Обратив внимание на то, что знак в выражении (2) соответствует ортогональным дугам, раскрыв его и подставив в выражение (3), мы получаем два уравнения конформного преобразования между координатами r-t и x-y:
Особо отметим обнаруженную интересную особенность рассмотренного метода конформных преобразований координат: поворот сетки позволяет поменять ролями сетку и нулевые геодезические. Нанесение
Здесь мы наглядно видим сущность конформного преобразования на диаграммах Пенроуза. На рис.5a вертикальные и горизонтальные
Здесь производная – это тангенс угла наклона графика к вертикальной оси на диаграмме, к оси времени. Условно говоря, график движения света проходит диагонально через "квадратики" координатной сетки. Это демонстрирует линия abcde на рис.5a. Понятно, что при нелинейной градации координатной сетки "квадратики" условны, визуально все они являются прямоугольниками. Тем не менее, график света всё равно проходит диагонально через эти прямоугольники. То есть, линия abcde является линией света. В таком виде она, во-первых, не выглядит конформной, наклонённой под 45 градусов, а, во-вторых, сильно искривлена. Однако между этой линией и координатной сеткой есть однозначная связь: в каждом "квадратике" конформность и прямолинейность линии просматривается отчётливо.
Для нас, в сущности, не имеет значение, как выглядит координатная сетка, для нас важно, чтобы линии света были конформными, изотропными. И здесь следует отметить гениальную догадку Картера-Пенроуза. Они заметили, что координатная сетка выглядит как изотропные линии света, если за оси координат взять диагональные линии. Для этого нужно просто повернуть квадрат на 45 градусов – рис.5b. Теперь бывшие ранее координатной сеткой линии все стали выглядеть как изотропные линии света. Все они наклонены под 45 градусов и строго прямолинейны.
Бывшие ранее линиями света криволинейные линии, в частности, линия abcde сохранили строго однозначную связь с теперь уже прямолинейными линиями, которые теперь можно считать линиями света. То есть, эту криволинейную сетку мы можем, соответственно, рассматривать как координатную. Поставленный на диагональ квадрат теперь отвечает главному требованию: диагональные линии на нём стали изотропными линиями света. Они прямолинейны и имеют угол наклона в 45 градусов.
2
M
-диаграмма Пенроуза
Из полученной диаграммы мы так же можем сформировать и так называемое максимально расширенное решение Шварцшильда для вечной Чёрной дыры – рис.14 и рис.6f, содержащее сингулярности и параллельную Вселенную. Для этого необходимо заменить обозначения r = ‑∞ на r = 2m. Понятно, что на оси
На диаграммах этого вида сразу же обнаруживается противоречие: на такой диаграмме невозможно корректно произвести разметку координатных линий времени. Иначе говоря, на диаграммах с левым горизонтом событий r = 2m
Действительно, чтобы обеспечить традиционный вид координатной сетки, мы должны слева и справа диаграммы нанести одинаковое количество дуг r = const. Но слева диапазон расстояний конечен и равен некоторому количеству координатных дуг, а справа – он бесконечен. Какое бы определённое значение для центральной оси r0 = const мы ни выбрали, кроме r0 = ∞, интервал слева также будет конечным. Но главная проблема не в этом. Поскольку левая часть диаграммы – это горизонт событий Чёрной дыры r = 2m, дискретность координатной сетки должна экспоненциально уменьшаться. Чем ближе к горизонту, тем мельче деления шкалы, интервалы между линиями. Это исключает любую возможность установить их конечное количество, которое стремится к бесконечности. Справа от центра диаграммы число координатных линий также стремится к бесконечности, но дискретность этой сетки может быть как постоянной, так и экспоненциально изменяющейся – возрастающей или убывающей. В любом случае пределом этой шкалы должна быть бесконечность.
Можно воспользоваться следующим очевидным способом преобразования на квадратной диаграмме левого бесконечного горизонта в конечный. Это простое вытягивание, смещение линии координатной сетки r = 2m до положения левого горизонта событий. Остальные линии сетки левее этой просто "выталкиваются" за пределы диаграммы рис.6. Однако анализ показал безуспешность этого способа.
Как показано на рисунке стрелкой, координатная времениподобная линия r = 2m скачкообразно, пошагово перемещается сначала в нулевую позицию в центре диаграммы, затем в точки ‑1m (рис.6b), ‑2m (рис.6с), ‑4m (рис.6d), ‑7m (рис.6e), ‑10m (рис.6f). При этом в центре диаграммы поочерёдно оказываются координатные линии, соответственно, r = 3m, r = 4m, r = 6m, r = 9m, r = 12m. Разметка сетки при этом сохраняет свой исходный изотропный и конформный вид. Все нулевые геодезические и световые конусы, как ожидается, также сохраняют свои свойства.
Рис.6. Преобразование диаграммы в 2M-диаграмму
Очевидно, что после завершающего перехода координатной линии r = 2m на позицию левого горизонта событий, в центре диаграммы окажется координатная линия со значением +∞. Также очевидно, что никакие геодезические на
Ещё одной серьёзной проблемой является то, что из-за различной дискретности сетки слева и справа диаграммы, использовать постоянные значения интервалов на
Однако есть вариант компромиссной шкалы, единой на
В литературе на такие 2M-диаграммы координатная сетка наносится крайне редко, а если и наносится, то условно, без каких-либо обозначений, шкал. При этом светоподобные геодезические и световые конусы используются широко. Поэтому попытка аналитически построить соответствующую координатную сетку вполне оправданна. Выбор уравнения степенного ряда для сетки r = const позволил вполне приемлемо такую сетку построить.
Однако компромиссная шкала имеет собственную проблему. На диаграммах с такой шкалой оказалось невозможным корректно изобразить световые конусы, поскольку на них светоподобные геодезические оказались
Алгоритм построения диаграммы Пенроуза
Исходя из возможных видов координатных параметров в трёхмерном пространстве, можно выделить четыре различные системы координат. Параметрами, задающими однозначное положение объекта в трёхмерном
3ρ+0φ (три линейных параметра и ни одного углового). Это обычная декартова система ортогональных координат;
1ρ+2φ – это классическая полярная система координат;
0ρ+3φ – это широко применяемая в астрономии, космологии система координат, которая в такой формулировке явно, детально нигде не описана;
2ρ+1φ – система координат, об использовании которой ничего не известно.
Декартова и полярная системы координат широко известны, и в пояснениях, видимо, не нуждаются. Третья система, космологическая использует, в частности, три опорные, реперные точки, образующие треугольник с известными сторонами. Из этих точек определяются три координатных угла до исследуемого объекта в космосе, в результате чего образуется треугольная пирамида, в которой можно вычислить длины её граней. Может возникнуть ощущение, что на самом деле используется 6 параметров. Но стороны реперного треугольника на самом деле не влияют на величину удалённости объекта в космосе и на расстояния между ними.
Декартова, ортогональная система координат имеет разновидности по используемой градации, разметке осей. Чаще всего это линейные, равномерные градации. Также часто используются оси с логарифмической градацией. Эти системы позволяют отобразить объекты и процессы конечной протяжённости. Рассматриваемые диаграммы Пенроуза являются вариантом декартовой системы координат в обычном смысле этого понятия, шкалы осей которой "скомпрессированы", то есть, сжаты по определенному алгоритму. По аналогии с понятием "логарифмическая" шкала, такой алгоритм можно назвать алгоритмом "тангенсического" сжатия. Понятно, что в данном случае для сжатия шкалы вместо функции логарифм используется функция тангенс, вернее, его обратная функция – арктангенс.
Процесс такого сжатия шкал или процесс конформного преобразования представляет собой, по сути, построения новой шкалы для координат расстояния r и времени t как функции от этих переменных в некоторой исходной системе координат u-v (1).
Иначе говоря, мы строим в системе координат u-v семейство линий, которые образуют новую координатную сетку. При этом из уравнений видно, что новая сетка оказывается заключенной в квадрат со стороной π, поскольку при изменении величин r и t в диапазоне от минус до плюс бесконечности, функции u и v изменяются в диапазоне от минус π/2 до плюс π/2.
Для нанесения координатной сетки сначала для каждого значения t = ‑n, …, ‑2, ‑1, 0, 1, 2, …, n строится сплошная линия r = ‑m…m. При этом на диаграмму наносятся дуговые линии, вытянутые от
При таком построении сетка одной из осей будет иметь вид рис.7a. Как видно на рисунке, сетка получилась с наклоном. Для наглядности на сетке показаны действительные оси координат u-v, в которых она построена, и конформные оси t-r, которые и предполагается использовать в дальнейшем. Для приведения масштабной сетки к обычному виду, когда её нулевая ось расположена либо вертикально, либо горизонтально, полученную сетку нужно просто повернуть на 45 градусов против часовой стрелки. В этом случае мы получим сетку оси времени t, как показано на рис.7b. После этого мы можем нарисовать по указанным уравнениям конформного преобразования вторую масштабную сетку и повернуть её теперь на 45 градусов по часовой стрелке. В результате мы получим сетку оси r, как показано на рис.7с. Объединив эти обе сетки, мы получим полную сетку диаграммы, как показано на рис.7d. Теперь мы можем нанести на рисунок все необходимые обозначения, в результате чего будет получена полная "пустая" диаграмма Пенроуза, как показано на рис.7e. Слово "пустая" означает, что на диаграмме нет никаких событий, мировых линий.
Рис.7. Последовательность создания "пустой" диаграммы Пенроуза
Собственно алгоритм построения сеток достаточно прост. Для удобства поворот сеток производится сразу же, в момент их построения. Поскольку алгоритм прост, приведем его в неформальном виде, в виде словесного описания:
Цикл 1: Для каждого –М < t < +M c шагом T
Цикл 2: Для каждого –М < r < +M c шагом R
Вычислить u = arctg(t + r) и v = arctg(t – r)
Повернуть полученную точку a(u, v) на 45 градусов по или против часовой стрелки (зависит от назначения линий сетки – время или расстояния)
Вывести полученную точку а(u, v) на координатную плоскость
Конец Цикла 2
Конец Цикла 1
Буквой М названа условная бесконечность, то есть, число большое, но не превышающее возможностей вычислительной системы (компьютера). Шаг T подбирается из соображений частоты линий на диаграмме. Слишком много линий просто затемнят картину. Из этих же соображений цвет линий сетки выбран ярко-бирюзовым. На его фоне линии другого цвета (мировые линии) просматриваются вполне отчетливо.
Теперь на диаграмму можно вывести любые события и мировые линии. Для этого используется точно такой же алгоритм, но только его "внутренняя часть", без циклов. По требуемой функциональной зависимости мы выводим последовательность точек a(u, v) (с поворотом!) и при необходимости соединяем их отрезками линий. Частота вывода линий – это темп реального хода времени, если мы создаем анимацию. Интервалы, очевидно, должны быть достаточно малыми, чтобы была незаметна ломаная структура линий. На рис.7 дискретность каждой дуговой линий составляет R=800, поэтому они выглядят как гладкие кривые. Для наглядности на анимации добавлена ещё одна линия – линия настоящего t = tнаст. У нас она обычно окрашена в оранжевый (горчичный) цвет. Мировые линии событий могут иметь произвольные цвета. Мировые линии света и тахионов имеют предпочтительные цвета – красный, малиновый.
Динамические диаграммы Пенроуза
Теперь, имея уравнения преобразования координат, мы можем изобразить на диаграмме Пенроуза любую мировую линию. Для этого нам нужно знать только уравнение её движения
Рис.8. Мировые линии на динамической диаграмме. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig08.gif
На кадре из динамической диаграммы изображены четыре произвольные мировые линии, имеющие начало в момент времени
Понятно, что в динамике мировые линии могут начинаться в любой точке диаграммы ниже линии настоящего, а заканчиваться должны на ней. Никаких событий выше линии настоящего не может быть, только ожидаемые, предполагаемые, которые могут произойти в будущем.
Как видно на динамической диаграмме, мировые линии пересекаются. Это означает, что испущенные световые лучи или времениподобные объекты (тела) встречаются в одной точке одномерного пространства-времени, двигаясь вдоль одной линии. Столкновение тел или поглощение лучей определяется тем, в каком направлении они движутся, что можно явно вычислить по уравнениям их мировых линий.
В качестве примера попробуем задать уравнение мировой линии такое, чтобы она проходила вблизи центра диаграммы. Как и в полярных координатах, на этой диаграмме изображено всё существующее пространство-время: и видимая Вселенная, и вся Вселенная за видимым горизонтом, от Большого Взрыва и до конца нашей реальности, ничто не может быть изображено вне диаграммы.
Рис.9. Пример мировой линии на динамической диаграмме Пенроуза по уравнению, рассчитанному из заданных условий. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig09.gif
Синим цветом изображена мировая линия события по выведенному уравнению, которое приведено в правом верхнем углу диаграммы. Значение уравнения на рисунке вычислено для момента времени t = 1,75. Можно заметить, что на нижнем отрезке траектории тело движется по пространственноподобной траектории, то есть, со сверхсветовой скоростью, как тахион. Проверку на корректность уравнения движения для построения диаграммы должен производить его автор, отслеживая скорость тела. Разумеется, "отсекать" недопустимые значения траекторий может и алгоритм автоматизированного, компьютерного построения диаграмм.
Динамическая диаграмма обмена световыми сигналами
Как правило, чаще всего диаграммы Пенроуза используются в общей теории относительности при рассмотрении неинерциального (с ускорением) движения или движения с учетом гравитационных сил, например, действия космологических Черных дыр. Однако нет никаких препятствий для использования их и для исследования инерциальных систем отсчета – ИСО.
В этом случае следует формировать столько диаграмм, сколько на ней имеется инерциальных участников движения. Рассмотрим случай обмена световыми сигналами теперь уже для двух таких ИСО – А и В. Диаграммы в виде анимаций представлены на рис.10.
На рисунке представлены диаграммы, полностью соответствующие диаграммам Минковского. Слева – ситуация с точки зрения неподвижного наблюдателя ИСО В, справа – ИСО А.
В некоторый момент времени из ИСО B испускается световой сигнал r3, который достигает ИСО A. В этот же момент времени оттуда отправляется ответный световой сигнал r4. Через какое-то время этот сигнал достигает ИСО В.
Рис.10. Диаграммы Пенроуза для двух ИСО, обменивающихся световыми сигналами. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig10.gif
Для проверки принципа относительности мы находим явным образом координаты всех известных нам точек излучения и получения сигналов. При этом мы знаем, что отрезки времени в ИСО В сократились по сравнению с отрезками в ИСО А. Мы можем вычислить и точку начала отсчета, когда две ИСО находились рядом, и коэффициент лоренцева сокращения.
После внесения в алгоритм программы этих точек и запуска программы мы видим, что всё в точности соответствует описанной картине в ИСО А. Сначала из ИСО В излучается луч r3, после получения которого в ИСО А излучается ответный сигнал r4. Все точки находятся на мировых линиях участников, никаких разрывов нет.
Таким образом, видим, что в данной задаче диаграммы Пенроуза полностью соответствуют диаграммам Минковского [3], в частности, непротиворечиво демонстрируя картину обмена световыми сигналами. Вместе с тем, ромбовидные диаграммы Пенроуза в этой традиционной области теории относительности явно проигрывают обычным диаграммам Минковского просто по причине своей слабой наглядности и крайне криволинейной графики. Сжатие бесконечной области пространства-времени в рисунок конечных размеров не только не дает никакой новой информации, но и заметно усложняет восприятие, извлечение информации классической.
Произвольные фигуры на диаграмме
Как отмечено, диаграммы Пенроуза принципиально ничем не отличаются от традиционных, классических декартовых систем координат. Поэтому их можно использовать таким же образом для любых графических построений. Поскольку координатная сетка на диаграммах Пенроуза криволинейная, такие фигуры и графики выглядят довольно-таки экзотически – рис.11. Координатная сетка, линии погашены.
Например, отрезок синусоиды
Более привычный вид имеет гипербола t = 1/
Еще более непривычный вид имеет отрезок параболы
Понятно, что на диаграмме можно изобразить все эти графики функций полностью – в диапазонах изменения аргумента и функции от минус до плюс бесконечности.