Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Астрономия. Популярные лекции. - Владимир Георгиевич Сурдин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Рис. 1.19. Солнечные и лунные затмения происходят только в моменты новолуния и полнолуния соответственно. Кроме этого, Луна должна располагаться вблизи узлов своей орбиты, иначе (как на этом рисунке) тени проходят мимо цели.

Поскольку полутеневое затмение Луны заметить глазом почти невозможно — настолько слабо уменьшается яркость лунного диска, — это явление редко привлекает внимание наблюдателей. А вот полные теневые затмения Луны в прошлом активно использовались для науки. Дело в том, что в момент затмения, в середине лунного дня, Солнце на несколько часов резко «выключается» и перестает освещать лунную поверхность, которая начинает понемногу охлаждаться. По тому, как быстро происходит охлаждение лунной поверхности, можно понять, какая у нее структура. Если бы Луна состояла из чистого металла — скажем, была бы плотным алюминиевым шаром, — то ее поверхность остывала бы очень медленно (из-за высокой теплопроводности вещества снизу постоянно подходило бы новое тепло). А если бы Луна была сделана из пемзы или синтепона, теплопроводность которых почти нулевая, температура поверхности падала бы быстро. Наблюдения показали, что в ходе затмения поверхность охлаждается быстро. Следовательно, она скорее «из пемзы или поролона», чем «из меди или алюминия». А если серьезно, то планетологи с помощью затмений еще до полетов на Луну роботов и людей поняли, что ее минеральная поверхность пористая и покрыта пылеобразным веществом, которое мы называем реголитом. Позже туда прилетели роботы и люди и подтвердили, что поверхность действительно покрыта пылью, рыхлой наверху и спекшейся в глубине. Так лунные затмения помогли астронавтам заранее узнать, по какой поверхности им предстоит ходить.

Солнечные затмения

Еще более замечательное явление — затмения Солнца. Раньше только они позволяли нам увидеть самую внешнюю область солнечной атмосферы — корону Солнца. Физики испытали настоящий шок, когда в середине XX в. была измерена температура этой области, ибо результаты оказались совершенно неожиданными. Что нам говорит нормальная физика? Что по мере удаления от источника тепла температура газа должна понижаться. Мы видим такие примеры сплошь и рядом. Источник тепла на Земле — ее поверхность, нагретая солнечными лучами, поэтому, поднимаясь на самолете, мы наблюдаем, как окружающий воздух становится всё холоднее; на высоте 10 км температура составляет –50 °С. Всё логично.


Рис. 1.20. Солнечное затмение 29 марта 2006 г. Северный Кавказ, Кисловодская солнечная станция ГАО РАН. Слева — Эльбрус. Фото: М. Лисаков, А. Юферев, Е. Казаков.

Энергия Солнца рождается в его ядре и затем просачивается наружу, а значит, снаружи температура должна быть ниже: действительно, в центре Солнца — около 15 000 000 K, а на поверхности — 6000 K: температура падает. И вдруг в области короны она опять начинает стремительно расти — до 2 млн кельвинов. С какой стати? Где источник энергии? В короне чрезвычайно разреженный газ, никакие ядерные реакции там не происходят. Задача была непростая, и решили ее не сразу. Впрочем, и сейчас еще нельзя сказать, что она решена до конца. Большую роль в исследовании солнечной короны сыграли работы советского астрофизика И. С. Шкловского. А начинал он с наблюдения солнечных затмений.

Структура короны, как видите, напоминает картину расположения железных опилок, рассыпанных над двухполюсным магнитом. Явно видно, что у Солнца есть один магнитный полюс сверху и другой снизу, а по бокам — замкнутые структуры (иногда дипольные, иногда многополюсные).

Благодаря затмениям не только были открыты и исследованы солнечная корона и лежащий под ней более плотный и прохладный слой — хромосфера, но состоялись и другие важные открытия и наблюдения. В 1868 г. в спектре хромосферы обнаружились линии неизвестного в ту пору на Земле химического элемента — им оказался гелий. В спектре короны тоже обнаружились неизвестные линии, которые исследователи поторопились приписать еще одному неизвестному элементу, назвав его коронием. Но это оказались линии железа при крайне высокой степени ионизации, недостижимой в ту пору в лаборатории. В 1918 г. затмение помогло подтвердить один из выводов общей теории относительности Эйнштейна: смещение изображений звезд вблизи солнечного диска продемонстрировало искривление лучей света в гравитационном поле.


Рис. 1.21. Эти два момента полного затмения разделены во времени всего несколькими минутами. На левом фото видна восточная часть хромосферы (это тонкий слой атмосферы Солнца между фотосферой и короной), а на правом — ее западная часть.

В обычное время, между затмениями, мы не видим корону Солнца, потому что ее яркость намного меньше яркости дневного неба рядом с солнечным диском. Однако в космосе этой проблемы нет. Телескопы некоторых космических обсерваторий (например, SOHO) снабжены специальным экраном, которым можно закрыть изображение солнечного диска и увидеть околосолнечные окрестности — корону, протуберанцы, плотные потоки солнечного ветра, а также небольшие кометы, которые становятся заметными, только когда пролетают вплотную к Солнцу, и о существовании которых мы ранее даже не догадывались.

Для наблюдателя на Земле лунный диск так точно совпадает по угловому размеру с солнечным, что стоит Луне чуть-чуть сместиться, и она уже открывает нам полоску фотосферы Солнца, т. е. его видимого диска (рис. 1.21). Будь Луна чуть меньше — хотя бы на 2 % — или располагайся она чуть дальше от нас, своим диском она уже не смогла бы закрыть фотосферу, и мы бы никогда не увидели с Земли солнечную корону: стоит появиться маленькому кусочку солнечного диска, как его свет, рассеянный в атмосфере, делает небо ярко-голубым, и никакая корона уже не видна. Эти снимки я показываю с удовольствием, потому что они сделаны современными любителями астрономии. Кто хорошо владеет фотокамерой и Фотошопом, может увидеть то, что раньше нельзя было заметить даже с телескопом.

Один из главных вопросов, встающих перед астрономом при подготовке к наблюдению какого-то небесного явления, в данном случае затмения: куда ехать, чтобы с наибольшей вероятностью получить желаемый результат? Факторов много: и количество ясного дневного неба в сезон наблюдения, и продолжительность явления, и его высота над горизонтом, и стоимость поездки, и политическая стабильность в регионе, и еще много других факторов.


Рис. 1.22. Обстоятельства полного солнечного затмения 29 марта 2006 г. Путь лунной тени, движущейся с запада на восток, показан черной полосой. Параллельными ей линиями отмечены области частного затмения, достигающего максимальной фазы 0,9, 0,8 … по мере удаления от полосы полного затмения.

На всей Земле в год можно наблюдать от двух до пяти солнечных затмений, из которых не более двух — полные или кольцеобразные. В среднем за 100 лет происходит 237 солнечных затмений, из которых 160 — частные, 63 — полные, 14 — кольцеобразные. Через одну и ту же точку земной поверхности лунная тень проходит в среднем раз в 300 лет. То есть если не гоняться по планете за полными солнечными затмениями, а жить на одном месте, то шанс увидеть своими глазами солнечную корону невелик.

Поскольку 2⁄3 поверхности земного шара покрыты океаном, путь лунной тени проходит в основном по поверхности воды. Но никто не наблюдает затмения с плавающего судна, так как для оптических приборов требуется устойчивая опора. Всегда выбирают область на суше, но и здесь у астронома много своих требований: не должно быть густой растительности, сильного ветра, высоких гор, закрывающих горизонт… Например, куда бы вы поехали, чтобы наблюдать затмение, случившееся 29 марта 2006 г.? Посмотрите на карту с обстоятельствами затмения и выберите наиболее привлекательное место… Правильно, в Турцию. Погода там, как правило, хорошая, перелет из России недорог, Солнце в момент затмения высоко над горизонтом, продолжительность полной фазы затмения близка к максимальной, поскольку место расположено недалеко от середины траектории лунной тени. Поэтому многие поехали именно туда, чтобы наблюдать это полное затмение, — и не ошиблись.


Рис. 1.23. Фото лунной тени, бегущей по облакам, в момент полного солнечного затмения. Снимок из космоса.

Любопытно, что несколько десятилетий назад, в один из предыдущих саросов (т. е. периодов времени, через которые почти в точности повторяются обстоятельства затмений), некоторые экспедиции выбрали Египет, где вероятность хорошей погоды и ясного неба еще выше, чем в Турции. Действительно, в момент затмения (и до, и после него) небо было безоблачным, но по этой причине случилось две беды. От высокой температуры пострадала светоприемная аппаратура, прежде всего эмульсия фотопластинок, на которые в ту эпоху велось фотографирование, а из-за ветра и пыли пришлось накрывать оптическую аппаратуру полиэтиленовой пленкой, которую быстро съели местные оголодавшие козы, и пыль повредила оптику.

Если вы в момент затмения посмотрите на Землю из космоса (рис. 1.23), то сразу поймете, с какими трудностями сталкиваются астрономы: лунная тень бежит по Земле, но она же ложится на облака, и астрономы, находящиеся в этот момент под облаками, не видят Солнца. Для преодоления этих проблем существует надежный вариант — нужно вести наблюдения с борта самолета, летящего над облаками в сторону движения лунной тени. В этом случае облачность уже точно не страшна — всё увидите, хотя путешествие это дорогое. А если у вас еще и очень быстрый самолет, то вы можете продлить удовольствие от созерцания и изучения солнечной короны: в вашем распоряжении будут не минуты, а часы. Когда появился гражданский сверхзвуковой самолет «Конкорд», один из первых его рейсов был направлен именно в погоню за лунной тенью. Сверхзвуковой самолет способен ее догнать. Ведь Луна, а значит, и ее тень движется по орбите со скоростью около 1 км/с, а Земля вращается в ту же сторону, причем на экваторе со скоростью около 500 м/с. Значит, по поверхности Земли лунная тень бежит со скоростью от 1 км/с (в полярных областях) до 0,5 км/с (на экваторе). Поскольку диаметр лунной тени у Земли обычно не превышает 280 км, продолжительность полной фазы затмения для неподвижного наблюдателя, как правило, составляет не более 7 минут. А сверхзвуковой самолет, летящий со скоростью 1,5 М (т. е. около 500 м/с), в районе экватора может сопровождать лунную тень в течение нескольких часов!


Рис. 1.24. Кольцеобразное солнечное затмение 3 октября 2005 г.

Иногда Луна нас подводит. Это происходит в случае, если затмение наблюдается, когда Луна находится в апогее своей орбиты и не способна перекрыть солнечный диск целиком. Тогда ее тень не дотягивается до поверхности Земли — мы видим кольцеобразное (иногда говорят «кольцевое») солнечное затмение. Это явление почти бесполезное: в течение всего затмения остается виден яркий край поверхности (фотосферы) Солнца, поэтому корона остается незаметной. Но польза от кольцеобразного затмения все-таки есть. Можно легко отследить моменты касания видимого диска Луны с видимым диском Солнца — всего четыре касания. Эти четыре момента времени регистрируют с высокой точностью (до 1/1000 секунды), что позволяет проверять точность теории движения Луны и вращения Земли.


Рис. 1.25. Солнечная корона. 1 августа 2008 г. Фото: M. Druckmüller, P. Aniol, V. Rušin. Снимок получен путем совмещения многих изображений, контраст усилен компьютерной обработкой.

На фотографии затмения 2008 г. (рис. 1.25) мы видим солнечную корону. Видно, что на самом деле корона нигде не кончается — это бесконечные потоки газа, которые уходят с поверхности Солнца и уже не возвращаются к ней. Со скоростью звука и даже быстрее они несутся во все стороны от Солнца, в том числе и к Земле. Но обратите внимание: Луна тоже видна, хотя прямые солнечные лучи на нее не попадают. Что же подсвечивает темную сторону Луны? Это свет от Земли! В момент затмения обращенное к Луне полушарие Земли почти полностью освещено Солнцем, за исключением небольшого пятачка лунной тени. Отраженный от Земли свет уходит в сторону Луны, и мы видим ее ночное полушарие (рис. 1.26). Впрочем, и вне затмений это явление легко можно наблюдать: если вы посмотрите на молодой месяц сразу после новолуния, то увидите, что темная часть лунного диска все-таки видна как бледно-серая; называется это явление пепельным светом Луны. И в этом случае отраженный от Земли свет подсвечивает темную сторону Луны. Поэтому на видимой стороне Луны, на ее полушарии, постоянно обращенном в сторону Земли, никогда не бывает полной ночи. Там бывают яркий солнечный день и полутемная ночь, которую условно можно назвать «земной ночью». Наш земной шар довольно ярко освещает Луну. Здесь, на Земле, в полнолуние мы можем гулять без фонаря ночью и даже читать при Луне крупный текст. А Земля на лунном небе занимает в 13 раз бóльшую площадь и отражает солнечный свет в несколько раз лучше лунной поверхности. Так что «земной ночью» поверхность видимого полушария Луны освещена так же ярко, как если бы на нее светили несколько десятков полных Лун. Будущим исследователям Луны не придется заботиться о ночном освещении, пока они будут работать на видимой стороне. Зато на обратной стороне Земля не видна, и ночи там очень темные.


Рис. 1.26. Солнечное затмение 11 июля 2010 г. Хорошо заметны детали лунной поверхности. Фото: M. Druckmüller, M. Dietzel, Sh. Habbal, V. Rušin.

Про условия наступления затмения вкратце уже говорилось. Нам важно понять, что раз орбита Луны наклонена на 5 с лишним градусов к эклиптике, а размер видимого диска — всего 0,5°, то лунная тень, как правило, проходит мимо Земли. И только когда три тела — Солнце, Луна и Земля — располагаются на одной прямой, лунная тень попадает на Землю. То же самое с затмениями Луны: земная тень проходит либо выше, либо ниже Луны и лишь изредка попадает на нее. Причина этого — несовпадение плоскостей орбит.

Прохождения планет по Солнцу

А еще астрономы очень дорожат наблюдениями прохождения планет на фоне солнечного диска. Дело тут вот в чем. Уже очень давно астрономы научились измерять относительные размеры орбит планет. Измерить, во сколько раз диаметр орбиты Венеры меньше земной орбиты, — простая геометрическая задача. Но реального масштаба размеров орбит Солнечной системы мы долго не знали. Разумеется, всё было бы намного проще, если бы радиолокацию изобрели лет на 300 раньше, но у астрономов XVII–XVIII вв. не было такого метода, а значит, оставался единственный способ — наблюдать прохождение планет на фоне солнечного диска, чтобы измерить их параллакс. Лишь две планеты — Венера и Меркурий — время от времени проходят на фоне Солнца, причем Венера привлекательнее, поскольку она ближе к Земле, из-за чего ее параллакс больше и измерить его легче.


Рис. 1.27. Джереми Хоррокс за наблюдением прохождения Венеры по диску Солнца. Фрагмент картины английского художника В. Лавендера (1903).


Рис. 1.28. Уильям Крабтри с семьей наблюдает прохождение Венеры по диску Солнца — впервые в истории человечества (фреска Ф. И. Брауна, XIX в.).

Случается такое явление редко. Плоскость венерианской орбиты и плоскость земной (эклиптика) не совпадают. Наблюдать Венеру на фоне Солнца можно только тогда, когда Земля и Венера находятся в районе пересечения двух плоскостей — в узлах венерианской орбиты. Впервые это явление наблюдали и описали его в середине XVII в. два англичанина — Джереми Хоррокс и его друг Уильям Крабтри.


Рис. 1.29. Уточнение астрономической единицы путем измерения параллакса Венеры на фоне Солнца.

Это небесное явление дало возможность измерить расстояние между Землей и Венерой, а значит, и между Землей и Солнцем, а затем вычислить расстояния между всеми планетами, причем не в относительных единицах, а в километрах. Так астрономы вычислили все расстояния в Солнечной системе. Это стало очень важным достижением. Фактически расстояние от Земли до Венеры было измерено методом суточного параллакса. Этот метод предложил Эдмонд Галлей, он заключался в измерении продолжительности прохождения Венеры по диску Солнца при наблюдении из различных точек Земли, разнесенных по широте. Так как Венера проходит не через центр солнечного диска, то по времени прохождения можно установить длину хорды видимого пути планеты, а по различию этих величин, измеренных в разных точках Земли, определить угловое смещение планеты относительно диска Солнца — ее параллакс, а значит, и расстояние до планеты. При этом наблюдения были достаточно просты, для их проведения требовались только телескоп и простые часы, чтобы измерить небольшие промежутки времени.


Рис. 1.30. Транзиты Венеры, т. е. ее прохождения на фоне солнечного диска, можно наблюдать, когда Венера и Земля находятся вблизи узлов орбиты Венеры.


Рис. 1.31. Диссертация Эдмонда Галлея с расчетами, позволяющими вычислить расстояние между Землей и Солнцем по наблюдениям транзита Венеры.

В 1761 г. при наблюдении прохождения Венеры неожиданное открытие сделал, как утверждает история, наш соотечественник М. В. Ломоносов. В тот год для наблюдения транзита Венеры, чтобы измерить ее параллакс, во все части света отправились многочисленные академические экспедиции с самыми квалифицированными астрономами. Ломоносову в тот момент было уже около 50 лет, он болел, плохо видел и никуда не поехал — остался наблюдать явление в простенький телескоп из окна своего дома в Санкт-Петербурге. И он единственный из всех наблюдателей не только заметил и описал, но и понял это удивительное явление.


Рис. 1.32. М. В. Ломоносов наблюдает за прохождением Венеры по диску Солнца 26 мая 1761 г. из своей петербургской квартиры. Справа — иллюстрации Ломоносова в его рукописи «Явление Венеры на Солнце…» (1761).


Рис. 1.33. Явление Ломоносова, сфотографированное с помощью 1-метрового Шведского вакуумного солнечного телескопа на острове Ла-Пальма (Канарские о-ва).

Когда темный диск Венеры подходил к краю солнечного диска, перед ним вырос, как написал Ломоносов, «пупырь», яркий ободок. Это было преломление солнечных лучей в атмосфере Венеры. Ломоносов совершенно верно интерпретировал увиденное, тогда он и написал, что у Венеры «знатная атмосфера». Загадка в том, как, учитывая все условия, он мог увидеть то, что сейчас можно увидеть отчетливо только при помощи суперсовременного вакуумного телескопа. Видимо, сработала интуиция — все-таки великий ум.


Рис. 1.34. Прохождение Венеры по диску Солнца. Слева — фото 6 декабря 1882 г., справа — 8 июня 2004 г.

Если бы наличие у Венеры атмосферы не подтвердилось — ничего страшного, Ломоносов не утратил бы своего статуса в научном мире. Но атмосфера у Венеры есть, и значение гения Ломоносова стало еще более весомым. Это явление во всем мире называется «явлением Ломоносова», и мы используем его, когда изучаем далекие планеты — экзопланеты, находящиеся у других звезд.

Истинное движение планет

Видимое движение планеты складывается из движения в пространстве наблюдателя и самой планеты. Вот посмотрите, как в 2007 и 2008 гг. Марс «гулял» на фоне звездного неба: ехал-ехал, остановился, поехал назад, вновь остановился, а затем продолжил движение вперед. Как-то странно он себя ведет, не правда ли? А ничего странного в этом нет, если вспомнить, что мы наблюдаем его с движущейся Земли.

Марс обращается по своей орбите в одном направлении, не меняя его. Мы вместе с Землей обращаемся вокруг Солнца в том же направлении, но движение Земли происходит быстрее и по более короткой орбите. При этом оно складывается с более медленным движением Марса по более длинной орбите. Вот и получаются в сумме такие «кренделя», которые сильно озадачивали древних астрономов. Вся грандиозная картина звездного неба движется идеально равномерно, а планеты на фоне звезд блуждают туда-сюда. Нужно было как-то объяснить такое поведение планет и научиться его прогнозировать, создав для этого математическую теорию. И создали, взяв за основу простую механическую модель. Планета равномерно обращается по малой окружности (эпициклу), центр которой движется по большой окружности (деференту), в центре которой — кто бы сомневался! — располагается неподвижная Земля. Складывая два равномерных круговых движения, получаем с точки зрения земного наблюдателя петлеобразную траекторию планеты. Простая и красивая идея!


Рис. 1.35. Движение Марса по небу с июля 2007 г. по июнь 2008 г.

Окончательный вид этой теории придал во II веке н. э. греческий математик, астроном и географ Клавдий Птолемей в своем гениальном «Альмагесте». Он довел эту модель до великолепного состояния. Птолемей понимал, что видимое движение планет значительно сложнее, чем можно изобразить с помощью одного эпицикла, «насаженного» на деферент. Значит, эту небесную «коробку передач» нужно было усложнить. На первый эпицикл Птолемей «посадил» второй эпицикл с иным периодом, размером и наклоном; на него — третий… Что это вам напоминает? Ну конечно же, ряд Фурье! Любое циклическое движение можно разложить на сумму простых синусоидальных колебаний. Птолемей не знал Фурье-анализа, но он интуитивно представлял сложное движение планет в виде серии простых синусоидальных (гармонических) колебаний. Все это изложено в книге Клавдия Птолемея «Альмагест, или Математическое сочинение в тринадцати томах». В переводе с древнегреческого на русский она впервые была издана в 1998 г. Хотите заработать комплекс неполноценности — попробуйте ее прочитать.


Рис. 1.36. Клавдий Птолемей (II век н. э.) с астрономическим посохом в руке. Условный портрет из книги XVI в. Астрономический посох (radius astronomicus), или «посох Якова», — простейший прибор для измерения угловых расстояний на небесной сфере. По основной градуированной линейке скользит подвижная линейка с диоптрами на концах. Глядя от основания главной линейки, малую перемещают так, чтобы диоптры совпали с объектами измерения, например двумя звездами или горизонтом и светилом.


Рис. 1.37. Система эпициклов по Птолемею.

Теорией Птолемея ученые пользовались полторы тысячи лет, до эпохи Коперника, — завидное долголетие для любой научной теории. Но Коперник задался вопросом, почему у разных планет много одинаковых эпициклов с одинаковыми периодами. Он предложил поместить в центр системы не Землю, а Солнце, поскольку понимал, что на самом деле мы наблюдатели и мы движемся, поэтому и планеты перед нашими глазами синхронно описывают петли. Коперник поместил в центр Солнце, но не смог отказаться от круговых орбит. Поэтому в его системе мира у планет сохранились некоторые эпициклы.


Рис. 1.38. Николай Коперник и страница его книги «О вращении небесных сфер».

Теория Коперника была проще теории Птолемея. Почему же она не сразу завоевала признание ученых? Потому что она противоречила некоторым наблюдательным фактам. Если Земля совершает периодическое движение по орбите, то должны наблюдаться не только петли на траекториях планет, но и регулярное параллактическое смещение звезд, а его в ту эпоху заметить не удавалось. Во второй половине XVI в. точность астрономических наблюдений не превышала 1 минуты дуги, а параллаксы звезд, как мы теперь знаем, не превышают 1 угловой секунды. Астрономам понадобилось три с половиной столетия, чтобы изобрести телескоп, усовершенствовать методы наблюдения и повысить их точность в 100 раз, прежде чем они надежно зафиксировали параллаксы ближайших звезд. Но кто мог знать в эпоху Коперника, что звезды от нас так далеки!

Не знал этого и Тихо Браге — лучший астроном эпохи Коперника. Он был уверен в непревзойденной точности своих наблюдений, однако звездных параллаксов заметить не смог, а потому решил, что Земля стоит на месте. И ведь в рамках научного метода он был абсолютно прав. Сегодня, используя орбитальное движение Земли, мы измеряем расстояние до звезд именно по их параллактическому смещению. Но кто мог знать в ту эпоху, что оно такое маленькое?


Рис. 1.39. Тихо Браге.

Опираясь на наблюдения, Тихо Браге не позволил Земле сдвинуться с места, но и теория Коперника ему тоже нравилась своей элегантностью. Поэтому Тихо создал свою, эклектическую, модель мира (рис. 1.41): Земля покоится в центре, Луна и Солнце обращаются вокруг нее, а все остальные планеты — вокруг Солнца. В ту эпоху это была вполне научная теория, объяснявшая все наблюдательные факты. Но просуществовала она недолго. Молодой сотрудник Тихо Браге немецкий математик Иоганн Кеплер перевернул своими расчетами всю небесную механику.

К концу жизни Тихо Браге понял, что он хоть и первоклассный наблюдатель, но математик слабый, а потому для обработки своих многолетних наблюдений пригласил Иоганна Кеплера — прекрасного математика с плохим зрением, человека, который ни разу в жизни не смотрел в телескоп. Кеплер, взяв за основу теорию Коперника, нашел для орбит форму, которая наилучшим образом объясняла их видимое движение (эллипс), и вывел эмпирические законы движения планет: первый, второй и третий законы Кеплера.


Рис. 1.40. Иоганн Кеплер.



Поделиться книгой:

На главную
Назад