Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Советская микробиология: на страже здоровья народа. История советской микробиологической науки в биографиях некоторых её представителей - Игорь Юрьевич Додонов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Гранулоциты отвечают за защиту организма от бактерий (в наибольшей степени), вирусов, грибков и паразитов. Кроме того, они способны фагоцитировать и мёртвые клетки организма, тем самым очищая его. Итогом борьбы и гибели гранулоцитов-микрофагов является образование гноя.

Таким образом, гранулоциты обеспечивают клеточный иммунный ответ.

Гранулоциты делятся на несколько разновидностей:

– Нейтрофилы (65 – 70% от общего количества гранулоцитов). В их гранулах содержится большое количество антибиотических белков (лизоцим, липопероксидаза и ряд других). Именно эти белки-антибиотики и обеспечивают фагоцитоз поглощённого нейтрофилом патогена.

– Эозинфилы. Также способны фагоцитировать и уничтожать различные микробы. Но их главная функция – борьба с проникшими в организм паразитами (гельминтами). Эозинфилы «узнают» гельминтов, «стыкуются» с ними и выделяют в зону контакта белки-перфорины, которые, встраиваясь в клеточные оболочки гельминта, делают их пористыми. Внутрь клеток гельминта устремляется вода, и он погибает от осмотического шока.

– Базофилы. Делятся на собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в различных тканях. Главная их задача – выработка веществ, стимулирующих т.н. анафилаксию, т.е. повышенную чувствительность организма к повторному внедрению в организм патогена. Функцией фагоцитоза они не обладают вообще.

Таким образом, И.И. Мечников мог называть микрофагами два вида гранулоцитов – нейтрофилы и эозинфилы.

В некоторых современных работах можно прочесть, что И.И. Мечников открыл «явление фагоцитоза захвата и уничтожения» микробов и других чужеродных организму биологических частиц «специальными клетками макрофагами и нейтрофилами» [47; 3]. Если к утверждению об открытии великим русским учёным клеток-макрофагов нет никаких «претензий», то утверждение об открытии им нейтрофилов выглядит весьма сомнительно. Дело в том, что оно явно «модернизирует» исторический факт: И.И. Мечников ни о каких нейтрофилах понятия не имел (ни названия такого не употреблял, ни о подразделении гранулоцитов на разные группы не знал – это было выяснено значительно позже). Сверх того, ведь, как мы говорили, фагоцитоз присущ не только нейтрофилам (это их основная функция), но и эозинфилам (это не основная их функция, но её они тоже выполняют). Следовательно, Илья Ильич мог наблюдать фагоцитоз, осуществляемый не только нейтрофилами, но и эозинфилами, и под введённый им термин «микрофаги» могли попадать и те, и другие. Поэтому нам представляется более правильно не впадать в «осовременивание» истории научных открытий, а быть историчными и попросту точными (это как общий принцип) и говорить в данном конкретном случае об открытии И.И. Мечниковым фагоцитоза, осуществляемого макрофагами и микрофагами.

Макрофаги (моноциты). Сохранившие официально своё название со времён Мечникова фагоциты.

Сразу отметим следующий нюанс. Понятия «моноцит» и «макрофаг» – не полные синонимы. Да, всякий макрофаг – моноцит. Но не всякий моноцит – макрофаг. Строго говоря, моноциты – это клетки-предшественники макрофагов, их непосредственные «прародители». Но об этом немного ниже.

Моноциты – агранулоциты и мононуклеары. Т.е. их цитоплазма не содержит гранул-зёрен, и ядро у них – несегментированное. Этими особенностями своего строения моноциты близки к большинству лимфоцитов, являющихся именно агранулоцитами (за исключением NK-клеток), и всем без исключения лимфоцитам, являющимся мононуклеарами.

Ядерно-цитоплазматическое соотношение у моноцитов – 1:1. Отсюда, очевидно, и произошло их название (от греческого «моно» один и от греческого «цитос» клетка).

Цитоплазма моноцитов богата лизосомами, которые содержат литические ферменты.

Если по особенностям строения (агранулоциты, мононуклеары) моноциты кажутся «близкими родственниками» лимфоцитов, то их происхождение выдаёт гораздо более «близкое родство» с гранулоцитами. Моноциты образуются в костном мозге из стволовых клеток миелоидного ряда (как и гранулоциты), только из их моноцитарно-макрофагального ростка. В сравнении со своими «родственниками»-гранулоцитами они действительно великаны – 18 – 20 микрон в диаметре, т.е., примерно, в три раза больше гранулоцитов.

Из костного мозга моноциты сразу попадают в кровь, где продолжается их созревание, но и там оно не заканчивается. Причём, в отличие от гранулоцитов, резервов моноцитов в костном мозге не существует. Правда, часть моноцитов в нём всё-таки остаётся и здесь «дозревает», превращаясь уже собственно в макрофаги. Но эта группа – вовсе не резерв. Для этих макрофагов костный мозг – место их «постоянной боевой службы», т.е. они выполняют функцию защиты данного органа.

Часть моноцитов остаётся в крови. Они либо циркулируют по ней, либо «стоят», примыкая к сосудистой стенке. Причём, последних примерно в 3,5 раза больше, чем первых.

Но большинство моноцитов мигрирует в различные ткани организма. Именно здесь они окончательно «дозревают» – трансформируются в тканевые макрофаги. В тканях макрофагов-моноцитов в 25 раз больше, чем в крови. Т.е. макрофаги костного мозга, о которых говорилось чуть выше, – это также тканевые макрофаги.

Больше всего тканевых макрофагов содержится в печени (около 56%), в лёгких их около 15%, селезёнке – около 15%, перитонеальной полости – около 8%. «Остаток» приходится на остальные ткани.

Главная функция, которую выполняют макрофаги – фагоцитоз. Они способны поглощать бактерии, простейших, вирусы, крупные инородные частицы и умершие клетки, очищая от последних организм. В отличие от гранулоцитов-микрофагов, макрофаги, фагоцитируя патоген, не погибают (их гибель возможна только при наличии у фагоцитированного материала каких-либо токсичных для макрофага свойств).

Фагоцитоз – типичнейшее проявление клеточного иммунитета (клеточного иммунного ответа). Таким образом, макрофаги (моноциты) – типичные клетки, обеспечивающие этот вид иммунитета.

Однако выполняют они и ещё одну функцию: презентуют на своей поверхности части поглощённых и переваренных ими патогенов. Эта презентация антигена активизирует иммунный ответ со стороны Т-лимфоцитов (ещё одних представителей именно клеточного иммунитета) и В-лимфоцитов, которые начинают выработку специфических антител. А вот это уже гуморальный уровень иммунитета, более того – иммунитет не врождённый, а приобретённый.

Т.е. одна и та же клетка обеспечивает и клеточный, и отчасти гуморальный иммунный ответ. И, кроме того, является частью как врождённого, так и приобретённого иммунитета. Перед нами яркая иллюстрация того, что разделение иммунитета на клеточный и гуморальный уровни во многом условно. Во всяком случае, эти уровни тесно взаимосвязаны. А также и пример того, что связаны между собой теснейшим образом также и врождённый, и приобретённый виды иммунитета (то, о чём мы говорили несколько выше, повествуя о «противостоянии» школ Эрлиха и Мечникова, и о чём ещё поговорим более подробно).

Сейчас же отметим ещё одно обстоятельство. В своё время открыватель явления фагоцитоза И.И. Мечников, наблюдая, как действуют макрофаги, пришёл к выводу, что они появляются непосредственно в органах, в них превращаются определённые клетки соединительной ткани (например, купферовские клетки печени, клетки эндотелия капилляров некоторых органов, гистоциты рыхлой соединительной ткани), а также моноциты крови. И.И. Мечников предложил назвать систему этих клеток ретикуло-эндотелиальной системой (РЭС). Позже в честь замечательного русского учёного ей дали также название системы макрофагов Мечникова.

Долгое время учение о РЭС не оспаривалось. Но наука идёт вперёд. И, как мы уже описали выше, сейчас известно, что макрофаги не рождаются в различных органах из клеток соединительной ткани. Место их рождения – клеточный мозг, откуда они мигрируют в кровь, а уже из последней проникают в ткани различных органов, где и происходит процесс их «дозревания» из моноцитов в собственно макрофаги. И.И. Мечников совершенно верно увязал моноциты крови с макрофагами, но ошибся относительно источника их появления в тканях других органов. Т.е. сейчас представление о РЭС как системе клеток различных органов, перерождающихся в макрофаги, – устарело. В наше время говорят лишь о системе мононуклеарных фагоцитов, т.е. системе макрофагов, по сути. Однако из этого нового официального наименования почему-то исчезло имя Мечникова, что мы считаем абсолютно недопустимым. Первооткрыватель фагоцитоза, выяснивший его происхождение и значение в защите организма, установивший наличие самой системы макрофагов в тканях организма, вполне заслужил, чтобы эта система носила его имя – система макрофагов (или система мононуклеарных фагоцитов) Мечникова. Ошибка же учёного в определении места зарождения макрофагов-моноцитов – лишь иллюстрация сложности, тернистости пути научного познания, никоим образом не отменяющая подлинных заслуг учёного, его открытий, в том числе и конкретно открытия системы макрофагов.

Таким образом, к системе клеточного иммунитета необходимо относить деятельность следующих клеток (все они – лейкоциты): Т-лимфоцитов, нулевых лимфоцитов, NK-клеток (натуральных киллеров), гранулоцитов-микрофагов (нейтрофилов и эозинфилов), моноцитов-макрофагов. Если во времена И.И. Мечникова и долгое время позже клеточный иммунитет сводился к фагоцитозу, т.е. к фагоцитам, то сейчас известно, что перечень клеток, обеспечивающих данный уровень иммунного ответа организма, значительно шире. И действуют они не только посредством фагоцитоза, но уничтожают вторгшийся патоген и другими способами.

Итак, повторим, клеточная иммунная защита связана с деятельностью иммунокомпетентных клеток, которые вступают с патогеном в непосредственный контакт и тем или иным способом уничтожают его.

Приобретённый иммунитет. Необходимо сказать, что на данный момент термин «приобретённый иммунитет» считается устаревшим. Вместо него в науке используется термин «адаптивный иммунитет».

Со своей стороны скажем, что с подобной заменой терминов не согласны. И вот почему. В самом деле, что такое адаптивный иммунитет? «Адаптивный» значит «приспособительный». Т.е. это иммунитет, который организм приобрёл, приспосабливаясь к условиям борьбы с каким-то новым для организма патогеном. Или, другими словами, иммунитет, который служит цели защиты организма от какого-то неизвестного ранее организму возбудителя заболевания.

Легко заметить, что в первом определении ключевым словом является слово «приобрёл», т.е. речь идёт всё-таки о приобретённом иммунитете (и тогда неясно, зачем его переименовывать в адаптивный).

Во втором же определении ключевым является указание на функцию – служит цели защиты от неизвестного патогена. Но здесь, во-первых, возникает логическое противоречие, т.к. логический ряд выстраивается из разнородных понятий. Действительно, ряд «врождённый, адаптивный» подобен ряду «синий, красный, квадратный». Термин «врождённый» указывает на происхождение иммунитета, а термин «адаптивный» – на его функцию. Во-вторых, всякий иммунитет адаптивный, даже врождённый, ибо данный иммунитет – это эволюционно возникшая у организма постоянная защита, позволившая ему приспособиться (адаптироваться) к жизни в условиях, когда некоторые микроорганизмы стали стремиться на нём паразитировать, т.е. стали для него патогенами.

Исходя из вышеизложенных соображений, повторяем, что считаем правильным употребление термина «приобретённый иммунитет».

Итак, приобретённый иммунитет – это иммунитет, который развивается у организма в течение жизни.

В данном случае разговор не будет идти о пассивном приобретённом иммунитете новорождённого (т.н. плацентарном или материнском), который исчезает у младенца после полугода.

Нас интересует иммунитет, возникающий у организма после проникновения в него патогена в ходе инфекционного процесса (постинфекционный иммунитет) или в результате искусственного введения в него ослабленного или мёртвого патогена (поствакцинальный иммунитет). Реакция организма в обоих случаях одинакова: главный защитный механизм – выработка антител.

Но при этом, как отмечают учёные, в общем-то, в организме действуют те же регуляторные механизмы, что и при врождённом иммунитете, т.е. процессы выделения, фагоцитоз, реактивность организма в целом, защитные свойства кожи и слизистых оболочек. Образование антител, которое считается специфической формой защиты, также можно рассматривать с точки зрения физиологических функций организма.

Таким образом, невосприимчивость организма обусловлена сложным комплексом защитных реакций, которые развиваются в целостном организме и неотделимы от общих физиологических закономерностей и механизмов. Подобно другим функциям организма, приобретённый иммунитет развивается в результате взаимоотношений организма с внешней средой. И тогда совершенно ясно, что теснейшим образом связаны между собой иммунитеты врождённый и приобретённый. Каждый из них – часть единого целого. Они действуют сообща. Для советской биологической и медицинской наук, шедших по стопам И.И. Мечникова, развивавших его взгляды, это было совершенно очевидно. Для науки западной всё это явилось своеобразным откровением. Но об этом чуть ниже. А сейчас вернёмся непосредственно к механизмам приобретённого иммунитета.

Для того, чтобы в организме начал вырабатываться главный элемент приобретённого иммунитета – антитела, необходимо внедрение в организм патогена, защиты от которого не обеспечивают механизмы врождённого иммунитета. В этом смысле данный патоген можно назвать новым для организма (конечно, новым – условно, т.к. новым в полном смысле этого слова он будет только при первом внедрении в организм; в дальнейшем организм его уже будет знать).

Всякий патоген для макроорганизма является антигеном (даже набором антигенов), т.е. в дословном переводе «чужеродным».

Антигены бывают полноценными и неполноценными.

Полноценные антигены способны вызывать образование антител и вступать с ними в реакцию, в результате которой антиген в той или иной степени обезвреживается (т.е. становится неопасным для организма). Полноценными антигенами являются, главным образом, вещества белковой природы.

Неполноценные антигены, или гаптены, вступают в реакцию с антителами, но не способны вызвать в организме образование антител. Неполноценными антигенами являются липоиды (т.е. жиры), высокомолекулярные углеводы и ряд других веществ. Гаптены становятся полноценными антигенами, т.е. приобретают способность вызывать образование антител, при добавлении к ним некоторого количества белка.

Бактерийная клетка состоит из полноценных антигенов – белков и неполноценных антигенов. В настоящее время для большинства бактерий доказано существование двух основных антигенов: термолабильного (разрушающегося при температуре 80 градусов Цельсия), связанного со жгутиками, носящего название жгутикового, или Н-антигена, и термостабильного (не разрушающегося при температуре 80 – 100 градусов Цельсия), связанного с цитоплазмой бактерий, так называемого соматического, или О-антигена. С потерей подвижности бактерией Н-антиген утрачивается. При иммунизации подвижными бактериями получаются антитела и к тому, и к другому антигену, причём, прежде всего, антитела к жгутиковому, а затем к соматическому антигену.

У брюшнотифозной палочки, у бактерий, вызывающих пищевое отравление, помимо Н- и О-антигенов, установлен ещё один особый антиген – антиген вирулентности (Vi-антиген).

Вирусы, как и другие микроорганизмы, обладают антигенными свойствами. Однако установлено, что антитела при внедрении вирусного патогена в организм образуются далеко не всегда. Несмотря на это, организм справляется с вирусной инфекцией в значительном количестве подобных случаев. Другими словами, механизм противовирусного иммунитета имеет определённые особенности.

Антитела – вещества белковой природы, образующиеся в организме в результате внедрения в него антигена.

Выше мы говорили, что антитела в небольшом количестве содержатся в крови здоровых, неиммунизированных людей. Это т.н. нормальные (естественные) антитела. Но интенсивно антитела начинают образовываться в организме в результате инфекции или иммунизации.

Антитела характеризуются тем, что соединяются только с теми антигенами, против которых они выработаны. Это явление получило название специфичности.

Как нам представляется, о специфичности антител надо говорить не в «точечном» смысле, имея в виду каждый раз вполне конкретную инфекцию, а в смысле определённого «интервала», в котором антитела могут образовываться на целый ряд близких (родственных) инфекций.

И тем не менее специфичность – это свойство, которое отличает приобретённый иммунитет от врождённого, основным признаком которого является как раз неспецифичность, проявляющаяся на всех уровнях действия последнего.

Антитела вступают в определённую реакцию с антигеном, которая характеризуется различными внешними проявлениями. Другими словами, антитела могут оказывать на антигены различное действие:

1) Агглютинация. Склеивание антителами микробов с последующим выпадением последних в осадок. Такие антитела называются агглютининами.

Защитное действие агглютининов надо признать ограниченным, поскольку многие агглютинированные микробы не погибают, а лишь теряют свою подвижность. При этом они не только остаются живыми, но и могут продолжать размножаться. Однако собранные в кучки микробы легче фагоцитируются и подвергаются воздействию других типов антител. Т.е. агглютинины участвуют в защите организма совместно с другими факторами иммунитета.

2) Бактериолиз. Растворение патогенных бактерий под действием антител. Такие антитела называются бактериолизинами.

Под влиянием бактериолизинов микробы лишаются подвижности, их тело разбухает, теряя типичную форму, и постепенно они превращаются в круглые образования (шары) и затем в аморфную массу.

При этом бактериолизины действуют на антиген совместно с комплементами, т.е. веществами белкового характера (см. выше), способствующими бактериолитическому действию антител. Комплементы, подобно ферментам, ускоряют реакцию, но при этом, в отличие от последних, связываются и непосредственно участвуют в реакциях в определённых количествах.

3) Бактерицидное действие. Ряд антител убивает бактерий. Их называют бактерицидные антитела. Однако бактерицидное и бактериолитическое действие антител – один и тот же процесс. И по какой схеме пойдёт воздействие антитела на микроба, зависит не от свойств антитела, а от особенностей микроба.

При бактерицидном действии сыворотки, содержащей антитела, наступает только гибель микробов. При этом микробы претерпевают сравнительно небольшие морфологические изменения (в этом заключается отличие от случая, когда сыворотка оказывает бактериолитическое действие).

4) Преципитация. Антитела могут при соприкосновении с антигеном вызывать образование осадка – преципитата. Подобные антитела именуются преципитинами. За этой реакцией может стоять как простое ослабление микробов, так и их гибель.

5) Нейтрализация ядовитого действия. Осуществляющие подобную функцию антитела – это антитоксины. Они появляются в сыворотке крови в ответ на выделение патогенами экзотоксинов.

6) Повышение фагоцитарной функции. Наличие подобного действия иммунной сыворотки на фагоциты заметил ещё И.И. Мечников. Вызывают такую реакцию два вида антител – опсонины (от латинского «opsono»приготовляю пищу) и бактериотропины (или просто – тропины). Опсонины – термолабильные антитела, т.е. легко разрушаются при малейшем нагревании сыворотки. В отличие от них, бактериотропины (тропины) – термостабильны. И те, и другие действуют только в присутствии комплемента.

7) Нейтрализация вирусов. Считается отдельной функцией антител. Выполняют её вируснейтрализующие антитела.

Какие бы функции ни выполняли антитела, по какому бы принципу они ни действовали, все они являются белками группы глобулинов, точнее – иммуноглобулинов (условное обозначение – Ig).

Известно пять классов иммуноглобулинов человека: G, M, A, D, E. (условные обозначения соответственно – IgG, IgM, IgA, IgD, IgE). Они все являются антителами к каким-либо антигенам.

Ранее предполагалось, что каждому из видов воздействия антител на антигены соответствует определённый тип антител. Однако впоследствии оказалось, что тип реакции «антиген – антитело» определяется во многом физическими свойствами антигена.

И тем не менее определённая «специализация» между типами иммуноглобулинов существует.

Молекулы иммуноглобулинов всех классов построены из полипептидных цепей двух видов: лёгких (L), с молекулярной массой около 22 000, одинаковых для всех классов иммуноглобулинов, и тяжёлых (Н), с молекулярной массой от 50 000 до 70 000, в зависимости от класса иммуноглобулина. Структурные и биологические особенности каждого класса (в том числе и особенности взаимодействия с антигенами), таким образом, обусловлены особенностями строения их тяжёлых цепей.

Каждое антитело способно распознавать не только уникальный элемент какого-либо патогена, отсутствующий в организме, т.е. антиген, но и, в пределах данного антигена, – определённый его участок – эпитоп. Именно с ним и вступают в реакцию активные центры антител – паратопы.

Подобная специфичность антител обусловлена вариабельностью отдельных участков как тяжёлых, так и лёгких цепей иммуноглобулинов (эти участки обозначаются –V). При этом в цепях есть и постоянные (константные) участки (обозначаются – С). В молекуле иммуноглобулина образуются два типа антигенсвязывающих фрагментов – т.н. Fab (их два) и Fc. Fab отвечает непосредственно за связывание эпитопов антигена, а Fc может связывать комплемент и взаимодействовать с клеточными рецепторами макрофагов, моноцитов, гранулоцитов, лимфоцитов.

Классы иммуноглобулинов IgG, IgD, IgE и в значительной степени IgA по своему строению (морфологии) – т.н. мономеры – имеют вид буквы «Y». Среди IgA есть подкласс димеров, имеющих форму соединённых между собой под углом 180 градусов двух букв «Y» (т.н. секреторные IgA).

Наконец, IgM – это большие иммуноглобулины – пентамеры, т.е. имеющие форму пяти соединённых между собой букв «Y» (похожи на снежинку).

Антитела, являющиеся иммуноглобулинами М (IgM). Как полагают учёные, IgM – наиболее эволюционно древние иммуноглобулины. Предположение вполне логичное и обоснованное, учитывая то обстоятельство, что именно иммуноглобулинами М являются в значительной степени нормальные (или естественные) антитела, присутствующие даже в неинфицированном организме и представляющие собой часть (один из элементов) неспецифического врождённого гуморального иммунитета.

Именно IgМ синтезируются на первой стадии иммунной реакции при первом проникновении микроорганизма-патогена в организм (или в том случае, если у организма на этот патоген «плохо работает память»). Процесс их синтеза достаточно длительный – иммунной системе надо время, чтобы распознать возбудителя, оптимальным путём отреагировать на него и защититься.

При разных инфекциях процесс образования IgМ занимает разное время. Скажем, при гриппе и ОРВИ – примерно неделю. За это время IgM синтезируются и побеждают вирус (если с иммунитетом у человека всё в порядке). Лечебные же мероприятия играют здесь исключительно вспомогательную роль. Отсюда-то шутка врачей про грипп и ОРВИ: «Если будешь лечить – пройдёт за неделю, не будешь – пройдёт за семь дней». При других инфекциях процесс выработки иммуноглобулинов М и их борьба с патогенами может занимать недели, месяцы (гепатиты, боррелиоз), а то и годы (скажем, в случае ВИЧ).

IgМ – большие иммуноглобулины-пентамеры (самые большие из иммуноглобулинов), настоящие «боевые» молекулы, имеющие различные агрессивные к вторгнувшимся патогенам рецепторы. Их молекулярная масса 900 000. Из иммуноглобулинов сыворотки IgМ составляют 5 – 10%.

Активность иммуноглобулинов класса М чрезвычайно велика, спектр действий – широк. Они обладают протеолитической активностью, т.е. могут растворять (расщеплять) молекулы патогенов (лизис). Могут убивать микроорганизмы-патогены, причём в одиночку, без участия других механизмов (бактерицидное действие). Высоки их агглютинирующий и опсонирующий эффекты. Также они активируют систему комплемента. Словом, IgM – «универсальные солдаты».

Антитела, являющиеся иммуноглобулинами G (IgG). Это основной класс антител, составляющий 70 – 80% от всех иммуноглобулинов сыворотки крови. В процессе первичного иммунного ответа (после первого введения антигена) они появляются позднее IgM-антител, но образуются раньше при вторичном иммунном ответе (т.е. после повторного введения антигена; правда, при условии, что организм этот антиген «запомнил»). Другими словами, IgG – это и есть антитела «памяти» организма на тот или иной патоген. Однако примечательно, что, как выяснилось, IgG есть и среди нормальных антител, т.е. они также входят в систему неспецифического врождённого иммунитета.

IgG гораздо меньше IgM. Они являются мономерами в виде буквы «Y» с молекулярной массой около 160 000. Тем не менее эти иммуноглобулины обладают довольно значительным набором функций (что и делает их основным классом иммуноглобулинов, обеспечивающих приобретение организмом иммунитета к неизвестным ранее ему патогенам). В их «ведении» находится, в основном, та самая специфичность антител, т.е. реакция на конкретный патоген. Несмотря на свой малый размер, в сравнении с IgM, IgG обладают высокой литической и бактерицидной способностью (причём могут убивать патогены также, как и IgM, без участия других иммунных механизмов). И пусть эти функции выражены у них слабее, чем у IgM, но, учитывая количество IgG, суммарный эффект получается весьма мощным. Сверх того, иммуноглобулины класса G активируют систему комплемента. Это единственный класс антител, который может проникать через плаценту и обеспечивать иммунологическую защиту плода.

Антитела, являющиеся иммуноглобулинами А (IgA). Составляют 10 – 15% от сывороточных иммуноглобулинов. Молекулярная масса – 170 000 и выше. Мономеры составляют около 80% от их количества, димеры – около 20%.

Способностью активировать комплемент IgA не обладают. Зато обладают протеолитической активностью.

Большая часть IgA играют роль «местной защиты», т.к. синтезируются плазматическими клетками, находящимися преимущественно в подслизистых тканях, на слизистой эпителиальной поверхности дыхательных путей, урогенитального и кишечного тракта, почти во всех экскреторных железах. В общую циркуляцию попадает меньшая часть IgA.

Антитела, являющиеся иммуноглобулинами Е (IgE). Молекулярная масса – 196 000. В сыворотке оказываются в крайне незначительных количествах. Также их очень мало в секреторных жидкостях. Доля от всех иммуноглобулинов – от 0,001 до 0,003%. Не обладают ни литической, ни бактерицидной активностью, не активируют систему комплемента. Особенность IgE состоит в том, что они способны фиксироваться на базофилах и тучных клетках (разновидности базофилов, находящейся в соединительных тканях), что объясняется наличием на указанных клетках большого количества рецепторов к Fc-фрагментам IgE. При соединении фиксированных на тучных клетках или базофилах иммуноглобулинов Е с антигеном возникает процесс дегрануляции этих клеток (напомним, что базофилы и тучные клетки (разновидность базофилов) являются гранулоцитами), в результате чего высвобождается гистамин. Это приводит к развитию гиперчувствительности немедленного типа (другими словами, к аллергической реакции). Поэтому ранее IgE назывались реагинами. Сейчас данное название признано устаревшим.

Выше уже говорилось, что базофилы и тучные клетки отвечают за гиперчувствительность организма. Так вот, оказывается, эту функцию они выполняют не сами по себе. Их «стимулируют» к этому иммуноглобулины класса Е. Т.е. мы вновь наблюдаем связь клеточного и гуморального иммунных ответов, а также врождённого и приобретённого иммунитетов.

Антитела, являющиеся иммуноглобулинами D (IgD). Молекулярная масса – около 180 000. Составляют всего 0,3% от общего количества иммуноглобулинов. Т.е. IgD так же, как и IgE, немного (хотя и больше последних примерно в 10 раз). Роль иммуноглобулинов D на настоящий момент не совсем ясна учёным. Однако известно, что они в качестве рецепторов присутствуют на поверхности В-лимфоцитов. Причём они появляются на мембране относительно зрелых клеток. Поэтому их наличие является свидетельством зрелости В-лимфоцитов.

Все без исключения классы иммуноглобулинов, т.е. все антитела, вырабатываются В-лимфоцитами.

Процесс этой выработки выглядит следующим образом 4.

Поверхность зрелых В-лимфоцитов покрыта густым слоем отростков, являющихся антиген-распознающими рецепторами. Эти рецепторы, «заякоренные» (существует такой почти официальный термин в иммунологии), представляют собой, как нам уже известно, иммуноглобулины класса D, т.е. антитела. Факт сам по себе очень интересный. Получается, что В-лимфоциты вырабатывают определённое количество антител, в общем-то, без непосредственного участия антигена. Повторяем, в данном случае о нормальных (естественных) антителах, участниках системы врождённого неспецифического гуморального иммунитета, мы речь не ведём. Но даже непосредственные участники системы приобретённого иммунитета, т.н. специфические антитела, появляются в какой-то части без антигенной стимуляции. Это – рецепторы В-лимфоцитов, являющиеся IgD.

Обычно утверждается, что эти рецепторы ориентированы на соответствующие антигены. Утверждение как верно, так и не верно. Весь вопрос в том, что понимать под словами «специфичность» и «соответствующий антиген».

В своё время Эрлих и его последователи полагали, что на клетках крови, отвечающих за выработку антител (тогда не только не знали о В-лимфоцитах, но и о лимфоцитах вообще; так что, разговор о клетках, вырабатывающих антитела, шёл гипотетически-теоретический, это была лишь гипотеза), есть некие рецепторы, каждый из которых отвечает за распознание строго конкретного антигена. Однако потенциальных возбудителей заболеваний в окружающей среде существует великое множество (и не перечесть!). Тогда какое же количество рецепторов должно содержаться на клетках, синтезирующих антитела? Да и откуда они могли там взяться, если организм с какой-то инфекцией не был ранее знаком (иммунитет-то приобретённый)? Это были вопросы, на которые ни Эрлих в своё время, ни его последователи значительно позже ответить не могли. И указанные слабые места прекрасно видел И.И. Мечников и его последователи, выдвигая на первое место в иммунном ответе организма фагоцитоз.

Подобные вопросы вполне можно было бы адресовать и современным учёным, говорящим о специфичности и ориентированности на соответствующие антигены антител-рецепторов В-лимфоцитов.

Но сейчас ответ на такие вопросы отчасти уже есть. Рецепторы В-лимфоцитов (и не только их) распознают не конкретный патоген (антиген), а инвариантные химические структуры, характерные для целого класса патогенов. Т.е., можно сказать, работают в «определённом диапазоне». Например, какие-то рецепторы распознают грамотрицательные бактерии, какие-то – грамположительные, какие-то – определённые типы вирусов, какие-то – грибковые инфекции, какие-то – белки одноклеточных паразитов и т.д. и т.п.

Словом, если читатель где-то встречает утверждение об «ориентированности рецепторов В-лимфоцитов на соответствующие (конкретные) антигены», он должен понимать, что речь идёт об «определённом диапазоне».

Правда, не совсем ясно появление даже «диапазона в работе» антител-рецепторов В-лимфоцитов. Как могла появиться их реактивность даже в пределах подобного «люфта»? Свидетельствует ли это о прошедшем когда-то очень давно контакте вида с инфекцией из соответствующего «диапазона»? На эти вопросы убедительного ответа пока нет.

Но всё же вернёмся непосредственно к процессу выработки антител В-лимфоцитами.

Итак, выработанные В-лимфоцитами антитела-рецепторы (IgD) находятся на «боевом дежурстве». Их активация, за которой следуют трансформации В-лимфоцитов, происходит при внедрении в организм антигена.

Первичный иммунный ответ на внедрение «нового» антигена (или антигена, который был «забыт» организмом, и, следовательно, «кажется» ему «новым») включает несколько этапов:

1-й этап латентная (т.е. скрытая) фаза. Она длится несколько суток (как правило, не менее четырёх дней) с момента внедрения антигена. В этот период происходит фагоцитоз антигена. Т.е. макрофаги, находящиеся в тканях организма, как сказали бы ранее – клетки ретикуло-эндотелиальной системы, поглощают антигены и перерабатывают их. При этом они презентуют часть антигена на своей поверхности. Этот антиген распознаётся иммуноглобулиноподобными рецепторами Т-лимфоцитов-помощников, т.е. Т-хелперов. Сходные с антигеном молекулы отрываются от рецепторов Т-хелперов и присоединяются к макрофагам через свои Fc-участки. Таким образом, на макрофагах образуется «удвоенная обойма» антигенных молекул, которая, в свою очередь, распознаётся специфическими рецепторами В-лимфоцитов. После получения подобного «массированного» «удвоенного» сигнала антиген распознаётся В-лимфоцитами, которые начинают свою дифференциацию в плазматические клетки и В-клетки памяти. Таким образом, чтобы процесс иммунного ответа «запустился», в «обычном» случае требуется двойное распознавание антигена: Т-хелперами и В-лимфоцитами. Последним для распознавания требуется «удвоенная доза» антигена, «удвоение» которой как раз и обеспечивается Т-хелперами.

На 2-м этапе (лог-фазе) плазматические клетки, образовавшиеся из мигрировавших в лимфатические узлы, селезёнку, костный мозг и остающихся в крови В-лимфоцитов, начинают активную выработку специфических антител. Удвоение количества вырабатываемых антител происходит каждые 2 – 4 часа. Максимум выработки достигается на 10 – 12 сутки. Первоначально синтезируются антитела, относящиеся к иммуноглобулинам класса М, т.е. те самые «универсальные бойцы», которые способны дать организму максимальную защиту. При максимальной выработке антител происходит постепенное переключение их синтеза с группы М на группу G.

Далее, на 3-м этапе (кто-то говорит о 3-м и 4-м этапах) происходит снижение количества вырабатываемых антител. Организм входит в состояние гомеостаза, т.е. равновесия.

Ещё раз подчеркнём, что при первичном иммунном ответе основная масса вырабатываемых антител – это иммуноглобулины М. Переключение на выработку IgG происходит на завершающих этапах первичного иммунного ответа.

Подобный эффект вполне объясним: при приближающейся победе над инфекцией организму становится не только не выгодно, но просто опасно «содержать большую армию до зубов вооружённых бойцов» (IgM). Они, чего доброго, при недостатке питания могут начать «пожирать» «своих». Поэтому организм производит своеобразную «демобилизацию» наиболее «боевых отрядов», т.е. IgM, – он начинает вырабатывать IgG. Более того, IgM распадаются, образовывая IgG.



Поделиться книгой:

На главную
Назад