Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Генетика для тех, кого окружают рептилоиды - Андрей Левонович Шляхов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Почему «с уверенностью»?

Да потому что у природы ничего лишнего и ненужного не бывает. У природы все продумано до мельчайших деталей, и ради нескольких «работающих» процентов не будут синтезироваться гигантские молекулы ДНК. В свое время, по мере развития генетики, количество «мусорной» ДНК будет сокращаться, а количество полезной – расти.

ЛИРИЧЕСКОЕ ОТСТУПЛЕНИЕ, ПОСВЯЩЕННОЕ СТРОЕНИЮ КЛЕТКИ

Давайте отвлечемся ненадолго от генетики и займемся «чистой» биологией, самыми ее азами, – вспомним, из чего состоит живая клетка. В школе это все учили, но потом благополучно забыли. За ненадобностью. А сейчас нам это знание необходимо для продолжения бесед на генетические темы.

Не бойтесь – наше «лирическое отступление» будет недолгим.

Клетка является самой маленькой структурной и функциональная единицей всего живого, а целый организм представляет собой совокупность клеток. Но существуют и одноклеточные организмы, состоящие всего из одной-единственной клетки. Например – бактерии.

Клетки могут быть самыми разными – самостоятельными организмами или частью многоклеточного организма, животными или растительными, нервными или мышечными, и так далее, но, несмотря на это многообразие, все они имеют схожее строение.

Основными функциональными частями клетки являются:

– поверхностный комплекс, основу которого составляет клеточная мембрана, ограничивающая содержимое клетки и отделяющая клетку от внешней среды;

– ядерное вещество, содержащее ДНК;

– цитоплазма, в которой располагаются клеточные органы – органоиды (органеллы) и различные включения (например – капельки жира).


Схема строения животной клетки

Ядерное вещество может быть оформленным в ядро со своей оболочкой или неоформленным, свободно «плавающим» в цитоплазме.

Клетки подразделяются на две большие группы – прокариоты, не имеющие оформленного ядра и обладающие относительно простым строением, и эукариоты, клетки со сложной структурой, имеющие оформленное ядро. Клетки прокариот имеют весьма малые размеры (0,5–5 мкм в диаметре). В эволюционном отношении прокариоты считаются более древними, чем эукариоты. Есть такое неформальное правило эволюции: чем проще – тем древнее.

Из всех клеточных органоидов нас с вами, как генетиков, интересуют только рибосомы – сферические образования, не имеющие своей мембраны, которые выполняют очень важную функцию синтеза белков из аминокислот, в соответствии с информацией, записанной в молекуле РНК. Рибосомы присутствуют во всех без исключения клетках – и у эукариот, и у прокариот. Количество рибосом в клетке может достигать десятков миллионов.

Про остальные клеточные органоиды вы можете прочесть в учебнике или в Сети. В порядке расширения кругозора. А наше «лирическое отступление» на этом можно считать оконченным.

Глава третья

Его величество ген

«Ген» и «гениальность» – однокоренные слова.

Его Величество Ген является структурной и функциональной единицей наследственности.

Не очень понятно?

Давайте скажем проще – ген представляет собой участок молекулы ДНК, в котором закодирована последовательность конкретного белка или же функциональной (то есть вспомогательной, не матричной) РНК. Если уж говорить строго по существу, то в генах закодированы последовательности РНК, как матричной, так и всех прочих. Белок на матрице ДНК непосредственно не синтезируется.

«От ДНК рождается РНК», – говорят генетики вместо общеупотребительного «от осинки не родятся апельсинки» или «яблочко от яблони недалеко падает».

Один ген отвечает за синтез одного химического вещества, потому ген и считается структурной и функциональной единицей. Структурной, как часть молекулы – ДНК и функциональной – поскольку выполняет одну конкретную функцию.

Классическая концепция генетики гласит: «один ген – один белок – один признак». Запомните ее хорошенько, потому что чуть позже мы разнесем ее в пух и прах.

Да – разнесем! Камня на камне не оставим! От классической концепции. Вот такие мы хулиганы. Точнее, не мы, а генетики. Генетики обожают создавать концепции, а затем опровергать их.

Зачем они это делают?

Из вредности?

Нет, просто жизнь у них такая сложная. Генетика развивается быстрыми, прямо-таки бешеными темпами, и вскоре после создания концепции приходится уточнять, дополнять исключениями и т. п.

Мы с вами изучаем генетику последовательно – от простого к сложному. Так что пока запоминаем: «один ген – один белок – один признак», и идем дальше.

То, что ген отвечает за синтез одного белка или одной РНК, звучит как-то… м-м… приземленно, не так ли? Людям, далеким от генетики, функции генов представлялись более масштабными, нежели синтез одного-единственного прозаичного химического вещества. Его Величество Ген должен иметь неограниченные полномочия и такие же возможности. Что это за Его Величество с одной-единственной возможностью? Похоже на шахматного короля, беззащитного и ограниченного в передвижениях.

Но что есть, то есть. И не забывайте, пожалуйста, о том, что эти самые химические вещества определяют развитие, рост и всю прочую жизнедеятельность организма. Ген велик и славен не широкими полномочиями, а важностью порученного ему матушкой-природой дела. Что же касается прозаичности химических веществ, то давайте уясним, что на молекулярном уровне жизнедеятельность организма представляет собой совокупность химических процессов. Не более того. «Химия, химия, сугубая химия», как пели в старину студенты.

А что вы думали? И чего вы хотели?

Как вы представляли, к примеру, действие гена голубых глаз?

Воображение рисовало вам микроскопического человечка с кистью и ведром голубой краски, которой он красил радужные оболочки?

Картина симпатичная, но на деле все выглядит гораздо прозаичнее. Голубой цвет глаз представляет собой результат мутации в определенном гене (если вам нужны паспортные данные, то это ген HERC2), вследствие которой снижается выработка пигмента меланина в радужной оболочке глаза. Много меланина – радужка коричневая, а то и совсем почти черная, мало меланина – радужка серая, синяя, голубая, зеленая или «янтарная». С множеством оттенков каждого цвета. Такое многообразие расцветки обеспечивает комбинация меланина с другим пигментом – желтым липофусцином и темно-синими кровеносными сосудами радужной оболочки.

Термин «ген» появился в 1909 году, когда ученые еще не знали о свойствах ДНК.

Странно, не так ли?

О свойствах не знали, структуру не расшифровали, а уже ввели структурную единицу…

На самом деле изначально ген был единицей теоретической, условной. Существует нечто, определяющее один конкретный признак организма, и это нечто называется геном. А как этот самый ген выглядит, то есть какова его природа и структура, никто и понятия не имел.

В одно время ученые ожесточенно спорили о том, какие вещества являются носителями наследственной информации. Тогда уже знали, что молекула ДНК образована четырьмя нуклеотидами, а молекулы белков – двадцатью аминокислотами. «Двадцать аминокислот дают несравнимо большее количество комбинаций, нежели четыре нуклеотида», – говорили сторонники белковой природы гена, и с ними трудно было спорить. Особенно с учетом того, что теоретически (сугубо теоретически!) генов насчитывали от ста тысяч до миллиона. Согласитесь, что многообразие, даваемое комбинацией двадцати аминокислот, куда больше «подходит» миллиону генов, нежели кодирование при помощи четырех нуклеотидов. Эх, знали бы тогда спорщики, то есть по-научному – оппоненты, на какую длину растягивается комбинация этих самых четырех нуклеотидов! Но кто тогда мог предположить, что счет нуклеотидам в молекуле ДНК может идти даже не на миллионы, а на сотни миллионов. Сотни! Да при таком общем количестве нуклеотидов всю наследственную информацию можно было бы закодировать даже по «двоичной» системе.

В наше время принято считать, что у человека есть около двадцати тысяч генов. Вполне возможно, что в будущем, по мере получения новой научной информации, это количество будет уменьшаться. Напридумывали миллион, а теперь сокращаем.

Лишь после того, как в ходе ряда экспериментов было доказано, что именно молекула ДНК хранит наследственную информацию, ген «получил паспорт» как фрагмент этой самой молекулы.

Давайте уточним, для полной ясности, какая разница между ДНК и белками.

Белки, или протеины – сложные высокомолекулярные вещества, состоящие из аминокислот, химических соединений, в молекуле которых одновременно содержатся карбоксильные группы и аминогруппы.

Из аминокислот!

Разбираться с аминокислотами подробно нет необходимости, ведь мы изучаем не органическую химию, а генетику. Молекулы ДНК и РНК, как вы уже знаете, состоят из нуклеотидов.

С различиями мы определились. А теперь попробуйте самостоятельно ответить на такой вот вопрос: в чем заключается сходство между ДНК, РНК и белками?

Сходство в том, что белки и нуклеиновые кислоты являются обязательными компонентами жизни на нашей планете! Без ДНК, РНК и белков никакой жизни быть не может. Во всяком случае, в земных условиях. Жизнь на земле называют белковой формой жизни, но правильно было бы называть ее белково-нуклеиновой.

Но вернемся к генам.

У некоторых читателей может возникнуть закономерный вопрос: зачем ученым понадобилось вводить понятие гена в то время, когда они о гене даже понятия не имели? Наука же должна оперировать точными и полностью изученными понятиями, разве не так?

Должна, никто этого не оспаривает. Но иногда обстоятельства складываются таким образом, что приходится вводить понятия условные, теоретические, полученные путем умозаключений, не подтвержденные и не изученные в ходе экспериментов.

Почему?

А потому что надо!

Надо было ввести в биологию (генетика тогда только-только получила свое имя и малую долю признания) термин, определяющий единицу наследственности, определяющий то, что влияет на один отдельно взятый признак организма. Без этого термина невозможно было выстраивать гипотезы и вести научный поиск.

Вот вам пример, не связанный с генетикой. Понятие об атоме как о наименьшей неделимой частице материи впервые было сформулировано еще древнегреческими и древнеиндийскими философами. Греки с индусами научным опытом не обменивались, просто представители обеих философских школ мыслили в едином направлении. Научные же определения понятий молекулы и атома были приняты только в 1860 году! А приемлемая с научной точки зрения модель атома появилась лишь в 1913 году! Атом «жил без паспорта», то есть не имел четкого научного объяснения более двух тысяч лет!

«Отец» эволюции и один из столпов биологической науки Чарльз Дарвин первым попытался всерьез разобраться в принципах наследственности и объяснить, как оно происходит, это непонятное наследование признаков от родителей.

В том, что признаки наследуются, не было сомнений с древнейших времен. Как только люди научились сравнивать, они заметили, что дети в той или иной степени похожи на своих родителей. Более того – не имея понятия о генах, законах наследственности и прочих премудростях генетики, люди ухитрялись выводить нужные породы животных и растений сугубо практическим путем. Нужна, к примеру, длинноногая быстрая порода собак, значит, будем отбирать для скрещивания самых «грациозных», самых длинноногих щенков. А если нужно вывести охотничью породу, способную беспрепятственно проникать в норы, то ставка делается на короткие ноги.

Но то практики-селекционеры, им важен результат, а не научное объяснение метода. Дарвин же был ученым и потому стремился найти подходящее объяснение всему непонятному в биологии.

Для объяснения механизма наследственности Дарвин придумал геммулы, некие гипотетические частицы, обеспечивающие наследование признаков. Эти самые геммулы по мнению ученого образовывались во всех клетках организма, а затем поступали в кровь и с током крови доставлялись в половые железы. Каждая «новорожденная» половая клетка получала полный набор геммул, то есть наследственную информацию от всех клеток организма.

Логично?

Вполне.

И то, как наследуются приобретенные признаки, эта гипотеза тоже объясняла. Изменившиеся клетки (новый признак – это же изменения клеток) вырабатывают новые геммулы, отличающиеся от тех, которые они вырабатывали прежде…

Можно предположить, что во время разработки этой гипотезы Дарвин был сильно занят (он вообще никогда без дела не сидел, был трудягой из трудяг) и потому не удосужился получить ее практическое подтверждение. Придумал и отдал научному сообществу – берите, пользуйтесь, развивайте, опровергайте…

Гипотезу геммул опроверг двоюродный брат Чарльза Дарвина Фрэнсис Гальтон. Имя Гальтона в наше время мало кому известно, а ведь он внес в науку значительный вклад, причем в различных отраслях.

Гальтон основал дифференциальную психологию, науку о психологических различиях у представителей разных социальных групп, и психометрию – теорию и методику психологических измерений.

Гальтон открыл первую в мире антропометрическую лабораторию.

Гальтон обосновал возможность использования отпечатков пальцев в криминалистике. Метод опознания по отпечаткам пальцев был открыт не Гальтоном, но именно он доказал, что у двух людей не может быть одинаковых отпечатков пальцев.

Все слышали слово «антициклон», обозначающее область повышенного атмосферного давления? Феномен антициклона открыл Гальтон.

Но вернемся к нашим геммулам. Гальтон переливал кровь от кроликов с темной окраской шерсти их светлошерстным собратьям, но не получил ожидаемого потемнения шерсти у потомства «светлых» кроликов. А ведь, по логике, геммулы темной окраски, содержащиеся (якобы содержащиеся) в перелитой крови, непременно должны были попасть в половые железы светлошерстных кроликов и проявить себя в их потомстве. Если же этого не произошло, то, значит, никаких геммул не существует.

К слову заметим, что «похороненная» Гальтоном гипотеза геммул «воскресла» в двадцатые годы ХХ века в Советском Союзе. Отдельные биологи-новаторы намеревались исправлять «отсталое» мышление путем переливания крови, взятой у сознательных строителей коммунизма. Но развития эта идея не получила.

После геммул появился панген – материальный носитель наследственности, находящийся в клетке. Затем приставку «пан-» отбросили, и получился «ген».

Ген, просто ген.

Его Величество Ген.

Ген обладает набором свойств, которые мы с вами сейчас рассмотрим.

Главным свойством гена является его дискретность или, если можно так выразиться, «отдельность».

Каждый ген существует сам по себе. Гены не могут смешиваться-соединяться друг с другом и в результате этого образовывать новый ген. Гены могут подавлять своих конкурентов, но не могут с ними соединяться.

Дискретность – очень важное свойство. Это главное свойство гена, которое делает каждый ген геном – структурной и функциональной ЕДИНИЦЕЙ наследственности.

Давайте представим, что было бы, если бы гены не обладали дискретностью…

Ничего не было бы! Систематическое размножение организмов при отсутствии дискретности у генов невозможно, а, стало быть, невозможна и сама жизнь в глобальном смысле этого слова. Получит дочерняя клетка от материнской вместо четкого набора генов некую условную «генную кашу» и погибнет, не успев дать потомства.

Из дискретности логически вытекает другое свойство генов – их стабильность. Гены способны функционировать, не изменяя собственной структуры. Короче говоря, каким ген был, таким он и остается после считывания с него наследственной информации.

В то же время стабильность генов сочетается с их лабильностью – способностью изменяться.

«Что за чушь! – возмутятся сейчас некоторые читатели. – Как ген может одновременно быть и стабильным и лабильным?! Это же взаимоисключающие понятия!!!»

Да, взаимоисключающие. Но тем не менее гену присущи и стабильность и лабильность. Сам по себе, как структурная единица молекулы ДНК, ген стабилен. В процессе исполнения своих функций ген никак не изменяется. Изменяется он при копировании ДНК или же при повреждении ДНК. Мы еще будем обсуждать эту тему, но пока что важно усвоить следующее – гены способны изменяться в результате каких-то «глобальных» (с точки зрения генов) процессов, происходящих со всей молекулой ДНК. Но сам по себе ген стабилен.

Одни и те же гены, то есть гены, отвечающие за развитие одного признака, могут существовать в различных формах, которые называются аллелями (не путайте с аллеями). Обычно аллельных генов два. Аллельные гены могут подавлять друг друга. Так, например, ген карих глаз подавляет ген голубых глаз. Если у отца глаза карие, а у матери – голубые, то у ребенка, скорее всего, будут карие глаза. В свое время мы рассмотрим принципы наследования признаков более подробно. Пока что надо запомнить, что одни и те же гены могут существовать в различных формах – аллелях и что аллельные гены могут друг друга подавлять.

Гены обладают экспрессивностью. Это свойство можно назвать силой гена. Экспрессивность определяет степень выраженности гена в кодируемом им признаке. Чем ген экспрессивнее, тем он выраженнее, тем сильнее он подавляет своего аллельного собрата.

Возникает закономерный вопрос: а откуда берутся эти аллельные собратья?

От родителей. От кого же еще?

Мы получаем по комплекту генов от отца и матери, то есть по каждому кодируемому признаку мы имеем парный набор генов. Те гены, которые являются более экспрессивными, подавляют в парах-аллелях менее экспрессивные гены. Конкуренция в рамках пары генов приводит к тому, что одни признаки наследуются от отца, а другие – от матери. Но никогда в наследовании не будет половинчатости! Невозможно унаследовать один признак наполовину от матери и наполовину от отца, потому что гены не смешиваются друг с другом. Даже в парах, отвечающих за один и тот же признак, не смешиваются. Подавлять друг друга гены могут, а смешиваться – нет.

Гены специфичны – каждый ген кодирует синтез одного конкретного белка, то есть отвечает за один определенный признак. Пора нам вспомнить классическую концепцию генетики, которая гласит: «один ген – один белок – один признак». Образно говоря, среди генов не принято помогать друг другу, такие вот они индивидуалисты. Каждому – свое, и каждый за себя.

Один ген – один белок – один признак! Но в то же время некоторые гены обладают множественным действием, способностью влиять на несколько признаков. Такая «многогранность» называется плейотропией.

Плейотропия может быть первичной или вторичной. При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек. При вторичной плейотропии ген, по сути дела, влияет на один признак, от которого напрямую зависят несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. Ген вызывает нарушение синтеза белка, а дальше «нарушенный» гемоглобин приводит к вторичным проявлениям – невосприимчивости к малярии, анемии, увеличению печени и селезенки, поражению сердца и головного мозга.

Но как же быть с концепцией: «один ген – один белок – один признак»? Получается, что плейотропия ей противоречит…

Нет, не противоречит. Просто один белок, образующийся в результате считывания информации с гена, может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок (то есть по факту – одна РНК)», и эта концепция будет верной для любого, без исключения, гена.

А будет ли? Для любого, без исключения?

Приготовьтесь, сейчас начнется самое интересное…

Если концепция верна, то как можно объяснить вот такой парадокс – мы с вами имеем около двадцати тысяч генов, но при этом в нашем организме синтезируется более ста тысяч белков.

Двадцать тысяч генов и сто тысяч белков! По пять белков на один ген!



Поделиться книгой:

На главную
Назад