Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Тунгусский и Челябинский метеориты. Научные мифологемы - Михаил Стефанович Галисламов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Не все однозначно с наблюдаемой траекторией полета. По видеосъемкам были рассчитаны азимуты движения "болида" в атмосфере. Для городов, близлежащих к эпицентру, получены следующие результаты [72]: Троицк – 337,5°, Еманжелинск – 302,8°, Миасс – 114,4°, Снежинск – 174,3°, Каменск–Уральский – 200,2°. Разброс азимутов полета наблюдается по съемкам с различных улиц г. Челябинска: Поворот М5 на Малково – 94,5°, улица Первой Пятилетки – 226,1°, улица Бейвеля – 211,4°. Время пролета Челябинского "болида" через определенные географические пункты – известно. Если в соседней стране (РК) наблюдали пролет того же тела, которое взорвалось в 03:20:33 UTC неподалеку от г. Челябинск, то его скорость была гораздо меньше той, которую ученые рассчитали. Расстояние между городами Костанай и Челябинск – 259 км. Возможно, что расстояние до первой точки наблюдения светящегося тела было в два раза больше. Отрезок пути длиной L = 518 км, метеорит пролетел за 333 секунды, при средней скорости v = 1,56 км/с. При скорости "болида" 15 км/с он должен был подлетать к месту вспышки за 35 секунд (в 03:15:35 UTC). В течение следующих 5 минут он должен был удалиться от г. Челябинск на 4470 км. Расхождение будет еще больше, если скорость тела оценивать > 15 км/с.

Сила тяжести создает ускорение свободного падения. Частный случай равномерно ускоренного движения – свободное падение. Предположим, что падение метеорита началось при начальной вертикальной скорости v = 0 км/с и продолжалось в течение t = 333 с. Для этого движения справедливы формулы:

h = gt²/2 = [9.81(333)²]/2 = 548900 м,

где g = 9,81 м/с² – ускорение свободного падения; t = 333 с – время, в течение которого наблюдалось падение; h – высота, с которой должно было падать тело, м. Отталкиваясь от времени наблюдения метеороида в рассмотренных географических пунктах, мы не можем получить высотного взрыва и скорости "болида", заявленной учеными. За время, которое видели "болид", под действием сил гравитации он мог упасть на поверхность Земли с высоты 549 км. Если начать падать с высоты h = 100 км, с начальной скоростью равной нулю, то через 143 секунды тело достигает поверхности Земли. Но у метеорита была горизонтальная и вертикальная составляющая скорости. Если свидетели наблюдали полет и высотный взрыв одного и того же "болида", то падать он должен был с другой высоты и взорваться вдалеке от известной точки.

Легенду о проникновении метеорита в атмосферу Земли, разрушает снимок [72, рис. 2а]. Съемка выполнялась с поверхности земли. Фотография запечатлела инверсионный след и момент вспышки взорвавшегося тела. Видеозапись сделана возле г. Чебаркуль на трассе M5. На опубликованном снимке зафиксирована фаза полета "болида" во время взрывного разрушения. На снимке показано стрелкой направление движение метеороида. Впереди по линии траектории, под углом ~ 55° в направлении от поверхности земли, движется вверх голова светящегося тела. Метеороид должен был двигаться по нисходящей траектории. Если бы тело приближалось к поверхности Земли, то движение головной части на снимке должно быть направленным вниз, т. е. иметь отрицательный угол наклон к плоскости горизонта. На фотографиях, выполненных Е. Андреевым и М. Ахметвалеевым [50, 72], видим в небе пролетающий "болид". На снимках запечатлен момент, когда впереди яркая вспышка, а за нею тянется след. Из точки съемки, удаленной от траектории "болида", зафиксирована голова светящегося тела, движущаяся вверх по траектории. Фотография М. Ахметвалеева [50, рис 6] была сделана со штатива у реки Миасс (в одном километре от пруда Коммунаров) в г. Челябинске, т. е. на удалении ~ 30 км от проекции траектории светящегося тела. Тело, изображенное на фотографии, движется по траектории вверх от поверхности земли. По показаниям очевидцев и Тунгусский "метеорит " летел по различающимся траекториям. По истечении многих лет, основываясь на свидетельских показаниях, можно построить лишь приближенную траекторию полета. По результатам своих исследований ученые определили разнообразные направления траектории на метеорит. Азимуты составляли: 104° – Зоткин И.Т. (вывал леса); 96,4° – Емельянов Ю.М. и др. (прирост деревьев); 95° – Львов Ю.А., Васильев Н.В. (лучистый ожог); 99° – Фаст В.Г., Баранник А.П., Разин С.А. (вывал леса); 95° – Воробьев В.А., Демин Д.В. (лучистый ожог) [2. С. 183]. Средний азимут направления на метеорит, рассчитанный по этим данным равен А = 97,9°. Магнитное склонение для точки взрыва, определенное на 1908 г. составляло: d = + 5,996°. Траектория Тунгусского "болида" проходила вдоль силовой линии и под углом α1 ≈ 93° к плоскости географического меридиана. В работе [73], ссылаясь на проведенные исследования, утверждают: область вывала леса «может быть разделена на четыре квадранта, симметричных относительно линии, проходящей с востоко–юго–востока на запад–северо–запад через эпицентр в направлении 99° к востоку от географического меридиана». Указанное направление согласуется со средним азимутом, определенным физическими методами.

Утром 15.02.2013 г. с направления А = 103° к Челябинску приближался "болид". Траектория полета проходила южнее города примерно в 30 км [28]. Азимут магнитного склонения в точке взрыва составлял d = + 13,320°. Если учитывать склонение, то угол между силовой линией, по которой проходила траекторией светящегося тела, и плоскостью меридиана составлял α2 ≈ 89,7°. В обоих случаях (1908 и 2013 гг.) "болиды" летели практически перпендикулярно к плоскости меридиана (α1 ≈ 93°, α2 ≈ 89,7°). Можно предположить – это был кратчайший путь к той точке пространства, где размещался центр притяжения положительных зарядов протяженной объемной плазмы. В свидетельских показаниях ученые часто сталкиваются с расхождением в наблюдаемом азимуте полета видимых светящихся тел. Перечисленные факты можно трактовать в пользу наблюдения нескольких малых плазменных тел, движущихся из разных мест и под различными углами, в направлении к масштабному, невидимому плазменному телу, расположенному вокруг силовых линий.

Факты убеждают в том, что в происшествии участвуют несколько малых плазменных тел. Они наблюдались под разными углами наклона и направлениям. Не исключаем, что в их числе и из ионосферы. Поведение "метеороида" характерно для явлений, связанных с полетом и взрывом электрофорных тел. Чем меньше расстояние от тела малого плазмоида до масштабного, тем больше сила электростатического притяжения полярных сторон, увеличивается скорость. Трудно рассуждать об определенной скорости полета, в случае наблюдения разных "болидов" в России и в соседнем государстве (РК). Была построена световая кривая излучения, которая показывает множественность вспышек болида [56]. Характеристики полета космического объекта, установленные учеными, не достаточно корректны, чтобы отнести их к одному метеороиду (метеориту). Очевидцы наблюдали траектории в разных направлениях. Для более объективных выводов требуется дополнительное исследование пространственно-временных характеристик видимых светящихся тел.

6. Аналогия в природных явлениях Тунгусского и Челябинского "болидов"

За последние 100 лет два крупных по размеру тела, пролетавшие над территорией России, взорвались в атмосфере и произвели многочисленные геофизические эффекты и разрушения. В ученом сообществе думают, за редким исключением, что 30.06.1908 и 15.02.2013 гг. в земную атмосферу проникли крупные небесные тела. Для противодействия космическим угрозам, при Совете РАН создана экспертная группа по космосу. В состав группы вошли эксперты – представители РАН, Роскосмоса, МОН РФ, МЧС, Росатома, МО РФ и других ведомств и организаций. Главная задача группы – выработка концепции противодействия космическим угрозам. Возможный вариант решения проблемы, они видят в развитии существующих и создании новых средств обнаружения опасных небесных тел в околоземном космическом пространстве. Ученые наметили первоочередные работы, необходимые для обеспечения безопасности России от космических угроз с учетом независимости от иностранных информационных средств. К таким работам относятся [74]:

1. Создание новых и развитие существующих средств обнаружения опасных небесных тел в околоземном космическом пространстве, в том числе:

1.1. Создание новых оптических наземных средств обнаружения опасных небесных тел.

1.2. Развитие существующих средств мониторинга космического пространства в оптическом диапазоне.

1.3. Развитие радиолокационных комплексов наблюдения космического мусора.

1.4. Создание астрономического космического комплекса обнаружения и определения параметров движения опасных для Земли астероидов и комет, а также космического мусора.

Обозначена необходимость в инструментах обнаружения и предупреждения на подступах к планете, т. е. вынесенных в космическое пространство. Наиболее серьезными космическими угрозами считаются космический мусор, астероидно-кометная опасность (АКО), космическая погода [75]. Космическая погода представляет угрозу серьезных потерь, прежде всего в сфере производственной деятельности (в энергетике, связи и др.). Глобальной угрозой признается возможность столкновения Земли с малыми телами Солнечной системы (астероидами и кометами), с причинением большого ущерба населению планеты, вплоть до уничтожения цивилизации. Ученые утверждают, что опасные небесные тела, приходящие с неба в дневное время, невозможно обнаружить с помощью любых наземных средств. В вопросах АКО практического решения требует:

– проблема обнаружения (выявления) всех опасных тел;

– проблема определения степени угрозы (оценка рисков) и принятия решений;

– проблема противодействия и уменьшения ущерба.

С астрономической точки зрения случаи входа астероидов в атмосферу Земли являются редкими событиями. Академик Шустов Б.М. убежден, что событие 15.02.2013 г. по астрономическим меркам было рядовым. Небесное тело, взорвавшееся над Челябинском, не относилось к опасным, но привлекло внимание всего мира. Модель, лежащая в основе концепции, соответствует стандартной парадигме, которая не находит подтверждения в инструментальных наблюдениях. Астрофизики не могут точно сказать, откуда прибыли космические тела, взорвавшиеся в 1908 и 2013 гг. Поэтому вопросы к ней остаются. В профильном правительственном ведомстве США (NASA) в 2016 г. создано Отдельное подразделение по защите Земли от угроз из космоса – Отдел по координации планетарной обороны (Planetary Defense Coordination Office) [76]. Цель создания – дезинформация, подача ложного сигнала, чтобы заинтересовать и направить развитие космической науки у стратегического противника в тупик. Международная космическая политика подчиняется не глобальным интересам человечества, а интересам отдельных государств. Российским академическим кругам не следует питать иллюзий в отношении соблюдения заокеанским оппонентом Конвенции ООН по космическому праву.

По одним геофизическим проявлениям сложно давать заключение о природе взрывов. Однако в материалах исследований двух неординарных событий прослеживается подобие в происходивших процессах и их последствиях. Следует заметить, что изменения в магнитном поле Земли до момента взрыва ученые объясняют движением крупных космических тел в магнитосфере и плазмосфере Земли. При этом возможна не только генерация вариаций в компонентах магнитного поля, но и возбуждение геомагнитных пульсаций. Следующие эффекты, зарегистрированные в происшествиях, имеют отношение к событиям 30.06.1908 г. и 15.02.2013 г.:

– полет "болида" по наклонной траектории;

– взрыв в атмосфере;

– воздушная волна, обогнувшая земной шар;

– зоны разрушений на земной поверхности, протянувшиеся на сотни квадратных километров;

– расположение длинной оси области повала деревьев и избыточного давления перпендикулярно траектории тела;

– мощное световое излучение в момент взрыва;

– слабые сейсмические волны;

– локальное проявление магнитного возмущения;

– оптические аномалии в атмосфере, наблюдавшиеся в Европе (1908 г.) и Восточной Сибири (2013 г.).

Московский астроном, руководитель 24 тунгусских экспедиций В.А. Ромейко убежден: «Челябинский метеорит стал почти полной копией Тунгусского» [77]. Взрыв и комплекс атмосферных явлений у двух событий по описанию совпадают. Мощность взрыва, произошедшего утром 15.02.2013 г., соответствует большой концентрации энергии в единице массы "болида". При взрыве Тунгусского тела концентрация энергии в одном кубическом сантиметре превышала на два порядка концентрацию обычных взрывчатых веществ [78]. Вещество, которое представляют как фрагменты распавшегося тела (Челябинского метеороида), не способно разложится и выделить энергию в том количестве, которую наблюдали. Энергия, заключенная в одном кубическом сантиметре вещества Тунгусского метеорита, превышала в 80–140 раз удельную энергию тринитротолуола. Концентрация энергий в единице объема при взрывах "болидов" в 1908 и 2013 гг., были не равновеликими, но близкого порядка.

В работе [79] был проведен анализ магнитограмм Иркутской обсерватории для Тунгусского и Челябинского болидов. Автор обращает внимание на поведение компоненты (Н), которая наблюдалась в обсерватории «Иркутск». За 70–80 мин до взрыва Челябинского метеороида (аналогично случаю с Тунгусским телом) наблюдалось изменение (уменьшение) магнитного поля. Высказано предположение, что вторжение Тунгусского и Челябинского болидов вызывает идентичные вариации в изменениях магнитного поля Земли до взрыва в атмосфере. Попытки найти заметные следы метеоритного вещества на месте взрыва Тунгусского метеорита были тщетны. В стволах деревьев диаметром 40-60 см, переживших катастрофу 1908 года, члены московской экспедиции обнаружили в 1996 г. овальные дыры и круглые углубления. При взрыве «ядра небольшой кометы» на высоте примерно около 14 км над поверхностью Земли ничего подобного не могло произойти [68]. Авторы объясняют их «следами шаровых молний». В настоящее время у науки нет достаточных доказательств, из какого вещества были взорвавшиеся в 1908 и 2013 гг. тела. Те, кто показывает фрагменты разрушенного Челябинского тела – ошибается, осколки таковыми не являются.

Более качественная и полная информация о явлениях и процессах, протекавших накануне события, в день происшествия (15.02.2013 г.) и после него, зарегистрирована и собрана по Челябинскому метеориту. Установив происхождение, природу тела и механизм взрыва одного "суперболида", можно с высокой степенью вероятности утверждать, что развитие другого события (1908 г.) происходило по аналогичному сценарию. В дальнейшем исследовании двух явлений будем исходить из данного постулата.

7. Физические свойства Земли

7.1. Физика атмосферы

Атмосфера это внешняя газовая оболочка Земли, которая начинается у ее поверхности и простирается приблизительно на 3000 км в космическое пространство. С высотой у атмосферы меняются: давление, плотность, температура и другие физические свойства. Атмосфера содержит следующий химический состав (по объему): азот – 78,09%, кислород – 20,95%, аргон – 0,93%, углекислый газ – 0,03%. На долю остальных газов приходятся тысячные доли процента и меньше. Химический состав воздуха до высоты 100 км существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. На высотах 100–110 км, под действием ультрафиолетовой излучения Солнца, молекулы кислорода расщепляются на атомы, появляется атомарный кислород. Выше 110-120 км кислород почти весь становится атомарным. Предполагается, что выше 400–500 км газы, составляющие атмосферу, также находятся в атомарном состоянии.

В результате температурных изменений атмосфера Земли на разных высотах имеет слоистую структуру. По температурным и физическим условиям ее делят на пять слоев. Вверх от поверхности Земли расположены: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Давление и плотность воздуха с высотой быстро уменьшаются. Основная масса атмосферы размещается в нижних слоях, прилегающих к поверхности земли. Быстрое уменьшение массы воздуха происходит на высоте выше 30 км. В слое между уровнем моря и высотами 5–6 км сосредоточена половина массы атмосферы, в слое 0–16 км – 90%, в слое 0-30 км – 99%. Вес воздуха у поверхности земли равен 1033 г/м3, на высоте 20 км он равен 43 г/м3, а на высоте 40 км лишь 4 г/м3. Высота слоя зависит от географической широты и времени года. Между слоями нет резких границ, некоторые из них частично перекрываются.

Тропосфера – нижний слой атмосферы Земли до высоты 10–15 км. Содержит около 80% массы всей атмосферы, взвешенную в атмосфере пыль и почти вся воду. Вертикальная мощность тропосферы значительно зависит от характера атмосферных процессов и достигает 16–18 км. Слой тропосферы не подвержен суточным и сезонным изменениям в экваториальной и тропической зоне. Над приполюсными и смежными областями верхняя граница тропосферы лежит на уровне 8–10 км. В средних широтах она колеблется от 8 до 16 км.

Переходный слой между тропосферой и вышележащей сферой (толщиной 1–2 км) носит название тропопаузы. Выше нее от высот 8–17 до 50–55 км простирается стратосфера. Начиная с высоты около 25 км, температура с высотой растет, достигая на высоте ~ 50 км (у границ слоя) максимальных положительных значений (+30 °С). Повышение температуры в этой сфере вызвано наличием озона. Под действием ультрафиолетовой радиации Солнца, молекулы кислорода расщепляются на атомы, появляется атомарный кислород. В процессе диссоциации молекулярного кислорода, ультрафиолетовое излучение поглощается. В слое возникают реакции, приводящие к образованию молекул озона (О3) О2 + О → О3. Слой озона занимает часть стратосферы на высоте от 20 до 25 км (в тропических и умеренных широтах), в полярных – 15–20 км. Наличие в атмосфере озона меняет ее свойства. Излучение с длиной волны короче 290 нм полностью поглощается слоем озона, находящимся на высотах от 18 до 50 км (максимум плотности на высоте около 25 км). Общая толщина слоя озона, приведенного к нормальным условиям, т. е. к давлению 760 мм ртутного столба и температуре 0 °С, и составляет около 3 мм. Озон защищает живую природу от действия ультрафиолетовых и других коротковолновых излучений. Он играет большую роль в создании режима температуры и воздушных течений в стратосфере. Температура воздуха в высоких широтах, в слое 10–40 км, зимой и летом резко различается. Зимой она опускается до –60 °С, –75 °С. Летом, вблизи тропопаузы, температура увеличивается до –45 °С. Выше тропопаузы температура растет. На высоте 30–35 км достигает –20 °С, что обусловлено прогреванием воздуха от слоя озона. В стратосфере не происходит процессов образования облаков, не выпадают осадки. Здесь очень мало водяного пара. Ранее считали: газы в стратосфере разделены по слоям, в соответствии со своими удельными весами. Предполагалось, что при равенстве поглощенной и отраженной солнечной радиации, образуется равновесие температур в стратосфере и перемешивания воздуха не происходит. Данные, полученные с помощью радиозондов и метеорологических ракет, показали: температура изменяется в больших пределах, происходят интенсивная циркуляция воздуха ветром.

Количество озона неодинаково над различными частями Земли. В 1984 г. в слое над Антарктидой спектроскопическими методами была обнаружена «озоновая дыра» [80]. Спутниковые измерения позволили "оконтурить" озоновую дыру и следить за ее изменениями. Депрессия озона, или озоновая «дыра», развивается в Антарктике ежегодно в весенний период. Разрушение озона в области, ограниченной стратосферным полярным вихрем, демонстрирует значительные межгодовые флуктуации, интенсивность которых сравнима с величиной многолетнего отрицательного тренда содержания озона, наблюдающегося с начала 80-х годов прошлого века [81]. Озоновая «дыра» над Антарктикой с 2014 по 2019 гг. уменьшилась с 20,9 до 9,3 млн. км2. По мнению ученых, межгодовые флуктуации, являясь следствием причин динамического характера, не позволяют однозначно определить многолетний тренд общего содержания озона.

Над стратосферой, примерно до высоты 80 км, лежит слой мезосферы. Наблюдениями с помощью метеорологических ракет установлено, что общее повышение температуры, наблюдающееся в стратосфере, заканчивается на высотах 50-55 км. Выше этого слоя температура понижается и у верхней границы мезосферы достигает –90 °С. Понижение температуры в мезосфере с высотой на различных широтах и в течение года происходит неодинаково. Снижение температуры в низких широтах происходит более медленно, чем в высоких. Средний для мезосферы вертикальный градиент температуры равен 0,23–0,31 °С на 100 м. Температура в мезосфере опускается до –138 °С. В верхней мезосфере (в слое мезопаузы) понижение температуры с высотой прекращается. Как показали новейшие исследования в высоких широтах, температура на верхней границе мезосферы летом на несколько десятков градусов ниже, чем зимой [82].

Атмосфера, лежащая выше 80 км, состоит главным образом из азота и кислорода. Выше мезосферы, на высоте от 80 до 800 км над поверхностью Земли, расположена термосфера, для которой характерно повышение температуры с высотой. По данным, полученным преимущественно с помощью ракет, установлено, что в термосфере уже на уровне 150 км температура воздуха достигает 220–240 °С, а на уровне 200 км более 500 °С. Выше температура продолжает повышаться и на уровне 500–600 км превышает 1500 °С. С помощью искусственных спутников Земли, было установлено: в течение суток температура в верхней термосфере значительно колеблется и достигает около 2000 °С. Температура газа – мера средней скорости движения молекул. В высоких слоях, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, очень редки. Чем вызван подъем температуры в высоких слоях атмосферы, ученые не знают. На высотах выше 110–120 км кислород почти весь становится атомарным. В сумерки, или перед восходом солнца, при ясной погоде, здесь наблюдаются тонкие облака серебристо-синего цвета, уходящие за горизонт. Природа серебристых облаков слабо изучена.

Давление и плотность воздуха с высотой быстро уменьшаются. Воздух на высоте 300–400 км и выше – разреженный, в течение суток его плотность сильно изменяется. Исследования показывают, что изменение плотности согласуется с положением Солнца. Наибольшая плотность воздуха – около полудня, наименьшая – ночью. Объясняют тем, что верхние слои атмосферы реагируют на изменение электромагнитного излучения Солнца. Предполагается, что газы, составляющие атмосферу выше 400–500 км, находятся в атомарном состоянии. Поверхность, разделяющая термосферу от экзосферы, испытывает колебания в зависимости от изменения солнечной активности и других факторов. Экзосфера (сфера рассеяния) – самая верхняя часть атмосферы, расположена выше 800 км. Она мало изучена. По данным наблюдений температура в экзосфере с высотой возрастает предположительно до 2000°. Частицы в экзосфере, двигаясь с огромными скоростями, почти не встречаются друг с другом.

7.2. Ионосферные слои в атмосфере

Большой вклад в понимание физики атмосферного электричества в начале XX века внес Вильсон (C.T.R. Wilson). Он обнаружил наличие ионов в атмосфере и показал, что Земля заряжена отрицательно, а космические лучи вызывают разрядку планеты. Согласно теории, атомы и молекулы, потерявшие один или несколько электронов, становятся положительно заряженными, а свободный электрон может присоединиться снова к нейтральному атому или молекуле, передавая им свой отрицательный заряд. Положительно и отрицательно заряженные атомы и молекулы называются ионами. Ионы и свободные электроны делают газ проводником электричества.

Ионосфера – область атмосферы выше 50 км, содержит заряженные частицы. Особенностью атмосферы выше 60-80 км является ее ионизация, т. е. процесс образования огромного количества электрически заряженных частиц – ионов. Высокие слои атмосферы менее всего изучены. Ранее предполагали, что верхняя граница атмосферы находится на высоте около 1000 км. Представление ученых о ионосфере изменилось, после запуска искусственных спутников Земли. Результаты исследований показали, что околоземное пространство заполнено заряженными частицами. На основе торможения искусственных спутников Земли было установлено, что на высотах 700–800 км в 1 см3 содержится до 160 тысяч положительных ионов атомного кислорода и азота.

В исследовании высоких слоев атмосферы и околоземного пространства используются данные, получаемые со спутников серии «Космос» и космических станций. Применение ракет, а позже спутников, позволило непосредственно измерить ионный состав и другие физические характеристики ионосферы на всех высотах. Установлено, что концентрация электронов (nе) в слоях распределена по высоте неравномерно: имеются области, где она достигает максимума. Таких слоев, расположенных на разных высотах, в ионосфере несколько, они не имеют резко выраженных границ. На высоте 60–470 км имеется сплошной массив ионизованного газа с отдельными неоднородностями. Ранее предполагалось, что в ионосфере имеются четыре основных ионизованных слоя: слой D (на высоте 50 км), на высотах 110–120 км находится слой Е ~ 100 км, слой F1 (120–200 км) и слой F2 (250–400 км). Средняя концентрация ионизованных частиц (электронов/см3): слой D – имеет концентрацию 104, слой Е – 105, слой F1 – 5⋅105, слой F2 – 106 [83]. Приказом № 857-ст Федерального агентства по техническому регулированию и метрологии от 1 октября 2019 г. С 1 января 2020 г. в качестве национального стандарта Российской Федерации межгосударственный стандарт «Ионосфера Земли» [84]. Стандарт уточнил местоположение слоев:

Область F: часть ионосферы, расположенная над поверхностью Земли на высоте более 140 км.

Область Е: часть ионосферы, расположенная приблизительно между 90 и 140 км над поверхностью Земли.

Область D: часть ионосферы, расположенная приблизительно между 50 и 90 км над поверхностью Земли.

Слой F2: верхний из двух ионизированных слоев, на которые может распадаться область F.

Слой F1: нижний ионизированный слой из двух слоев, на которые может распадаться область F.

Слой ES (спорадический): узкий, нерегулярно образующийся слой на высотах области Е.

Максимуму ионизации соответствует верхний слой (F2). Положение ионосферных слоев и концентрация ионов в них все время меняются. Все зависит от солнечной активности. В ионосфере наблюдаются полярные сияния, а также резкие колебания магнитного поля – ионосферные магнитные бури. Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°. От степени ионизации зависит электропроводность атмосферы. Проводимость ионосферы в 1012 раз больше, чем у земной поверхности. В ионосфере различают две части: простирающуюся от мезосферы до высот порядка 1000 км и лежащую над нею внешнюю часть. На высоте около 2000-3000 км газы, постепенно разрежаясь, переходят в мировое пространство. С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Радиационные зоны опасны для людей, совершающих полеты на космических кораблях.

7.3. Электрическое поле Земли

Земля заряжена отрицательно, ее полный электрический заряд равен 6⋅105 Кл [10. С. 82]. Полярность Земли, в отсутствие грозовых облаков, всегда отрицательна, в тоже время верхний слой атмосферы (ионосфера) заряжен относительно Земли положительно. Электрическое поле в любой его точке характеризуется значением напряженности (Е), созданной всеми электрическими зарядами, которые имеются в Земле и в атмосфере. Электрическое поле во многом определяется электрическими свойствами веществ, слагающих геосферы Земли, и состоит из двух частей: поля земной коры (электротеллурическое поле) и электрического поля атмосферы. Между различными точками атмосферы, находящимися на разных высотах, имеется разность потенциалов. Наблюдения над электрическим полем вблизи земной поверхности показывают его изменчивость от различных факторов – влажности, осадков, облачности и т. п. Опыт показывает, что атмосфера заряжена положительно. Отклонение электрометра тем больше, чем выше точка над поверхностью земли. Напряженность поля вблизи поверхности Земли (в различное время года и для различных регионов) величина практически постоянная Еz = 130 В/м [9. С. 381]. На высоте 1 км напряженность земного поля падает до 40 В/м. На высоте 10 км поле Еz не превышает нескольких вольт на метр. На высоте 50 км и больше напряженность едва заметна. Большая часть падения потенциала приходится на малые высоты. Полная разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет ~ 400000 В [85. С.175]. Быстрое убывание Е с высотой объясняют тем, что объемные заряды, сосредоточенные преимущественно в нижних слоях атмосферы, уменьшают напряженность поля электрического заряда Земли. Электрическое поле Земли меняется в течение суток. Ночью поле больше его дневного значения. Напряженность атмосферного электрического поля (АЭП) уменьшается летом и возрастает зимой.

7.4. Электрические свойства горных пород

Твердую оболочку Земли (земную кору) слагают различные типы горных пород, состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Земная кора больше чем на 98% сложена из элементов О, Si, Al, Fe, Mg, Ca, Na, К. При этом свыше 80% составляют кислород, кремний и алюминий. В его центре находится ион кремния Si+4 , а в вершинах – ионы кислорода О–2, которые создают четырехвалентный радикал [SiO4]–4. Частичная замена ионов кремния на трехвалентные ионы алюминия приводит к возникновению у такого соединения некоторого дополнительного отрицательного заряда. В земной коре минералы находятся (преимущественно) в кристаллическом состоянии, незначительная часть – в аморфном [86. С. 21]. К основным электромагнитным свойствам горных пород относится: удельное электрическое сопротивление, электрохимическая активность, диэлектрическая и магнитная проницаемости, поляризуемость.

Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Свойства кристаллических веществ обусловлены их составом. Кристалл состоит из ионов, попеременно заряженных противоположными зарядами. Электропроводность естественных кристаллов, меняется от вида к виду и зависит от примесей, заключенных в кристаллах. Кристаллический кварц является анизотропным одноосным кристаллом; плавленый кварц (стекло) – хороший диэлектрик. Многие вещества в кристаллическом состоянии, в отличии от металлов, не являются хорошими проводниками электричества. Их нельзя отнести и к диэлектрикам, т.к. они не проявляют себя хорошими изоляторами. Такие вещества, как германий, кремний, селен, различные оксиды, сульфиды и др. относят к полупроводникам, этих веществ большинство, их общая масса составляет 4/5 массы земной коры.

Исследование электропроводности кристаллов кальцита и кварца А.Ф. Иоффе начинал совместно с В.К. Рентгеном в 1904 году. В дальнейшем Иоффе установил, что прохождение электрических токов через кристаллы-изоляторы характеризуется некоторыми особенностями. Если к кристаллической пластине, с обеих сторон покрытой слоем металла, приложить постоянную разность потенциалов, то возникнет ток, спадающий со временем, величина которого иногда не приближается к конечному пределу. Если снять напряжение и подключить обе обкладки к гальванометру, то будет зафиксирован противоположно направленный ток, который постепенно ослабевает и стремится к нулю. Оказалось, что кристаллы поляризуются, величина этой поляризации может достигать многих тысяч вольт. Это явление объяснили образованием встречной поляризации. В газе стационарное состояние, соответствующее току насыщения, устанавливается в течение долей секунды, в кварце этот же процесс занимает несколько секунд. Сразу же после включения тока число свободных ионов в кварце остается тем же, но их скорости становятся прямо пропорциональными приложенной разности потенциалов. В начальный момент (0,5 сек.) закон Ома остается еще справедливым, ионы постепенно подводятся к электродам. Через 3 секунды достигается состояние насыщения. В кварце ток насыщения наблюдается при приближении к напряженности поля от 10000 до 50000 В/см [87].

Влияние поля на кристаллы, по мнению А. Иоффе, определяется не их электропроводностью, а диэлектрическими свойствами. Кристаллическая решетка прочна, допускает только слабое диэлектрическое смещение ионов, а не полное их удаление и перемещение к электроду. При механических, температурных, электрических и оптических воздействиях на кристалл, ионы смещаются со своих положений равновесия как одно целое, вместе с присущим им зарядом. По отношению к постоянной электрической силе, ученый предлагает их считать упруго закрепленными в тех положениях, которые по строению кристаллической сетки соответствуют минимуму их потенциальной энергии [88]. Передвижение зарядов предполагает перенос самого вещества. Академик считает, что кроме переноса зарядов, образующих ток, аналогичные явления могут вызываться и вращением заряженных диполей. Если в данном веществе преобладает число молекул с такими свойствами, то поворот этих молекул представляет явление, аналогичное току. Положительные заряды при этом повороте смещаются в одну сторону, отрицательные – в противоположную. Происходит разделение зарядов, как при непосредственном их переносе сквозь диэлектрик [89]. Явления, разные по своей физической природе, но одинаковые по своим внешним проявлениям, представляют собой движение зарядов (ток).

Важной характеристикой электрических свойств вещества, находящегося в недрах Земли, является удельная электропроводность горной породы. Она меняется в значительном интервале: от 103 до 10–7 (Ом⋅м)–1 и зависит от минерального состава, фазового состояния, пористости, развитости системы трещин, насыщенности влагой, температуры, давления. До середины XX века основные сведения о распределении электропроводности в Земле были получены по данным электроразведочных работ и бурения. Данные электроразведки с искусственными источниками позволяли исследовать строение коры не более чем на 2–3 км. Рождение глубинной геоэлектрики произошло в 50-е годы, когда была высказана идея о возможности применения естественного электромагнитного поля внешнего происхождения для исследования электропроводности Земли. Его создают (главным образом) токовые системы, расположенные в ионосфере и магнитосфере Земли. Метод, основанный на использовании естественного электромагнитного поля, получил название "магнитотеллурический". В основе предложенного метода лежит упрощенная модель естественного электромагнитного поля. Предполагается, что первичное поле, возбуждаемое внешними источниками, однородно на горизонтальной поверхности Земли. В этом случае отношение взаимно перпендикулярных горизонтальных компонент электрического и магнитного полей, измеренных на поверхности Земли, будет зависеть только от периода вариации и распределения проводимости по глубине [90]. Это отношение, названное импедансом Z, может быть вычислено по любой паре ортогональных компонент, то есть

Z = Ex/Hy = – Ey/Hx.

Чем больше период вариаций, тем глубже проникает поле внутрь Земли. Изменение импеданса с ростом периода отражает изменение удельного сопротивления с глубиной. Удобнее следить за изменением кажущегося удельного сопротивления (rк), которое вычисляется по формуле:

rк = |Z|2/wμ,

w = 2π/Т,

где μ = 4π⋅10–7 – магнитная проницаемость вакуума, Генри/м; w – частота вариации поля, 1/с, T – период вариации, с; Z – сопротивление, Ом.

Значения rк близки к истинному значению удельного сопротивления только в предельных случаях. При очень малых значениях периода, когда поле не проникает в нижележащий слой, значение rк равно удельному сопротивлению первого слоя. Регистрируя вариации естественного электромагнитного поля в широком интервале периодов, можно построить зависимость кажущегося удельного сопротивления от периода. Зависимость rк от периода называется кривой зондирования. Проще рассчитать поведение кривой зондирования для среды, электропроводность которой меняется только по вертикали. В случае, когда электропроводность меняется дополнительно и по горизонтали, рассчитывать поведение кривых зондирования трудно.

7.5. Поляризация диэлектрика

По величине удельного электрического сопротивления вещества подразделяют на три группы: проводники, полупроводники и диэлектрики. Диэлектриками называются вещества, не проводящие электрического тока. В них отсутствуют свободные электрические заряды. Поляризация диэлектриков – процесс образования объемного дипольного электрического момента (смещение электрических зарядов) в диэлектрике. При возбуждении электрического поля, происходит поляризация диэлектрика, что может сопровождаться появлением механических сил в нем, упругих напряжений и изменением температуры. Электрическое поле неотделимо от зарядов, являющихся его источниками, оно однозначно определяется величиной и расположением зарядов. Заряды могут нейтрализовать друг друга. Согласно теории, поле, которое они возбудили, может продолжать существовать в виде электромагнитных волн. Переменные электромагнитные поля могут существовать самостоятельно, независимо от возбудивших их электрических зарядов.

Если диэлектрик внести во внешнее электрическое поле, на его поверхностях появляются заряды. Под действием приложенного электрического поля, молекулы становятся электрическими диполями, ориентированными положительно заряженными концами в направлении электрического поля Е. Электростатическая индукция связана с тем, что в диэлектрических телах с одной стороны тела оказываются отрицательные концы диполей, а с другой – положительные. Смещение положительных и отрицательных зарядов диэлектрика в разные стороны называют электрической поляризацией. При наложении электрического поля диэлектрик становится поляризованным, дипольные моменты молекул ориентируются преимущественно в направлении поля. Согласно теории физики, заряды в диэлектрике могут смещаться из своих положений равновесия лишь на малые расстояния, порядка атомных. Поле внутри диэлектрика, создаваемое связанными зарядами, направлено против внешнего поля, создаваемого сторонними зарядами. Существуют диэлектрики, полярные молекулы которых обладают дипольными моментами в отсутствие электрического поля. Такие полярные молекулы беспорядочно ориентированы, совершают хаотические тепловые движения. Помимо электрически нейтральных молекул в диэлектрике могут существовать положительно или отрицательно заряженные ионы. Избыток ионов того или иного знака в какой-либо части диэлектрика означает наличие в этой части некомпенсированных макроскопических зарядов. Существуют диэлектрические кристаллы, построенные из ионов противоположного знака, например, NaCl. Такие кристаллы называются ионными. Избыток ионов того или иного знака в какой-либо части диэлектрика означает наличие в этой части некомпенсированных макроскопических зарядов.

Деформационная поляризация наблюдается для веществ с неполярными молекулами. Они ориентируются, образуя диполи, под действием электрического поля. В молекулах неполярных диэлектриков (Н2, N2, ССl4, углеводороды и др.) центры тяжести положительных и отрицательных зарядов в отсутствие внешнего поля совпадают, дипольный момент у молекул равен нулю. При помещении таких диэлектриков во внешнее электрическое поле происходит деформация молекулы (атома) и возникает индуцированный дипольный электрический момент молекулы, пропорциональный напряженности поля Е. При снятии внешнего поля поляризация практически исчезает. Углеводородные горючие соединения (С и Н) содержатся в земной коре в виде скоплений в пластах, они растворены в нефти (попутный газ) и подземных водах.

Вода – вещество, основной структурной единицей которого является молекула H2O, состоит из одного атома кислорода и двух атомов водорода, представляет собой диполь, содержащий положительный и отрицательный заряды. Молекулы воды в виде аэрозолей постоянно присутствуют в воздухе. Если молекулу воды, не связанную с другими молекулами, поместить в электрическое поле, то она повернется отрицательной стороной в направлении положительного потенциала электрического поля, а положительной стороной – к отрицательному потенциалу. При увеличении напряженности поля до величины достаточной для разрыва водородной связи, структура молекулы воды разрушается. В результате этого разрыва может образоваться электрон (–е) и ионы Н+, ОН–. В какой-то момент времени сила электрической связи в молекуле, комбинацией из пульсирующего и постоянного электрического поля ослабляется настолько, что сила внешнего электрического поля превосходит энергию связи. Это приводит к тому, что атомы кислорода и водорода высвобождаются как самостоятельные газы. Под воздействием электромагнитных импульсов, происходит накопление энергии в кластерной структуре воды до некоторого критического значения, затем происходит разрыв связей и лавинообразное освобождение внутренней энергии, которая может затем трансформироваться в другие виды энергии.

8. Ионизация газов, плазма

Атмосферный воздух состоит из смеси газов. Нижний слой атмосферы Земли (тропосфера) имеет следующий химический состав (по объему, в процентах): азот – 78,08, кислород – 20,95, аргон – 0,93, углекислый газ – 0,03 [83. С. 59]. На долю остальных газов приходятся уже тысячные и десятитысячные доли процента. Такой состав атмосфера имеет почти до высоты 90 км. Кроме постоянных компонентов атмосфера содержит переменные компоненты: озон и водяной пар. Атомы этих газов объединяются в прочные и устойчивые связи, образуя молекулы. Газы в нормальных условиях являются изоляторами и состоят из электрически нейтральных атомов и молекул. Атом и ион – частицы вещества микроскопических размеров и массы, являются носителями его свойств. Отличаются они зарядом. Атомы нейтральны.

Электропроводность газов возникает при их ионизации. Ионизация – это эндотермический процесс образования положительных и отрицательных зарядов (ионов) из нейтральных атомов или молекул, сопровождающийся поглощением теплоты. Ион – электрически заряженная неэлементарная частица, получаемая в процессе ионизации. Ионы бывают двух типов – с положительным и отрицательным зарядом. Образование положительных ионов происходит путем отщепления электронов от атомов и молекул. Присоединение свободного электрона к нейтральному атому (молекуле) создает отрицательный ион. Основную роль в ионизованном газе играют парные столкновения, с коротким временем действия.

При ионизации атома (молекулы) совершается работа ионизации (Аi), против сил взаимодействия между вырываемым электроном и другими частицами атома (молекулы). Работа ионизации зависит от химической природы газа и энергетического состояния электрона в атоме (молекуле). Она растет с увеличением кратности ионизации, т. е. с числом вырванных из атома электронов. Потенциалом ионизации, называется разность потенциалов, которую должен пройти электрон в ускоряющем электрическом поле для того, чтобы увеличение его энергии равнялось работе ионизации: φi = Аi/е, где е – абсолютная величина заряда электрона. Для осуществления ударной ионизации одновалентные ионы должны пройти в ускоряющем поле разность потенциалов большую, чем электроны [91. С. 390].

В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в жидкостях (в расплавах и растворах), в кристаллах и газах. Газ, большинство частиц которого имеют электрический заряд, отличается от обычного газа. Он проявляет сходство с проводниками, электролитами и полупроводниками. Газам, ионизованным до высокой степени, И. Лэнгмюр дал название «плазма». Определение было связано с представлением об ионизованном газе, в котором плотность заряженных частиц становится значимым фактором. Работы по плазме ранее широко не освещались. Информация стала доступной научной общественности с 1958 г., после конференции по мирному использованию атомной энергии.

Плазма состоит из большого числа частиц с зарядами +е и –е. В объеме одной поверхности заключено равное количество положительных и отрицательных ионов. По условию, заключенный в плазме заряд остается практически одинаковым и, в целом, нейтральным. Согласно теории, частицы газа с разноименными зарядами при встрече нейтрализуют друг друга. Это свойство является следствием внутреннего электрического поля, образованного заряженными частицами. Силы взаимодействия распространяются внутри плазмы, область которой может простираться на значительные расстояния. Плазма взаимодействует с внешними электрическими и магнитными полями [13. С. 509]. Динамические свойства плазмы разнообразны, существует много типов коллективных движений. Основную роль в ионизованном газе играют парные столкновения, с коротким временем действия. Систему заряженных частиц можно считать плазмой, т. е. материальной средой с новыми качественными свойствами при соблюдении указанного выше условия. В противном случае получается простая совокупность отдельных заряженных частиц, к которой применима электродинамика вакуума. Если плотность заряженных частиц в газе очень мала, то они взаимодействуют, в основном, с нейтральными частицами.

Вещества в плазменном состоянии, характеризуются высокой ионизацией частиц, доходящей до полной ионизации. Степень ионизации – отношение концентрации заряженных частиц к полной концентрации частиц. В зависимости от степени ионизации вещества (α) различают плазму: слабо ионизованную (α – доли процента), умеренно ионизованную (α – несколько процентов), полностью ионизованную (α – близко к 100%). Слабо ионизованная плазма в природных условиях наблюдается в ионосфере. В плазме одновременно взаимодействует множество частиц. Этим свойством плазма обязана действию кулоновских сил. Убыль заряженных частиц в плазме определенной температуры происходит за счет рекомбинации. Пополняется она за счет новых актов ионизации. Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона с электроном с превращением последнего в нейтральную молекулу (атом). Исчезновение газоразрядной плазмы, предоставленной самой себе, называется деионизацией газа. При удалении электрического поля, приложенного к плазме, противоположно заряженные частицы газа рекомбинируют, плазменное состояние у газа исчезает.

Электрические заряды, покоящиеся относительно выбранной системы отсчета, имеют вокруг себя только электрическое поле. Действие электрического поля на заряды, между которыми существует разность потенциалов, вызывает их ток. Электрическое поле и ток, проходящий через плазму, поддерживают ее в устойчивом состоянии. Электрические заряды, которые движутся в направлении вектора силы поля, не требуют затрат энергии. Вокруг движущихся зарядов образуется магнитное поле. Магнитное поле обнаруживается по его воздействию на тела и измерительные приборы. Прекращения направленного движения зарядов возможно снятием или встречным направлением поля, при котором равнодействующая двух сил равна нулю.

В зависимости от природы электрических зарядов принято различать электронную, ионную и смешанную электрическую проводимость. Электронная электропроводность характерна для металлов, рудных тел и полупроводников. Ионная электропроводность свойственна – природным водам, водным растворам, электролитам, а также газам. Поле Земли ориентирует ионные структуры в атмосфере. Разность потенциалов вызывает движение зарядов в пространстве между ними. В окружающей среде постоянно присутствуют электромагнитные поля естественного и искусственного происхождения. Основными естественными электромагнитными полями являются атмосферное электричество, постоянное магнитное поле Земли и геомагнитные вариации. В течение последних десятилетий уровень интенсивности электромагнитного окружения значительно возрос. Основные составляющие электромагнитного загрязнения лежат в крайне низкочастотном (КНЧ: 10-300 Гц) и ультранизкочастотном (УНЧ: 0-10 Гц) диапазонах.

Поле объемного электрического заряда зависит от величины, протяженности, формы, количества, типа зарядов и прочих факторов. Между заряженными частицами плазмы действуют электростатические силы. Физика плазмы относится к проблеме многих тел, основное взаимодействие – электромагнитное, хорошо изучено. По условию, плазма нейтральна и состоит из большого числа частиц с зарядами +е и –е. Плазма отличается от скопления заряженных частиц минимальной плотностью, определяемой из условия L >> D, где L – линейный размер системы заряженных частиц. Характерное для плазмы расстояние – D, называемое дебаевским радиусом экранирования определяется выражением [13. С. 505]:

D = (kT/4πe2ne,)0,5

где T – температура электронов, градус; k = 1,380662.10–23 Дж/К – коэффициент, переводящий единицы энергии в градусы; e – заряд электрона, ne – количество заряженных частиц в плазме (дебаевское число). В объеме одной поверхности заключено равное количество положительных и отрицательных ионов. Если к плазменному объекту приложить внешнее поле, то оно проникает на глубину порядка дебаевского радиуса. Плазма называется газовой, если число частиц одного сорта велико. В термодинамическом отношении она рассматривается как идеальный газ.

Для соблюдения нейтральности плазмы необходимо, чтобы ее характерные размеры (L) были много больше дебаевского радиуса. Для разных объектов его величина изменяется в зависимости от температуры и числа ионов. Газ, у которого дебаевский радиус мал, в сравнении с линейными размерами занимаемой им области, характеризуется высокой степенью ионизации. В теории Дебая – Хюккеля ион полностью ионизированного газа принимается за точечный заряд. При этом газ считают электрически нейтральным как целое. Если через плазму в форме столба пропустить сильный электрический ток вдоль оси, то магнитное поле этого тока, имеет форму как у прямолинейного проводника. Электродинамические силы сжимают плазму. Сжатие плазмы происходить до тех пор, пока давление, вызванное электродинамическими силами, не уравновесится давлением частиц самой плазмы [92].

Плотность и температура заряженных частиц являются важными параметрами характеристики плазмы. У разных тел, в зависимости от температуры и числа ионов, изменяется величина D. У ионосферной плазмы D ≈ 10–1 см, для плазмы газового разряда D ≈ 10–3 ÷ 10–4 см, для плазмы твердых тел D ≈ 10–5 ÷ 10–7 см. Дебаевский радиус очень малая величина и соотношение L > D выполняется с большим запасом. Воздух и вода различаются по плотности только в 103 раз, а плотности воды и вещества белых карликов различаются в 105 раз. Диапазон плотностей плазмы – огромный. Различные типы газовой плазмы во всем диапазоне плотностей, различающихся на 28 порядков (от 106 до 1034 м –3) [93. С. 23]. Внешняя часть земной атмосферы представляет собой плазменную оболочку из слабо ионизованной плазмы. Когда плотность заряженных частиц в газе очень мала, а среда представляет собой не полностью ионизованный газ, то ионы взаимодействуют, в основном, с нейтральными частицами.

Тела обычно находятся в твердом, жидком и газообразном состояниях. Плазму часто называют "четвертым состоянием вещества". Коллективное взаимодействие частиц, связанное с кулоновскими силами, позволяет рассматривать плазму как особое агрегатное состояние вещества. Ее отличает: сильное взаимодействие с внешними магнитными и электрическими полями, обусловленное высокой электропроводностью плазмы; взаимодействие частиц плазмы посредством поля; наличие упругих свойств, приводящих к возможности возбуждения и распространения в плазме разнообразных колебаний и волн. Свойство большой электропроводности приближает по этому признаку плазму к проводникам. За счет актов ионизации плазменные тела растут, притягивая к себе новые заряды из окружающего пространства. В плазме также протекают процессы противоположного направления. При определенной температуре за счет рекомбинации происходит убыль заряженных частиц. Рекомбинация – это процесс нейтрализации при встрече разноименных ионов или воссоединение иона с электроном с превращением последнего в нейтральную молекулу (атом). Исчезновение ионов, по существу, является процессом, противоположным возникновению. Возникновение и исчезновение плазмы в природе – это постоянный процесс, который происходит как днем, так и ночью.

Систематическое изучение электрических токов и разрядов в газах было начато лишь в конце 19 века. Была установлена природа газовых разрядов в различных условиях. Однако, ввиду сложности этих явлений, точной количественной теории их не существует до настоящего времени. Ионизация газа, возникающая в результате вырывания электронов из молекул и атомов самого газа, называется объемной ионизацией, так как источники ионов здесь распределены в объеме, занимаемом газом. Помимо объемной ионизации существует поверхностная ионизация. При таком виде ионы, или электроны, поступают в газ со стенок сосуда, в котором он заключен, или с поверхности тел, вносимых в газ. Например, источником электронов могут служить раскаленные тела (термоэлектронная эмиссия) или поверхность металла, освещаемая ультрафиолетовым излучением (фотоэлектрический эффект).

Пламя огня и разрядный канал молнии образуют плазму в природных условиях. Искусственная плазма создается в газоразрядных лампах, при газовых разрядах. Заряженные частицы, входящие в ее состав, непрерывно находятся в ускоряющем электрическом поле. Средняя кинетическая энергия зарядов в газоразрядной плазме значительно превышает среднюю энергию нейтральных частиц плазмы. В плазме отсутствует термодинамическое равновесие. Если поддерживать неравновесное состояние, то в плазме будут проходить токи. После удаления внешнего поля, приложенного к плазме, заряды в газе исчезают, атомы и молекулы переходят в нейтральное состояние.

9. Глобальная электрическая цепь

9.1 Искусственные плазменные образования в атмосфере

В магнитосфере Земли, за пределами ионосферы, расположены плазмосфера и радиационные пояса. Магнитосфера Земли – область околоземного пространства, занятая геомагнитным полем [94]. Плазмосферой называется внутренняя область магнитосферы, по форме напоминающая тор, содержащая холодную плазму, с энергий менее 1–2 эВ и плотностью частиц 100–1000 см–3 [95]. Когда число частиц одного сорта в плазме велико, ее называют газовой и рассматривают в термодинамическом отношении как идеальный газ. Действие полей Земли и искусственных электромагнитных излучений на плазму, расположенную в разреженной атмосфере, трудно обнаружить. Ученые Мюнхенского Института космической физики и астрофизики им. Макса Планка провели серию экспериментов с образованием искусственных облаков плазмы в космическом пространстве [11]. В магнитосфере Земли создавалось видимое плазменное облако и изучалось его поведение. Исследователи исходили из того, что поведение заряженных частиц в электрическом и магнитном поле соответствует теории физики. Если положительно заряженный ион или отрицательно заряженный электрон попадают в магнитное поле и компонента скорости перпендикулярна к этому полю, то частицы начинают двигаться по окружностям вокруг силовых линий. Компонента скорости параллельная вектору напряженности магнитного поля (В) не меняется магнитным полем, и движение по этому направлению остается неизменным. В однородном магнитном поле, в случае произвольного направления вектора скорости, заряженная частица движется по спиральной линии, ось которой параллельна В [13. С. 365].

Облако искусственной плазмы позволяет непосредственно увидеть движение заряженных частиц вдоль силовых линий поля. В первых экспериментах, проведенных в 1963 г. ракеты поднимались на высоту от 90 до 120 миль. На каждой из запущенных ракет помещалось несколько килограммов стронция. Испарение стронция производилось путем химической реакции. Затем стронций выбрасывался в атмосферу. Следов ионизованного стронция не было обнаружено. Поэтому стали испытывать новые методы испарения более тяжелого щелочного металла – бария. В ноябре 1964 г. проведена серия экспериментов с использованием бария. Десять минут спустя после выпускания парообразного бария, образовавшееся облако плазмы делается видимым с Земли даже невооруженным глазом. Ионизованная часть бариевого облака, в отличие от сферического не ионизованного облака, изменяется и приобретает сигаровидную форму. В экспериментах с бариевыми облаками были обнаружены слоистости. Ширина слоев изменялась от половины мили до 6 миль. Наличие слоев напоминает пучок волокон. Эти волокна не сохраняют своего положения в пространстве, а изменяют его в течение нескольких минут.

В апреле 1966 г. в пустыне Сахара провели эксперименты на высоте 1200 миль. С ракет были выпущены два ионизованных облака, каждое из которых состояло из 50 г ионов бария. Они обозначили силовые линии земного магнитного поля от центра Африки до центра Европы [11]. Пуски, очевидно, производились с космодрома Алжира Хаммагир (φ = 31,6° с. ш., λ = 2,2° з. д., d = – 6,470°), а под центром Европы, надо полагать, подразумевался Лондонский меридиан. Пять месяцев спустя ионное облако было создано на высоте около 570 миль (917 км) над Восточным побережьем США. По мере выпадения частиц в нижнюю часть атмосферы, наблюдалось удлинение ионного облака вдоль силовых линий магнитного поля вплоть до Северной Дакоты. Географические координаты места опыта в [11] не указаны, но можно предположить, что запуск ракет производен с восточного испытательного полигона на мысе Канаверал Флорида (φ = 28,483° с. ш., λ = 80,567° з. д.). Магнитное склонение – угол между географическим и магнитным меридианами в точке земной поверхности. Магнитное склонение в данном пункте практически совпадало с направлением на географический север (d = – 0,680°). Если проложить курс от полигона на юго-западную оконечность штата Северная Дакота, азимут составит А ≈ 315°. Плазменное образование смещались к северо-западу. Когда говорят о направленности облака по силовым линиям поля, нас вводят в заблуждение. Над населенным пунктом Кируной на севере Швеции в апреле 1967 г. пять дней подряд, поздним вечером или ранним утром, на высоте около 140 миль выпускалось ионное облако. Ионные облака демонстрировали дрейфовые движения, направленные иногда к востоку, а иногда к западу. Имелась также компонента скорости и в направлении на юг. В зоне полярных сияний несколько искусственных облаков приобретали удлиненную форму в виде полосы в направлении перпендикулярном географическому меридиану. Протяженность такого облака достигала более 120 миль.

В работе [11] не дают научной оценки причине дрейфа облаков искусственной плазмы поперек силовых линий магнитного поля. К заряженным частицам должны быть приложены силы, чтобы заставить плазменное облако дрейфовать перпендикулярно силовым линиям поля Земли. Это предполагает наличие внешнего источника, или устройства, способного воздействовать на заряды, создавать компоненту поперечную к силовым линиям поля и изменять положение силовой линии на локальном участке. Таким образом, ионы отклоняются от первоначальной траектории.

Предложение темы исследования Мюнхенскому институту имеет некоторый конспирологический подтекст. Для запуска метеорологических ракет, требовались космодромы, комплексы с системой обслуживания. Всего этого у ФРГ не было. Американцы, имеющие большой опыт работы с плазмой, зачем-то допустили немецких ученых к проведению экспериментов на территории Алжира (Сахара), Швеции (Кируна), Северной Дакоты (США)? Вероятно, целью Пентагона было стремление скрыть свою заинтересованность в научной работе. Немецких ученых использовали "втемную". Они, добросовестно выполняли проектное задание и могли не знать, почему происходит смещение плазмы по силовой линии, на восток или на запад от нее. Предполагаем, что настоящей целью экспериментов была проверка влияния технических средств на плазменные образования, на возможность продвигать заряды по силовой линии и отклонять их от естественной траектории.

9.2. Концепция глобальной электрической цепи

Между ионосферой и поверхностью Земли все время течет электрический ток. Действием сил в атмосфере обусловлены электрические токи и перенос электрических зарядов, содержащихся в воздухе. В нижних слоях атмосферы (тропосфере) выделяют пять форм этих токов:

1) токи проводимости, создаваемые движением ионов под действием сил электрического поля;

2) токи вызванные переносом объемных зарядов;



Поделиться книгой:

На главную
Назад