Петр Путенихин
Исследование переменных параметров Хаббла
Введение
Существует предположение, что Вселенная расширяется в наши дни с ускорением, а в более далёком прошлом, напротив, она расширялась замедленно. Какими наблюдениями можно подтвердить это? Считается, что одним из главных аргументов, обосновывающих ускоренное расширение Вселенной, является пониженная яркость дальних сверхновых. Однако это правило выглядит довольно необычно. В самом деле, если они более тусклые, то они находятся дальше, что соответствует скорее их более быстрому удалению в прошлом. Хотя приведённое правило "тусклый-дальний" в целом корректно, правильнее всё-таки говорить, что при ускоренном расширении сверхновые имеют
Давно замечено одно интересное и важное свойство математики – делать верные описания нашего мира, предсказания, на первых порах кажущиеся буквально выдумками:
"… почему математика столь эффективна при описании нашего мира и столь хорошо описывает его эволюцию? … Почему эти правила так хорошо работают?" (Линде)
Вряд ли следует слишком уж сильно этому удивляться. Эта математика так хорошо работает просто потому, что мы и вывели её из прямых наблюдений за окружающей действительностью. Эффективно работает, значит, верно подсмотрели. Более того, в науке и в физике, в частности, уже давно замечена еще одна интересная закономерность: кажущиеся поначалу абстрактными математические выражения, уравнения вдруг оказываются описанием какого-нибудь вполне реального явления:
"… физики обнаруживают, что математические построения, необходимые им для описания нового класса явления, уже исследованы математиками по причинам, не имеющим ничего общего с обсуждаемыми явлениями" (Виленкин).
Однако даже при таком явно полезном подходе следует все-таки быть предельно осторожным при формулировке выводов и следствий из этих математических построений. Можно привести ряд примеров, когда такие выкладки приводят не просто к противоречиям со здравым смыслом, но к довольно заметным противоречиям с логикой, содержат логические ошибки.
В предлагаемой работе мы покажем, что математические выводы в физике во многом зависят как от их последующей трактовки, так и от предположений, оснований, исходных положений, использованных в процессе получения этих выводов. Вообще говоря, это очевидно: если изменить исходные положения, заявить истинными другие, выводы также будут иными, а то и противоположными. Но какие из этих взаимоисключающих выводов верны?
Нас интересуют логические построения, послужившие основой для утверждения об ускоренном расширении Вселенной, опирающиеся на факт пониженной яркости дальних сверхновых. Поскольку детали этой логики нам неизвестны, мы проведём собственные построения, пытаясь прийти к такому же выводу, утверждению.
В дальнейшем мы используем следующую систему обозначений. Все дистанции мы измеряем в миллиардах световых лет, а время – в миллиардах лет. В этом случае скорость света равна единице. Обозначение шкалы скоростей
У переменных, параметров и графиков нижние индексы состоят из букв и их комбинаций: a – ускорение (accelerate); d – замедление (decelerate); s – условная стационарность, на отдельном участке; о – неизменный, обычный, традиционный. Например, ad – обозначает ускорение – замедление и наоборот. Возможны и более длинные индексы, поскольку некоторые параметры на всём протяжении состоят из нескольких участков: ada – ускорение, замедление, ускорение. Последний индекс – o, по сути, является эквивалентом нуля, используемый просто для удобства записи. То есть, Ho и H0 – это один и тот же параметр Хаббла в нашей Вселенной. Некоторые параметры имеют отдельные обозначения: Rф – график движения фотонов в системе отсчёта сверхновой; Rco – путь, пройденный фотонами по их измерениям; Rc и Vc – графики движения условного источника фотонов, пройденный им путь и его скорость.
Большинство параметров на приводимых диаграммах зависят от времени, однако эту зависимость в их обозначениях для краткости мы чаще всего опускаем.
Все рассмотренные Вселенные и параметры их расширения являются вымышленными, условными и имеют к настоящей, нашей Вселенной лишь качественное, демонстрационное отношение. При этом на одной диаграмме для сопоставления будут изображены параметры движения сразу нескольких Вселенный, никак не связанных друг с другом.
Переменные параметры Хаббла
В основу всех построений, в качестве базового, фундаментального принципа мы положим закон изменения во времени параметра Хаббла. Именно он определяет скорость расширения Вселенной. Скорость его изменения во времени, собственно, и является показателем, эквивалентом ускоренности расширения пространства. Параметр Хаббла неявно, но всегда присутствует на диаграммах Хаббла, зависимости R(
Закон Хаббла и соответствующие ему диаграммы можно представить в трёх вариантах. Это: а) теоретический, действительный закон, в реальности – экстраполяционный, б) наблюдаемый и в) условный, для начальных удалённостей объектов. Экстраполяционный характер теоретического закона заключается в том, что эта диаграмма строится на основе наблюдений в ближайшей области пространства, после чего неограниченно продляется.
Определить значение параметра Хаббла в прошлом на основе
Напротив,
Рис.11.1. Графики изменения во времени параметров Хаббла.
Первый из них, параметр Hd в своей Вселенной убывает от произвольно выбранного значения порядка 2H0 до современного значения H0. Сразу же отметим, что при рассмотрении
Построим диаграммы Хаббла для расширения Вселенной с каждым из этих параметров, используя выведенный в предыдущих разделах алгоритм определения удалённости объектов с учётом времени в пути света от них до наблюдателей на Земле. Для наглядности изобразим диаграммы с приведёнными на рис.11.1 параметрами на одном рисунке: Ro для равномерно расширяющейся Вселенной с параметром H0; Rd для Вселенной, расширяющейся замедленно с убывающим параметром Хаббла Hd; диаграмму Ra для Вселенной с параметром Ha, возрастающим от некой произвольной малой величины до современного значения, и теоретическую диаграмму Хаббла R(
Рис.11.2. Наблюдаемые диаграммы Хаббла для Вселенных с параметрами H0, Hd и Ha.
На рисунке чёрный график R(
Как видим, взаимное положение графиков, диаграмм Хаббла сохранилось, но теперь ни один из них не является прямой линией, как на рис.11.1 и как на стандартной диаграмме. При этом замечаем, что графически при некоторой произвольной скорости сверхновой параметр Хаббла H0 для красного графика
Эти неравенства соответствуют изначально принятым нами условиям. Отмеченные обстоятельства, соотношения мы определённо можем трактовать так, будто при за
Рис.11.3. Наблюдаемые диаграммы Хаббла, графики времени и начальных удалённостей сверхновых для Вселенных с параметрами H0, Hd и Ha.
Теперь на рисунке можно заметить отмеченную выше небольшую неточность в интерпретации пары параметров яркость-скорость (удалённость), в формулировке "тусклая, поэтому более далёкая". Правильнее всё-таки говорить "яркая, но медленная", то есть, хотя сверхновая более яркая, но движется она медленнее, чем это следует из стандартного закона Хаббла, его диаграммы. Из этого сразу же следует, что с момента вспышки в ускоренно расширяющейся Вселенной сверхновая удалилась на
Действительно, сравним две сверхновые: в ускоренной и равномерной Вселенных, вспыхнувшие в один и тот же момент времени Ta= To= T12= 12 млрд. лет назад. По графикам на рис.11.3 видим, что ускоренная сверхновая в момент вспышки находилась на удалении r12 ~ 10,5 млрд. световых лет, а в момент наблюдения – на удалении R12 = 12 млрд. световых лет. Следовательно, за 12 млрд. лет сверхновая "прошла путь", равный R12 – r12 ~ 1,5 млрд. световых лет. Соответственно, находим для сверхновой в равномерно расширяющейся Вселенной: r12=6, R12=10,5, откуда R12 – r12 ~ 4,5 млрд. световых лет. В ускоренно расширяющейся Вселенной сверхновая оказалась на большем удалении, поскольку она изначально находилась дальше, хотя и "прошла" меньший путь.
1. Наблюдаемые диаграммы Хаббла
Наблюдаемыми диаграммами мы называем диаграммы, построенные на основе
Для построения воспользуемся линиями трендов, позволяющими заменить графические построения аналитическим, на основе уравнений этих линий, что заметно упрощает процедуру. Поскольку у нас есть уравнения R(
Рис.11.4. Наблюдаемые параметры Хаббла в трёх разных Вселенных.
Обращаем внимание: хотя исходные законы изменени параметров Хаббла разнонаправленны (возрастание, убывание, рис.11.1), наблюдаемые законы их изменения на рис.11.4 все
2. Параметр Хаббла с изгибом
Проведённые выше исследования, таким образом, согласуются с известным утверждением, что при
Вместе с тем, пока неясно, что покажут наблюдения при "ломаном" изменении параметра Хаббла: его замедлении с последующим ростом и наоборот.
Для того чтобы выяснить, какими могут быть наблюдения Вселенной с таким ломаным параметром Хаббла, расширявшейся сначала замедленно, а затем ускоренно, вновь спроектируем ещё одну функцию изменения во времени соответствующего параметра Хаббла для некоторой условной Вселенной.
Требуемый параметр Хаббла в простейшем, условном виде скомбинируем из линейных отрезков, исходя из трёх контрольных точек. Первая – это начальное значение параметра Хаббла, вторая – точка изменения направления роста и третья – современное значение параметра.
Рис.11.5. Диаграммы Хаббла для Вселенных с H0 (штрих) и Hda. На врезке приведён параметр Хаббла Hda для условной Вселенной, расширяющейся сначала замедленно, затем ускоренно.
Точку излома установим в 8 млрд. лет от начала расширения, поскольку считается, что именно тогда началось ускоренное расширение нашей Вселенной, примерно 6 млрд. лет назад. Один из вариантов такого параметра Хаббла с изломом может иметь, например, вид, представленный на врезке на следующем рисунке. На рис.11.5 приведены диаграммы Хаббла – графики движения R(
Скорость, обозначенная как Vinv ~ 1,45с – это скорость, при которой яркость дальних сверхновых изменяется с повышенной (раньше) на пониженную (позже от начала расширения). Инверсия произошла через 1,5 млрд. лет после начала расширения, что видно по графикам Tо, Tda. Точка ΔRmax – это точка, когда
Рис.11.6. Зависимости от времени параметров Хаббла в ускоренной и равномерной Вселенной
На удалённостях ближе 12,5 млрд. световых лет сверхновые видны более тусклыми, они дальше. На ещё большей удалённости – более яркими. Этот момент времени, 12,5 млрд. лет назад для наблюдателя, на графиках является ничем не примечательной точкой, хотя в этот момент замедленное расширение сменилось ускоренным. На удалении 9 млрд. световых лет разница яркости сверхновых максимальна.
Используя рассмотренный выше алгоритм, построим по линиям трендов наблюдаемые графики изменения во времени параметров Хаббла – рис.11.6. Хотя излом, перегиб на рассмотренном параметре Хаббла выглядит несколько неестественно, рассмотренный вариант с его плавным изменением, тем не менее, привёл к графикам, не имеющим принципиальных отличий от рассмотренных.
Отметим это ещё раз явно: рассмотренные параметры Хаббла условно
На приведённых диаграммах мы видим, что в прошлом ускоренно двигавшиеся дальние сверхновые в наши дни видны более тусклыми. Действительно, их скорости соответствуют большей удалённости. Напротив, ещё более далёкие сверхновые видны более яркими, чем это следовало бы из стандартного закона Хаббла. Однако, на что следует обратить внимание, ближние сверхновые и галактики видны практически неразличимо одинаково яркими, независимо от их скорости в прошлом. Вывод об ускоренном расширении сделан на сопоставлении параметров движения
Мы умышленно сформировали такой закон изменения параметра Хаббла рис.11.5, на врезке, что с ним в наши дни Вселенная расширяется
Строго говоря, утверждать ускоренность или замедленность расширения Вселенной следует на основе данных именно по
Пониженная яркость дальней сверхновой по сравнению с её яркостью в равномерно расширяющейся Вселенной является свидетельством более быстрого расширения Вселенной в настоящее время, начиная со времени порядка 6 млрд. лет назад.
Вместе с тем
3. Проблема сверхсветового движения
Графики движения сверхновых со сформированным выше параметром Хаббла ускоренной Вселенной можно представить в следующем виде:
Рис.11.7. Графики движения сверхновой и света от неё в ускоренно расширяющейся Вселенной
На рисунке R(t) – это удалённость по времени сверхновой от Земли (или наоборот). Скорость разбегания сверхновой и Земли – V(t), на рисунке для лучшей видности она увеличена в 10 раз. Графики Rф и Rco – это графики движения фотонов от сверхновой – реальная удалённость и наблюдаемая. На табличке в центре показано, что отношение скорости удаления сверхновой Vda=V(t) к её наблюдаемой удалённости Rco, определяемой по яркости, даёт значение параметра Хаббла Hda = 0,13, что почти в 2 раза превышает значение Ho и явно не соответствует астрономическим наблюдениям.
Кроме этого замечаем, что на рис.11.2, рис.11.3, рис.11.5 и данном, рис.11.7 наблюдаемая скорость удаления галактик
Проблема возникла вследствие того, что мы молчаливо приняли, будто скорость источника фотонов вспышки в момент наблюдения равна скорости удаления
Однако скорость области пространства, соответствующего удалённости
Согласно разработанным нами уравнениям движения графики движения самой дальней