Каким образом в оболочке одного атмосферного слоя скапливались полярные заряды? Это требовало от автора дополнительной аргументации.

Развивая концепцию ГЭЦ, Мареев Е.А. ссылается [41] на другие работы и предлагает включать в качестве источника атмосферного электричества вращение плазменной оболочки планеты (планетарный электрический генератор). Он считает, что наряду с генераторами, находящимися в нижней части атмосферы, существенный вклад в формировании цепи дают ионосферные и магнитосферные генераторы. Основная часть потока энергии, поддерживающая ГЭЦ, поступает в виде излучения Солнца.

Воздух обладает электрической проводимостью. Она обусловлена ионами, образующимися в результате ионизации молекул и атомов космическими лучами. Над земной поверхностью электрическое поле в каждой точке меняется. До высот ~100 км элементный состав воздуха остается почти таким же, как около поверхности Земли. Проводимость воздуха, возникающая в результате движения ионов, быстро увеличивается с высотой. На высоте ~50 км существует проводящая среда, из которой стекают вниз токи [42]. Этот ток переносит к Земле положительный заряд. Средняя плотность тока порядка 10–6 мкА/м². Заряды, текущие в атмосфере, стремятся разрядить Землю (так трактует теория). Суммарный ток, достигающий земной поверхности, равен 1800 А [30. С. 83].

Параметром, определяющим существования ГЭЦ, служит вертикальный ток проводимости плотностью ~ 10–12 А/м², текущий из нижних слоев проводящей ионосферы к отрицательно заряженной земной поверхности. Проблема генераторов ГЭЦ и баланса токов источников и нагрузочных областей остается до настоящего времени не решенной. Позиция, что молнии заряжают Землю отрицательными зарядами, не адекватная. Полный ток отрицательных зарядов превышает полный ток положительных зарядов в 3,2 ± 1,2 раза; число молний, переносящих отрицательный заряд, в 2,1 ± 0,5 раза превышает число молний, переносящих на Землю положительный заряд [29]. Гипотеза глобального грозового генератора, основного источника формирования ГЭЦ, как признают ученые [43], требует экспериментальной, теоретической и модельной разработки. В обзоре [41] и докладе [44] выражают надежду, что будут разработаны нестационарные модели, которые позволят описывать крупномасштабные геофизические возмущения и долгосрочную эволюцию ГЭЦ.

На основе предложенной модели глобальной электрической цепи в земной атмосфере, рассматривают проникновение нестационарных ионосферных электрических полей в нижние слои атмосферы [45]. В электростатическом приближении получено решение задачи о проникновении нестационарных ионосферных электрических полей в нижние слои атмосферы. Проникновение ионосферных нестационарных электрических полей в приземный слой зависит существенным образом от частоты колебаний потенциала электрического поля, возникающего на уровне ионосферы. В случае высокочастотных колебаний амплитуда вертикальной составляющей напряженности электрического поля вблизи земной поверхности составляет менее 1 % от значения, соответствующего стационарному значению напряженности электрического поля, равного 100 В/м. Для низкочастотных колебаний потенциала ионосферы эта величина составляет 20–30 % от величины стационарного электрического поля, при заданном значении потенциала ионосферы 100 кВ.

Атмосфера Земли представляет слоистую систему. Выделяют три основных области ионизации: D (80 км), E (110 км) и F-слой, который делится на F1 (170 км) и F2 (250 км) [46]. Ионосферная плазма – это среда, в которой присутствуют электроны и ионы тепловых энергий, являющиеся результатом ионизации составляющих нейтральной атмосферы электромагнитными и корпускулярными излучениями [47]. Гипотетический ионизированный слой образуется в атмосфере Земли при следующих допущениях: излучение Солнца, вызывающее ионизацию, считается монохроматическим. При ионизации атмосферы происходит образование свободных электронов и ионов из электрически нейтральных атомов и молекул. Различают несколько типов ионизация атмосферы: авроральная ионизация, фотоионизация, ионно-молекулярная реакция, прилипание электрона (к нейтральной частице), отлипание электрона (отсоединения электрона от отрицательного иона).

В работах [40, 45, 48] придерживаются устаревшей догмы, спустя несколько десятилетий после первых теоретических публикаций о ГЭЦ. Ведущие российские теоретики продолжают развивать теорию о влиянии различных типов молниевых разрядных процессов на глобальные токи в электрическом поле атмосферы. Выскажем одно замечание к основному постулату современных гипотез: заряд Земли – отрицательный. Следовательно, в атмосфере Земли движутся с противоположных сторон и достигают ее поверхности положительно заряженные частицы. Вопрос: какие силы заставляют космические частицы больших энергий, одного типа зарядов, двигаться навстречу друг к другу в сферах планеты, которая к тому же перемещается по орбите?

Нет такой причины, которая может заставить галактические частицы одной полярности двигаться в одну из точек пространства Вселенной с противоположных сторон. Попытки ученых обоснованно излагать картину направленности космических токов к Земле, не создав гипотезу (теорию) поля Вселенной – бесперспективны. Посыл, заложенный в современную концепцию о природе ГЭЦ – ложный. Он не позволяет понять причину развития озоновых дыр (мини-дыр) в атмосфере, следовательно, и причин изменения климата на планете.

12. Предпосылки к созданию искусственной ГЭЦ

12.1. Поляризация диэлектрика

Все вещества по величине удельного электрического сопротивления подразделяют на три группы: проводники, полупроводники и диэлектрики. Диэлектриками называются вещества, не проводящие электрического тока. В них отсутствуют свободные электрические заряды. Поляризация диэлектриков – процесс образования объемного дипольного электрического момента (смещение электрических зарядов) в диэлектрике. Если диэлектрик внести во внешнее электрическое поле, на его поверхностях появляются заряды. Под действием приложенного электрического поля, молекулы становятся электрическими диполями, ориентированными положительно заряженными концами в направлении электрического поля Е. Электростатическая индукция связана с тем, что в диэлектрических телах с одной стороны тела оказываются отрицательные концы диполей, а с другой – положительные. Смещение положительных и отрицательных зарядов диэлектрика в разные стороны называют электрической поляризацией. Согласно теории физики, заряды в диэлектрике могут смещаться из своих положений равновесия лишь на малые расстояния, порядка атомных. Поле внутри диэлектрика, создаваемое связанными зарядами, направлено против внешнего поля, создаваемого сторонними зарядами. Если поля нет, то полярные молекулы совершают хаотические тепловые движения и ориентированы совершенно беспорядочно. При наложении электрического поля диэлектрик становится поляризованным, дипольные моменты молекул ориентируются преимущественно в направлении поля. Существуют диэлектрики, полярные молекулы которых обладают дипольными моментами в отсутствие электрического поля.

Помимо электрически нейтральных молекул в диэлектрике могут существовать положительно или отрицательно заряженные ионы. Избыток ионов того или иного знака в какой-либо части диэлектрика означает наличие в этой части некомпенсированных макроскопических зарядов. Существуют диэлектрические кристаллы, построенные из ионов противоположного знака, например, NaCl. Такие кристаллы называются ионными. [30. С. 58]. Поляризация диэлектрика, возникающая при возбуждении в нем электрического поля, может сопровождаться изменением температуры диэлектрика и появлением в нем механических сил, и упругих напряжений. В электростатике поле неотделимо от зарядов, являющихся его источниками. Величиной зарядов и их расположением однозначно определяется электростатическое поле. Заряды могут нейтрализовать друг друга. Переменные электромагнитные поля могут существовать самостоятельно, независимо от возбудивших их электрических зарядов [30. С. 115]. Согласно теории, поле, которое они возбудили, продолжает существовать в виде электромагнитных волн.

Деформационная поляризация наблюдается для веществ с неполярными молекулами. Они ориентируются, образуя диполи, под действием электрического поля. В молекулах неполярных диэлектриков (Н2, N2, ССl4, углеводороды и др.) центры тяжести положительных и отрицательных зарядов в отсутствие внешнего поля совпадают, дипольный момент у молекул равен нулю. При помещении таких диэлектриков во внешнее электрическое поле происходит деформация молекулы (атома) и возникает индуцированный дипольный электрический момент молекулы, пропорциональный напряженности поля. При снятии внешнего поля поляризация практически исчезает. Углеводородные горючие газы (соединения углерода и водорода) содержатся в земной коре в виде скоплений в пластах, растворены в нефти (попутный газ) и подземных водах.

Вода – вещество, основной структурной единицей которого является молекула H2O, состоит из одного атома кислорода и двух атомов водорода, представляет собой диполь, содержащий положительный и отрицательный заряды. Молекулы воды в виде аэрозолей постоянно присутствуют в воздухе. Если молекулу воды, не связанную с другими молекулами, поместить в электрическое поле, то она повернется отрицательной стороной в направлении положительного потенциала электрического поля, а положительной стороной – к отрицательному потенциалу. При увеличении напряженности поля до величины достаточной для разрыва водородной связи, структура молекулы воды разрушается. В результате этого разрыва могут образовываться ионы +Н, – ОН и электрон (—е). При воздействии электромагнитного импульса, происходит накопление энергии в кластерной структуре воды до некоторого критического значения, затем происходит разрыв связей и лавинообразное освобождение энергии, которая может затем трансформироваться в другие виды энергии. Комбинация пульсирующего и постоянного электрического поля приводит к тому, что в некоторый момент сила электрической связи в молекуле ослабляется настолько, что сила внешнего электрического поля превосходит энергию связи, и атомы кислорода и водорода освобождаются как самостоятельные газы.

12.2. Земная кора – проводник электрического тока

Земную кору (верхнюю твердую оболочку Земли) слагают различные типы горных пород, состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Земная кора больше чем на 98 % сложена из элементов О, Si, Al, Fe, Mg, Ca, Na, К. При этом свыше 80 % составляют кислород, кремний и алюминий. В земной коре широко распространены минералы силикаты (свыше 78 %), которые характеризуются сложным химическим составом и внутренним строением. В основе их структуры лежит кремнекислородный тетраэдр. В его центре находится ион кремния Si+4, а в вершинах – ионы кислорода О–2, которые создают четырехвалентный радикал (SiO4)–4. Частичная замена ионов кремния на трехвалентные ионы алюминия приводит к возникновению у такого соединения некоторого дополнительного отрицательного заряда. Минералы с подобным строением называются алюмосиликатами. Кремнекислородные и алюмокремнекислородные минералы могут различно сочетаться друг с другом, что определяет их кристаллическую структуру и лежит в основе их современной классификации. Минералы в земной коре находятся (преимущественно) в кристаллическом состоянии, незначительная их часть – аморфном [49].

Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Кристалл состоит из ионов, попеременно заряженных противоположными зарядами. Электропроводность естественных кристаллов, меняется от вида к виду и зависит от примесей, заключенных в кристаллах. Расстояния между элементарными частицами и характер связей между ними в разных направлениях кристаллической решетки неодинаковы. Кристаллический кварц является анизотропным одноосным кристаллом; плавленый кварц (стекло) – хороший диэлектрик. Многие вещества в кристаллическом состоянии, в отличии от металлов, не являются хорошими проводниками электричества. Их нельзя отнести и к диэлектрикам, т. к. они не проявляют себя хорошими изоляторами. Такие вещества (германий, кремний, селен и множество других минералов, различные оксиды, сульфиды и др.) относят к полупроводникам, их общая масса составляет 4/5 массы земной коры.

Исследование электропроводности кристаллов кальцита и кварца А.Ф. Иоффе начинал в 1904 году. В дальнейшем Иоффе установил, что прохождение электрических токов через кристаллы-изоляторы характеризуется некоторыми особенностями. Если к кристаллической пластине, с обеих сторон покрытой слоем металла, приложить постоянную разность потенциалов, то возникнет ток, спадающий со временем, величина которого иногда не приближается к конечному пределу. Если снять напряжение и подключить обе обкладки к гальванометру, то будет зафиксирован противоположно направленный ток, который постепенно ослабевает и стремится к нулю. Оказалось, что кристаллы поляризуются, величина этой поляризации может достигать многих тысяч вольт. Это явление объяснили образованием встречной поляризации. В газе стационарное состояние, соответствующее току насыщения, устанавливается в течение долей секунды, в кварце этот же процесс занимает несколько секунд. Сразу же после включения тока число свободных ионов в кварце остается тем же, но их скорости становятся прямо пропорциональными приложенной разности потенциалов. В начальный момент (0,5 сек.) закон Ома остается еще справедливым, ионы постепенно подводятся к электродам. Через 3 секунды достигается состояние насыщения. В кварце ток насыщения наблюдается при приближении к напряженности поля от 10 000 до 50 000 В/см [50]. Влияние поля, по мнению А. Иоффе, определяет не электропроводность, а диэлектрические свойства кристаллов. Кристаллическая сетка прочна, допускает только слабое диэлектрическое смещение ионов, а не полное их удаление и перемещение к электроду. При механических, температурных, электрических и оптических воздействиях на кристалл, ионы смещаются со своих положений равновесия как одно целое, вместе с присущим им зарядом. По отношению к постоянной действующей электрической силе, ученый предлагает их считать упруго закрепленными в тех положениях, которые по строению кристаллической сетки соответствуют минимуму их потенциальной энергии [51]. Передвижение зарядов предполагает перенос самого вещества. Академик считает, что кроме переноса зарядов, образующих ток, аналогичные явления могут вызываться и вращением заряженных диполей. Если в данном веществе преобладает число молекул с такими свойствами, то поворот этих молекул представляет явление, аналогичное току. При этом повороте положительные заряды смещаются на одну сторону, все отрицательные – на противоположную. Разделение зарядов происходит так, словно при непосредственном переносе их сквозь диэлектрик [52]. Два явления одинаковые по своим внешним проявлениям, но разные по своей физической природе, представляют движение зарядов (ток).

Важной характеристикой свойств вещества, находящегося в недрах Земли, является удельная электропроводность горной породы. Она меняется в значительном интервале: от 103 до 10–7 (Ом⋅м)–1 и зависит от минерального состава, фазового состояния, пористости, температуры, давления, насыщенности трещинами и влагой. До середины XX века основные сведения о распределении электропроводности в Земле были получены по данным электроразведочных работ и бурения. Глубина скважин к тому времени не превышала 3–5 км, а данные электроразведки с искусственными источниками позволяли исследовать строение коры не более чем на 2–3 км. Рождение глубинной геоэлектрики произошло в 50–е годы, когда была высказана идея о возможности применения естественного электромагнитного поля внешнего происхождения для исследования электропроводности Земли. Создается оно главным образом токовыми системами, расположенными в ионосфере и магнитосфере Земли. Естественное электромагнитное поле планеты существует в широком интервале периодов (10–4 – 106 с).

Переменное магнитное поле индуцирует в Земле электрические токи. Эти токи получили название теллурических, а сам метод, основанный на использовании естественного электромагнитного поля, – название «магнитотеллурический». В основе предложенного метода лежит упрощенная модель естественного электромагнитного поля. Предполагается, что первичное поле, возбуждаемое внешними источниками, однородно на поверхности горизонтально однородной Земли. В этом случае отношение взаимно перпендикулярных горизонтальных компонент электрического и магнитного полей, измеренных на поверхности Земли, будет зависеть только от периода вариации и распределения проводимости по глубине. Это отношение, названное импедансом Z, может быть вычислено по любой паре ортогональных компонент, то есть

Z = Ex/Hy = – Ey/Hx.

Чем больше период вариаций, тем глубже проникает поле внутрь Земли. Изменение импеданса с ростом периода отражает изменение удельного сопротивления с глубиной. На практике следят за изменением кажущегося удельного сопротивления ρк, которое вычисляется по формуле [53]:

ρк = |Z|2/ωμ,

ω = 2π/Т,

где μ = 4π⋅10–7 – магнитная проницаемость вакуума, Генри/м; ω – частота вариации поля, 1/с; T – период вариации в секундах, Z – в Ом, ρк – Ом⋅м. Значения ρк только в предельных случаях близки к истинному значению удельного сопротивления. При очень малых значениях периода, когда поле не проникает в нижележащий слой, значение ρк равно удельному сопротивлению первого слоя. Регистрируя вариации естественного электромагнитного поля в широком интервале периодов, можно построить зависимость кажущегося удельного сопротивления от периода. Зависимость ρк от периода называется кривой зондирования. Для среды, электропроводность которой меняется только по вертикали, рассчитать поведение кривой зондирования будет проще. Трудно рассчитывать поведение кривых зондирования в случае, когда электропроводность меняется дополнительно и по горизонтали.

13. Теория и практика беспроводной передачи энергии

Изобретатель Г. Маркони в декабре 1901 года осуществил передачу радиосигнала на большой длине волны через Атлантический океан. Оказалось, волны большой длины способны лучше огибать земные препятствия, чем коротковолновые. Кеннеди и Хевисайд обратили внимание в 1902 г. на идею, высказанную еще в 1878 г. Б. Стюартом, о наличии проводимости верхних слоев атмосферы [54]. В ходе исследований токов высокого напряжения и экспериментов по беспроводной передаче энергии, Н. Тесла наблюдал, как совершенно случайно создавались шаровые молнии. Он не раз видел, как они взрывались, уничтожали приборы в лаборатории и сотрясали высокую мачту. Ученый понимал, какая огромная энергия сконцентрирована в созданном искусственно, светящемся «огненном шаре». «Разрушительная волна, сопровождающая разрыв огненного шара, − говорил Тесла, − обладает невероятной силой». Он изучал появление шаровых молний и приписывал феномен «взаимодействию двух частот – случайная высокочастотная волна налагалась на низкую частоту, создавая свободное колебание главного контура» [55. С. 299].

Однажды Н. Тесла осенила идея: электрические возмущения могут передаваться по участкам земли путем заземления только одного полюса источника энергии, а электрические токи могут передавать энергию в систему через естественную среду. Имея высокочастотное устройство по созданию электромагнитных импульсов высокого напряжения, аппарат по созданию ионов, передатчик электромагнитных колебаний и, поднятую высоко, антенну большого радиуса кривизны для аккумулирования заряда в атмосфере, можно образовать колебательный контур в электрическом поле высокого напряжения. Создавая напряжение между искусственной плазмой в атмосфере, привязанной к силовой линии и поверхностью Земли, можно их привести в движение. Действием разности потенциалов в миллионы вольт и односторонне направленными импульсами тока, Тесла вызвал движение заряженных частиц в атмосфере и земной коре. До того времени, пока положительный полюс (антенна) и точка заземления отрицательного полюса генератора располагались не столь удаленно, токами утечки создавались зоны пробоя. При больших разрядных токах, разрывалась электрическая цепь. В районе, близлежащем к лаборатории, создавались вибрации в грунте. Но если судить по высказываниям Тесла [56], он не до конца понимал, что молния на расстоянии 10 км и вибрации, которые едва не разрушили лабораторию, были созданы его устройствами при экспериментах.

С 1901–1902 гг. при финансовой поддержке Дж. П. Моргана, Тесла приобрел земельный участок на Лонг-Айленде и построил лабораторию Уорденклифф в шестидесяти пяти милях от Нью—Йорка. С помощью башни Тесла намеревался устроить передачу электроэнергии без проводов в любую точку земного шара. Заявление Н. Тесла о передачи энергии на большие расстояния без проводов поначалу заинтересовывало инвесторов в приобретении акций компании. Финансирование прекратилось, когда Морган узнал, что вместо развития электрического освещения на новых принципах, изобретатель планирует заниматься исследованиями беспроводной передачи энергии. Последние деньги от него были получены в середине 1902 года. На купол средств уже не было. Из—за дефицита в средствах, ученому пришлось продать имеющиеся участки земли. На вырученные средства он возвел над башней медный плоский купол диаметром 68 футов. Высота у сооружения достигала 187 футов [55. С. 345]. В законченном виде эта конструкция имела башню, высотой 57 метров, и стальную шахту, уходящую вглубь земли на 37 метров с разветвленной сетью трубопроводов. В 1903 г. в счет погашения долгов из лаборатории была вывезена часть оборудования. Но это не спасло его от дальнейших материальных затруднений. В дальнейшем проект не нашел путь продвижения к уровню промышленного применения и лишился финансовой поддержки. Идея Н. Тесла по передаче энергии через естественную среду осталась невостребованной деловыми людьми. Коммерческая перспектива беспроводной передачи большого количества энергии через естественную среду не открылась и по истечении 120 лет, после первых экспериментов Н. Тесла.

В книгах, посвященных разработкам сербского ученого, не говорится о месте, дате и проведении эксперимента, связанного с применением ионизированных частиц. Можно предположить, что данный случай Тесла изложил в письме к Кэтрин Джонсон: «Признаюсь, я был разочарован, когда впервые провел испытания в этой области. Они не принесли практических результатов. Один раз я использовал от 8000000 до 12000000 вольт. В качестве источника ионизирующего излучения была взята мощная арка, направленная в небо. Я пытался связать ток высокого напряжения и верхний слой атмосферы, потому что моим излюбленным планом было освещение океана по ночам» [55. С. 598]. Как пишут исследователи творчества Тесла, он свернул все работы по переброске энергии, после ночи, когда в ходе эксперимента вызвал огонь в небе над Нью-Йорком и над обширным пространством Атлантического океана. Он покинул лабораторию без очевидного на то основания, оставив на месте все, что там было. Он никогда более не переступил порог Уордерклиффа, ни разу не посетил это место и никогда не появлялся в этом районе. Биографы не указывают причину, вызвавшую столь резкую смену направления в научной деятельности гражданина США. Значительный период научной деятельности (с 1903 по 1909 годы) вообще выпал из биографии ученого. Исторический интерес представляет то, чем Тесла занимался последнее время, когда покинул лабораторию. Ушел ли он из перспективной (по тому времени) сферы, прекратив научные изыскания без видимого на то основания? Вывод о том, что в 1903 г. Тесла прекратил эксперименты по передаче энергии без проводов из лаборатории Уорденклиф был бы поспешным. Думаем, что дата эксперимента (15 июня 1903 г.) была указана неверно.

ГЭЦ состоит из совокупности твердых, жидких и газовых сред, объединенных непрерывностью электрического тока с высокочастотным генератором – источником электродвижущих сил. Проблема существования стационарного состояния ГЭЦ сводится к задаче обеспечения баланса между токами, исходящими от источника формирования ГЭЦ, и возвратными токами. По нашему представлению, созданная искусственно глобальная электрическая цепь – это распределенный токовый контур, образованный земной корой, верхними слоями океанов и искусственными ионными зарядами, поступающими (поступившими) на силовую линию поля Земли, который «замыкается» через проводящую атмосферу. Таким образом, ГЭЦ объединяет в единую систему токопроводящие слои океанов, земной коры и атмосферы, возмущенных электромагнитными колебаниями.

Основные параметры ионосферы – концентрация электрических зарядов, ионный состав, температура – меняются с высотой. Нижняя граница ионосферы располагается на высоте 50–60 км от поверхности Земли, верхняя – на уровне порядка 1000 км. Если силовая линия и ионные заряды, рассредоточенные вокруг нее, проходит через ионосферу, которая достаточно велика, то одноименные заряды из ионосферы отталкиваются, а противоположной полярности – притягиваются. Искусственное плазменное образование растет как снежный ком.

Вырабатывая плазму и направляя ее во внешнее электрическое поле, хаотичное тепловое движение зарядов преобразуется в направленный ток. Заряды получают соответствующие ускорения: положительные – параллельные направлению поля, отрицательные – встречные ему. При критическом приближении положительно заряженной поверхности плазмоида к отрицательно заряженной поверхности Земли, в воздухе образуются затравочные электроны, предшествующие электрическому пробою. Они могут рождаться от действия естественных причин, например: ионизации воздуха, космических лучей, фоновой радиации и так далее. Процесс создания затравочных электронов в атмосферном воздухе может быть связан с электростатическим притяжением между положительным зарядами плазменной структуры и отрицательным зарядом Земли. Особый случай представляют собой газы с частицами, способными разрушать отрицательные ионы и освобождать электроны. Например, выработка озона, предшествующая пробойной стадии, или повышенное его содержание в атмосфере, может существенно уменьшать силу поля для пробоя воздушного промежутка [57]. Заряды сближаются до тех пор, пока не произойдет пробой воздушного промежутка и взрывное соединение ионов противоположной полярности, после чего заряды взаимно нейтрализуются.

Первые эксперименты по беспроводной передаче энергии Н. Тесла выполнил со станции в Колорадо—Спрингс (1899–1900 гг.), где мощность передатчика составляла 150 кВт. Повышающий трансформатор производил 12 миллионов вольт с частотой 100 тысяч колебаний в секунду. Разряды достигали 20 метров в длину. Вспышки вокруг наружной антенны были видны на расстоянии 10 миль. Над чем так плодотворно трудился Тесла в это время, говорят полученные им патенты.

Патент № 405859. Метод передачи электрической энергии. Выдан: 25.06.1889.

Патент № 514168. Средства генерирования электрических токов. Выдан: 06.02.1894.

Патент № 568176. Аппарат для производства электрических токов высокой частоты и потенциала. Выдан: 22.09.1896.

Патент № 568177. Аппарат для производства озона. Выдан: 22.09.1896.

Патент № 568178. Метод регулирования аппарата для производства токов высокой частоты. Выдан: 22.09.1896.

Патент № 568180. Аппарат для производства электрических токов высокой частоты. Выдан: 22.09.1896.

Патент № 645576. Система передачи электрической энергии. Выдан: 20.03.1900 г.

Патент № 649621. Аппарат для передачи электрической энергии. Выдан: 15.05.1900.

Патент № 685012. Средства увеличения интенсивности электрических колебаний. Выдан: 22.10.1901.

Патент № 685953. Метод усиления интенсивности и использования эффектов, передаваемых через естественные среды. Выдан: 05.11.1901.

Патент № 685955. Аппарат для использования эффектов, передаваемых на расстояние через естественные среды, приемным устройством. Выдан: 05.11.1901.

Патент № 685957. Аппарат для использования лучистой энергии. Выдан: 05.11.1901.

Даты регистрации изобретений показывают не только высокую продуктивность, но и скорость продвижения Н. Тесла на пути к созданию масштабных плазменных образований. Идея состояла в том, чтобы сделать воздушное пространство проводящей средой и с помощью соответствующих технических средств передавать токи высокого напряжения по силовой линии в атмосфере. Когда изобретателю предложили работать в Колорадо-Спрингс, ему в известной степени благоволила фортуна. Благоприятные геофизические условия местности (высота 2000 м над уровнем моря и частые грозы) – способствовали достижению цели экспериментов. Главное открытие, которое принесло ему, по словам Н. Тесла, «полное удовлетворение», было сделано в 1899 году. Он проводил испытания генератора мощностью в 150 киловатт. Полученный результат показался ему невероятным. При определенных условиях ток приобретал способность проходить сквозь весь земной шар, достигать противолежащей точки, и возвращаться к исходной точке, при этом сила тока не уменьшалась. Ученый утверждает, что с помощью должным образом настроенной аппаратуры на передающих и принимающих станциях можно перемещать энергию в практически неограниченных количествах через землю на любое расстояние, с коэффициентом полезного действия, достигающим 99,5 %. Ток проникает глубоко внутрь Земли. Воздействие на приемные устройства, носит такой характер, как если бы весь поток локализовался на земной оси. Средняя поверхностная скорость составляет «около 471200 километров в секунду, что на пятьдесят семь процентов больше, чем скорость так называемых радиоволн, и эти волны, если таковые существуют, должны распространяться со скоростью света» [58]. По мнению Н. Тесла, ток от передатчика проходит через земной шар. На старте волна имеет теоретически беспредельно большую скорость, которая начинает снижаться сначала очень быстро, а затем с меньшей интенсивностью, до тех пор, пока расстояние не составит около шести тысяч миль, после чего она продолжает двигаться со скоростью света. С этого момента она опять увеличивает скорость, сначала медленно, затем все быстрее, достигая противолежащей точки со скоростью, приближающейся к бесконечно большой величине. Тесла заявил: «К концу 1898 систематические исследования, проводившиеся много лет с целью усовершенствования метода передачи электрической энергии через естественную среду, привели меня к пониманию трех важных потребностей; первая – разработать передатчик огромной энергии; вторая – усовершенствовать способы индивидуализирования и изолирования передаваемой энергии; и третья – выяснить законы распространения токов через землю и атмосферу» [59]. Попутно заметим, что закономерностей распространения токов в земле и атмосфере им не опубликованы. В конце XIX и начале XX века Н. Тесла интенсивно трудился над решением задачи передачи электрической энергии на большие расстояния без проводов. Начало изменения климата приходится на окончание ХIХ века, что совпадает с экспериментами американского ученого, сербского происхождения, по переброске энергии по глобальной цепи, используя естественные среды. Об этом убедительно говорят изобретения, зарегистрированные патентным ведомством Соединенных Штатов Америки. Остановимся на тех, без которых невозможно создать и заставить ионизированные заряды путешествовать по проводящим ток средам.

Важной вехой в создании глобальной электрической цепи было изобретение изобретение устройства для передачи электрической энергии [60]. Оно включало в себя трансформатор с приспособлениями, возбуждающими электрические колебания в первичной и вторичной обмотке. Основное назначение устройства – получение тока очень высокого потенциала. Автор изобретения в описании отмечает, что устройство, расположенное на одном конце цепи, используется как передатчик. В цепь первичной обмотки трансформатора подключен источник тока. Один вывод вторичной обмотки заземлен. Другой вывод вторичной обмотки подсоединен к высоко поднятому шару большой площади и обеспечивал передачу импульсов тока в атмосферу. При работе источник тока генерирует быстро пульсирующие токи в обмотке первичной цепи. Во вторичной обмотке возникают индукционные токи гораздо более высокого потенциала.

Проводимость земной коры и атмосферы – свойство, на котором основана передача электрической энергии. Естественные среды служат для передачи напряженности поля и колебаний тока от одной точки к другой, до принимающей катушки, или проводника, предназначенного для приема в удаленной точке колебаний исходящих от передатчика (такова трактовка Н. Теслы). Основная цель создания устройства – получение тока с очень высоким потенциалом. Использование первичного тока значительной частоты, облегчает решение задачи.

Ученый-новатор обнаружил, что электрические импульсы, сообщаемые земле, распространяются по ней во всех направлениях и достигают удаленных точек; атмосферный воздух, являющийся изолятором для токов от обычного генератора, становится проводником под влиянием токов или импульсов огромной электродвижущей силы. Метод был характеризован им следующим образом [61]: «… в одной системе потенциал точки или участка земли варьируется за счет прерывистых или переменных электрических импульсов через один контакт подходящего источника электрических возмущений, другой контакт которого для усиления эффекта соединен с изолированным элементом с предпочтительно обширной поверхностью, расположенным на возвышении… Благодаря таким средствам становится возможным создание через близлежащие атмосферные слои многих желаемых эффектов на сколь угодно большие расстояния». Метод основан на том, что атмосферный воздух, являющийся хорошим изолятором для токов обычного генератора, становится проводником под влиянием токов, или импульсов огромной ЭДС.

Тесла запатентовал метод заряда аккумулирующего устройства энергией от независимого источника [62]. Разряд и использование энергии управляется посредством эффектов или возмущений, передаваемых через естественную среду. Тесла считает, что лучший способ реализации изобретения – накапливать электроэнергию в конденсаторе от независимого источника и последующий разряд энергии, накопленной в конденсаторе, на первичную цепь. Отличительный признак данного изобретения – накопление энергии происходит в течение произвольного промежутка времени и она не извлекается из энергии возмущений, передаваемых через естественную среду. Тесла считает изобретение эффективным в сочетании с методами и аппаратом для приведения в действие удаленных приемных устройств посредством электрических возмущений, производимых самими передатчиками и передаваемых к таким приемным устройствам через естественную среду.

В описании и формуле изобретения, для непосвященного в работу ГЭЦ, возникают вопросы к автору: в каких средах предполагалось аккумулирование энергии произвольное время (где нт конденсатора); каким образом ученый предполагал ее безопасно разрядить в удаленной точке (на противоположной стороне земного шара), на территории другого государства? Мы думаем, что имея негативный опыт последствий на своей лаборатории, Тесла предполагал последствия, т. к. на концевом участке линии происходит тысячекратное увеличение энергии, по сравнению с закаченной в цепь. Если в этой личности и был гений, то он был подвластный злодею. Жителям России не следует восхищаться и петь дифирамбы тому, кто направил на страну мощный энергетический заряд в 1908 году, а его последователи продолжают начатое им до сих пор.

Исследуя воздействия разрядов молнии на электрические характеристики Земли, Тесла обнаружил, что сообщение земной коре мощных электрических колебаний вызывает их распространение до отдаленных точек планеты, откуда они отражаются. Интерференция отраженных волн с волнами исходящими от генерирующего устройства, вызывает стоячие волны. Причину такого поведения он объяснил характером электрических волн, имеющих узловые точки. Результирующую стоячую волну можно медленно перемещать перпендикулярно оси земного шара, распространением в земле двух и более электромагнитных колебаний различной длины волны. При генерации двух типов возмущений, в системе устанавливались свободные колебания соответствующих частот. Две волны поступают через заземляющую пластину в землю, а две – передаются через антенну в атмосферу. Устройство высотой восемь футов было первым изобретением, позволившим ученому эффективно создать два независимых колебания (или две настроенные цепи) одновременно и получать напряжение в миллионы вольт [55. С. 277].

Наблюдениями за максимумом и минимумом волн, Тесла установил, что их длина варьируется приблизительно от 25 до 70 километров. Тесла считал, что наименьшая оптимальная частота генерируемых колебаний – шесть герц. В этом случае на заземляющей пластине или близ нее будет только один узел, и этот эффект будет усиливаться с расстоянием и достигнет наибольшей величины в области, диаметрально противоположной передатчику. При более медленных колебаниях Земля будет действовать как емкость, и вариации потенциала будут более равномерно распределены по всей ее поверхности. Для достижения состояния резонанса требуется соблюдать условие: волна или серия волн, независимо от частоты, не должны прерываться в течение 0,08484 секунды. С целью возбуждения таких волн, ученый изобрел генератор стоячих волн, которым создает их в самых удаленных частях планеты от места возбуждения. Полученные результаты и другие соображения, позволили Тесла прийти к заключению: волны такого типа способны распространяться во всех направлениях земного шара, их длина может различаться в еще большем диапазоне; абсолютные пределы устанавливаются физическими свойствами Земли [63]. Тесла утверждает: передача энергии, описанная в изобретении [63], позволяет вызвать движение электричества в тысячи раз превышающее исходное, переданное первичной обмоткой трансформатора.

Тесла изобрел простой, недорогой и эффективный аппарат для получения озона или таких газов, которые получаются под действием высоковольтных электрических разрядов [64]. В описании изобретения указано его преимущество: «Использование устройства для генерации озона, позволяет производить его в каких угодно количествах, без труда и небольших затратах». Озон – говорит Тесла – стал побочным продуктом высокочастотных колебаний высокой напряженности. Действие и эффекты устройства применимы к другим и очень важным видам использования (Тесла их не называет). Ключевое изобретение для создания объемной плазмы. Создание искусственной плазмы, состоящей из ионов атома кислорода и других аэрозольных частиц – рабочий процесс, возникающей при опытах беспроводной передачи энергии. С помощью накачки ионов в атмосферу, подведение высокого потенциала к генерирующему озон устройству, Тесла инициируют работу ГЭЦ вдоль силовых линий поля Земли. Передача импульсов тока происходит через естественные среды.

К 1908 г. у Н. Тесла имелись устройства: для генерации полярных молекул озона; передатчик электромагнитных колебаний, создающий электромагнитные импульсы низкой и высокой частоты; высокоподнятая антенна большого радиуса кривизны для выделения ионных зарядов высокого напряжения. Отрицательный полюс заземляли на глубине ~ 30 м. Односторонне направленными высокочастотными импульсами тока, при высокой разности потенциалов, Тесла создал глобальную электрическую цепь и привел заряженные частицы в движение. Односторонне направленными высокочастотными импульсами тока, возбуждались электромагнитные колебания и токи между корой земли и плазмой, распределенной вдоль силовой линии. Ученый объяснил работу схемы: одни заряды – продвигались в земной коре; другие – по кривой линии вдоль меридиана в атмосфере.

Трансформатор создает напряженность электрического поля в десятки миллионов Вольт. Генератор поддерживает ток, проходящий через плазму, в состоянии термического неравновесия [34. С. 398]. Разрядные токи высоких частот, проходят по всем средам от земной коры до силовой линии. В ГЭЦ надземную антенну и слои в земле, проводящие ток, стремятся разнести на более далекое расстояние. Чем больше разница высотных отметок между точками заземления и сферической антенной, тем меньше будут токи утечки (потери) в ГЭЦ, созданной искусственно.

Действие электрического поля ориентирует ионные структуры в пространстве. Объемное плазменное тело, растянувшееся на сотни километров, перемещается в атмосфере Земли. Токи из ионных зарядов движутся по силовым линиям поля к месту концентрации отрицательных зарядов. В атмосфере возникают дополнительные токи, направленные к плазмоиду и от него к поверхности Земли. Высокочастотными колебаниями электромагнитного поля, плазма компактно удерживается вокруг силовых линий ГЭЦ, проходящими в атмосфере. Движение ионных зарядов внутри тела плазмоида создает электрический ток. Вокруг каждой линии электрического тока возникает магнитное поле. Суперпозиция микрополей плазмоида создает локальное магнитное поле. Объемное плазменное тело, с заключенными в нем электрическими зарядами, образует локальное электрическое поле.

Плазменная структура, под действием разницы потенциалов более десятка миллионов Вольт, движется по силовой линии (положительными зарядами вперед) от генерирующего устройства, к центру отрицательных зарядов на противоположной стороне полушария. Плазмоид, с «прилипшими» к нему в атмосфере ионами противоположной полярности, проходит над магнитным полюсом своего полушария, после чего начинает снижаться к земной поверхности. По мере удаления ионных зарядов от поверхности Земли и положительного полюса напряженности (сферической антенны), токи утечек снижаются. Энергия полей (электрического и электромагнитного) затрачивается на преодоление электрического сопротивления среды, придания плазменным зарядам кинетической энергии, продвижение плазменной структуры по цепи, предотвращение нейтрализации ионных зарядов и разрушения плазмы. Условия для усиления токовых утечек и ионизации слабо проводящей среды возникают у места генерации ионных зарядов и на противоположной стороне полушария, где заканчивается силовая линия. Тогда плазменное образование приближается к центру смещенных в коре земли отрицательных зарядов. Действие поля Земли и искусственных электромагнитных излучений на плазму, расположенную в разреженной атмосфере, трудно обнаружить.

Изобретения, принятые к рассмотрению в США с конца 90–х годов, показывают милитаристскую нацеленность разработок. Создание плазменных слоев в атмосфере, управляемых наземными устройствами – приоритетное направление исследовательских тем Министерства обороны США. Несколько примеров.

Бернарду Дж. Истлунду выдан патент 11.08.1987 г. на «Способ и устройство для изменения области земной атмосферы, ионосферы и/или магнитосферы» [65].

Патент Бернарда Дж. Истлунда и Саймона Рамо: «Способ и устройство для создания искусственной электронной циклотронной области нагрева плазмы». Выдан: 8.12.1987 г. [66].

Патент «Искусственное ионосферное зеркало, состоящее из плазменного слоя, который может быть наклонено» зарегистрирован 20.08.1991 г. на имя Питера Керт [67].

Патент «Система передачи энергии». Выдан 26.11.1991 г. Питеру Керт и Джеймсу Т. Ча [68].

Заявку на изобретение «Возгорание космических частиц в искусственно ионизированной плазменной системе в атмосфере» Бернард Дж. Истлунд подал 8 декабря 1995 г., патент зарегистрирован 11 октября 2007 г. [69].

Работы по созданию плазменных зарядов ведутся более 100 лет. Если судить по патентам, выданным изобретателям, ученые США успешно выполняли заказы по предложенной им тематике, совершенствуя технологию, разработанную Н. Тесла. Должны заметить, что в описании изобретений внедрена дезориентирующая информация, которая не подтверждена опытами и экспериментами. С момента внедрения устройств, изобретенных Н. Тесла, и экспериментальной проверки возможности переброске энергии через атмосферу, в мире стали происходить аномальные явления и глобальные температурные изменения. Плазменную структуру, созданную вокруг силовых линий поля Земли, перемещают в противоположную точку планеты. Закачка ионных зарядов в атмосферу всегда происходит по одной схеме. Если процесс не прерывать, то он с течением времени заканчивается мощными взрывами плазменных зарядов. В случае структурирования плазмы на силовой линии пустыми промежутками, энергия разрушения будет существенно ниже. Отрицательные заряды, образовавшиеся в поверхностном слое земной коры, под действием высокой разности потенциалов движутся к положительным зарядам плазмоида. С поверхности плазменного тела вырывает положительные заряды. Они направляются к поверхности земли. В атмосфере и земной коре возникает электрический ток, который нагревает среды.

Стационарный комплекс устройств, генерирующих и направляющих ионные заряды по силовой линии поля Земли, сконструированный на участке местности несет в себе недостаток – он привязан к одной географической точке. Несмотря на суточные, годовые и сезонные вариации магнитного поля, данное обстоятельство ограничивает сектор отклонения плазменных зарядов на конечном участке траектории. Тесла рассматривал увеличение расстояния по вертикали между двумя полюсами устройства, генерирующего высокое напряжение. Высота поднятия требуется главным образом для снижения потерь от утечек тока и исключения не желательных случаев пробоя. Если поднимать шар-антенну над поверхностью земли, то установку легко обнаружить и идентифицировать.

Полюса установки легко развести на расстояние до десятка километров, без использования высоко поднятой антенны. Американцы расширили зону применения ГЭЦ. Этапом модернизации существующих устройств, стало использование проводящих свойств земной коры, расположенной под водой. По ранней рекомендации Н. Тесла создали на базе плавучего судна (буровой платформы SBX-1) аналог наземного комплекса. Одновременно устранили технический недостаток, разведя на десяток километров потенциалы разных полярностей, и придали мобильность установке. Большинство ученых в мире восприняли бурение скважин, как новое направление США в геологии по исследованию морского дна. Другие страны подхватили идею, кажущуюся интересной, и приступили к проведению аналогичных буровых работ. Подражатели действовали по русской пословице «Куда конь с копытом, туда и рак с клешней».

Для успешного бурения скважин в породах морского дна, нужна устойчивая конструкция. Японское судно «Чикуи Мару» оснащено оборудованием, которое позволяет бурить скважины в морском дне на глубину до 10 км [70]. Но у судна нет площадей для монтажа и установки дополнительного специализированного оборудования. Поэтому американцы использовали специальную конструкцию и назвали ее радаром. До коренных пород можно быстро добраться, расходуя минимальное количество энергии на процесс глубинного бурения. Достаточно опустить кабель, соединенный с отрицательным полюсом энергетической установки, по буровой колонне в скважину, пробуренную в океанском дне. Отрицательный полюс высоковольтного провода замыкается на кристаллические породы в дне моря. Обеспечивают хороший контакт проводника с кристаллическими породами на глубине ~ 10000-25000 футов от поверхности воды. Напряженность электрического поля отрицательной полярности распространяется в горных породах. Положительный полюс провода подводят к сферической антенне. Достигается эффект подобный подъему антенны на такую же высоту от поверхности земли, но все элементы спрятаны под сферой и буровой платформой.

На начальном этапе купол скрывает буровую установку. Через внутреннюю полость бурового оборудования опускают кабель к дну скважины. Соляным раствором, проводящим ток, заполняют дно скважины. Добиваются надежного контакта провода отрицательного полюса с горными породами. Поверх проводящего раствора, скважину заполняют затвердевающим изоляционным материалом. Затем демонтируют буровую оснастку. Специальные устройства создают большую разность потенциалов, вырабатывают ионные заряды и направляют их по силовым линиям поля Земли от поверхности антенны. Пучок силовых линий, в виде арки, окруженный ионами, протягивается над отрицательно заряженной поверхностью высокого потенциала с одной стороны полушария на другую (как правило, с Запада на Восток). Наведенный центр отрицательных зарядов, удален от плоскости магнитного экватора на то же расстояние, что и заземленный полюс высоковольтного провода. Таким образом, два отрицательных центра располагаются в одной плоскости параллельной магнитному экватору. Создается неоднородное электрическое поле между отрицательной поверхностью, пролегающей в земле, и положительным зарядом в атмосфере.

Скрывая истинное назначение модернизированной буровой платформы, ее называют радиолокационной установкой морского базирования, предназначенной для применения в качестве станции обнаружения целей. Внимание иностранных государств акцентируют на заявленной функции платформы. С помощью установки типа SBX-1, создают напряженность в миллионы Вольт и высокой частоты импульсы тока. Электромагнитные колебания пронизывают среды от толщ земной коры до плазменных структур, рассредоточенных вокруг силовых линий в атмосфере. Поддерживая рабочие параметры ГЭЦ, организаторы невидимого террора нарушают естественное состояние геосфер Земли, попадающих в зону циркуляции токов. В локальной области пространства изменяется конфигурация электрического и магнитного полей.

Когда ставится задача направить заряды в заданный район другой страны, то исполнители определяют точку, соответствующую прохождению магнитной силовой линии через объект разрушения. Американские военные руководствуются своими исследованиями (в том числе благодаря договору по открытому небу) и находят координаты окончания силовых линий и перебрасывают установку SBX-1 в район, соответствующий их началу. Мобильный комплекс позволяет выполнять генерацию плазменных структур из географических точек водных акваторий, достигающих глубин 9-10 км. Под действием разницы потенциалов заряженные частицы переносятся в атмосфере по силовым линиям поля, в направлении противоположной полярности, сосредоточенной в определенном районе Земли.

В патенте «Устройство для передачи электроэнергии» [71] Тесла описывает беспроволочный передатчик. Он включал проводящую поверхность большого радиуса кривизны (антенну), для аккумулирования заряда высокого напряжения над приподнятым проводником. Поверхность могла быть составленной из отдельных элементов, которые, независимо от их собственного радиуса кривизны, были расположены вблизи друг друга так, чтобы внешняя идеальная поверхность, охватывающая их, имела большой радиус. В изобретении «Система передачи электрической энергии» [72], Тесла указывал, что с терминалов, поднятых на 30–35 тысяч футов над уровнем моря, электромагнитными импульсами напряжением 15–20 миллионов вольт, можно передавать большое количество энергии на расстояние, измеряемые сотнями и тысячами миль. В первоначальную формулировку позже он внес важную поправку: «… коренное различие между применяемой сейчас трансляционной системой и системой, которую я надеюсь ввести, состоит в том, что в настоящее время передатчик излучает энергию во всех направлениях, тогда как в разработанной мной системе в любую точку Земли передается только силовое поле, а энергия как таковая перемещается по определенной, заранее обусловленной траектории. Поразительный факт: энергия перемещается в основном по кривой, то есть по кратчайшему пути между двумя точками на поверхности земного шара и достигает приемного устройства без малейшего рассеивания, так что приемник улавливает несравнимо большее количество [энергии], чем это возможно при использовании излучений» [58].

В 1901 году Н. Тесла начал строительство башни около пролива Лонг-Айленд. Для создания положительного потенциала высокого напряжения, конструкция включала беспроволочный передатчик с приподнятой в атмосферу антенной. Функцию антенны высокого потенциала выполняла конструкция, с большим радиусом кривизны и проводящей поверхностью, похожей на шляпку гриба диаметром 68 футов (20,7 м). Она генерировала в атмосферу ионы. Создавали электрическое поле высокой напряженности между земной корой и сферической антенной. Действуя на ионные заряды посредством высокочастотных токовых импульсов и низкочастотных электромагнитных колебаний высокого напряжения, искусственную плазму закачивали на силовые линии. В глобальной цепи возникал ток.

Плавающая платформа SBX-1 оснащена несколькими малыми антеннами связи и основной РЛС, защищенной куполом диаметром 31 м. Количество элементов в активной фазированной антенной решетке (АФАР) – 69 тысяч. Стенки купола основного «радара» изготовлены из гибкого материала. Заявлена средняя излучаемая мощность 133 кВт. Она не имеет ничего общего с «нагревным» ионосферным стендом HAARP, направленным полем которого искривляют траекторию движения зарядов по силовым линиям поля Земли. Сферическая конструкция не может быть радаром, техническое снаряжение – не более чем бутафория, направленная на дезинформацию противника. Если подходить не предвзято, то в исполнении современного изделия (SBX-1) и башни Н. Тесла можно увидеть конструктивное подобие. Бурение скважины с платформы позволяет опустить через внутреннюю полость бурового оборудования кабель, установить контакт проводника с горными породами и разнести полюса установки на расстояние до десятка километров, не тратя много энергии на непосредственное бурение пород.

Известная держава накачивает атмосферу ионными зарядами. Поставив задачу направить заряд в цель на территории чужой страны, военные США определяют точки соответствующую началу и окончанию силовой линии. Вычисляют координаты и устанавливают платформу SBX-1 над точкой, в начале силовой линии. Выполнив подготовительные операции, запускают в работу ГЭЦ. С помощью устройств SBX-1 создает переменную напряженность между зарядами, разместившимися вокруг силовых линий в атмосфере и в горных породах земной коры. Связи атомов в молекулах веществ, расположенных в земной коре и атмосфере, ослабляются. Кислотные, щелочные, соляные и водные растворы разлагаются на ионы. Под действием электрического и электромагнитного полей возникают токи, происходит нагрев расплавов, диссоциация растворов, ионизация газов. Движение ионов происходит в мантии, в земной коре, пресной и морской воде. Газы поднимаются из недр и подводных глубин к земной и водной поверхности. В атмосфере, где работает ГЭЦ, растет концентрация ионизированных газов и электризованных аэрозольных частиц. Токи утечек в земной коре и в атмосфере следуют по пути наименьшего сопротивления. Плотность тока растет по мере приближения плазмоида к земной поверхности.

Высокочастотными колебаниями разогревают среды, расположенные внутри контура между токами, текущими в земле и атмосфере. Токи изменяют физическое состояние среды и конфигурацию магнитного поля в окрестности протяженных линий. В земле происходит перенос ионной массы вещества, нарушается естественное равновесие в средах, разрушаются дождевые облака, озон, запускается механизм засухи. В недрах увеличивается температура. Создаются благоприятные условия для таяния ледников и вечной мерзлоты. Идет интенсивное развития карстовых процессов под землей, выделение газов из болот, засоление почв. Повышается кислотность воды в водоемах, реках и озерах. Интенсивная ионизация изменяет свойства и химический состав воды. Нарушается баланс в экосистеме, складывавшийся веками. Так хищные и циничные политики, изображающие себя борцами за экологию, десятками лет подрывают хрупкое равновесие, сложившееся в природе. Негативные эффекты наблюдаются не только в реках и внутренних водоемах России, Норвегии, Швеции, но и в морях и океанах, попавших под действие ГЭЦ.

Исследователи творчества Тесла пишут, что ученый свернул все работы по переброске энергии, после ночи, когда в ходе эксперимента вызвал огонь в небе над Нью-Йорком и над обширным пространством Атлантического океана. Покинув лабораторию без очевидного на то основания, оставив на месте все, что там было, он никогда более не переступил порог лаборатории Уорденклифф. В период 1909–1922 гг. Н. Тесла публикует свои статьи в газетах и журналах, патентует редкие открытия в области механики. Он регистрирует патенты исключительно в сфере машиностроения. Биографам Тесла не известна причина, которая вызвала резкую смену направления научной деятельности. Заметим, что было одно исключение – патент US № 1119732 «Устройство для передачи электроэнергии» (выдан 01.12.1914). Трудно представить, чтобы ученый, не занятый исследовательской работой 6 лет, смог предложить конструкцию и сформулировал описание изобретения из области передачи энергии на расстояние, без постановки и проведения экспериментов.

Весной 1908 г. отмечались необычные половодья рек и сильнейший снегопад (в конце мая) в Швейцарии, а над Атлантическим океаном наблюдалась густая пыль. В печатных изданиях того времени сообщилось о нескольких землетрясениях, загадочных явлениях и чрезвычайных происшествиях, вызванных неизвестными причинами. Взрыв над районом Подкаменной Тунгуски, произошедший более века тому назад, сопровождался магнитной бурей, которая продолжалась более 4 часов. Один из эффектов глобальной катастрофы был зарегистрирован приборами актинометрической станции в Калифорнии (США). Было зафиксировано резкое помутнение атмосферы и значительное снижение солнечной радиации, через две недели после взрыва 30 июня 1908 года. Советский ученый Фесенков В.Г. обнаружил аномальное снижение прозрачности атмосферы. Опираясь на цифровой материал, зарегистрированный обсерваторией Маунт—Вильсон, он показал, что во второй половине июля и в августе 1908 г. в одной из географических точек американского континента было зарегистрировано заметное снижение прозрачности атмосферы [73]. Оно сравнимо с тем, что происходит после крупных вулканических извержений.

В то же время на магнитном меридиане обсерватории Маунт-Уэзерс (φ = 39,063° с. ш., λ = 77,889° з. д.) в июне и июле 1908 г. одновременно с поляризацией росла и прозрачность атмосферы. Это выглядит не вполне логично. Но все встает на свои места, если допустить, что в плоскости меридиана, расположенного близко к обсерватории Маунт-Вильсон (φ = 34,222° с. ш., λ = 118,06° з. д.), генерировались токи высокой частоты и с помощью устройства, разработанного Н. Тесла, в атмосферу запускались ионные газы. Заряды, скопившиеся на протяженном участке вокруг силовых линий, поляризовали среду и притягивали к себе аэрозольные частицы от промышленных выбросов из окружающих областей пространства. Заряды плазменной структуры работают как электрофильтр, притягивая наэлектризованные тела из ближайших окрестностей. В этом мы видим причину снижения прозрачности атмосферы, зарегистрированной в обсерватории Маунт-Вильсон. Повышенная поляризация и прозрачность атмосферы в географической точке обсерватории Маунт-Уэзерс, доказывает присутствие масштабого плазмоида и ГЭЦ, работающей на другом меридиане.

В 1909 г. в обсерватории Маунт-Вильсон понижение степени поляризации не отмечено, следовательно, и прозрачности атмосферы. Этому есть одно разумное объяснение: после 1908 г. установка продолжала работать, а Тесла не прекращал экспериментов. В противном случае поляризация и прозрачность атмосферы вернулись бы к показателям 1907 г. Деятельность изобретателя в период, следующий за 1908 г., требует дополнительного изучения. Тесла должен был эффективно трудиться и немало зарабатывать, чтобы избежать судебной тяжбы с кредиторами и безбедно жить до старости.



Поделиться книгой:

На главную
Назад