Хаим Шапира
Восемь этюдов о бесконечности. Математическое приключение
Haim Shapira
EIGHT LESSONS ON INFINITY
A Mathematical Adventure
© Haim Shapira, 2019
© Прокофьев Д. А., перевод на русский язык, 2021
© Издание на русском языке, оформление. ООО «Издательская группа «Азбука-Аттикус», 2021 КоЛибри®
Предисловие
Английский биолог и популяризатор науки Ричард Докинз заметил однажды, что никто и никогда не признается с гордостью в невежестве и необразованности по части литературы, но неосведомленность в точных науках, ярче всего воплощающаяся в абсолютном незнании математики, вовсе не считается чем-то постыдным. Докинз заметил это обстоятельство не первым: он и сам указывает, что это утверждение давно превратилось в клише.
Это, разумеется, истинная правда. Никто не станет хвалиться, что никогда не читал книг, не видел ни одного произведения искусства, никогда – ни разу в жизни – не был растроган музыкой. Если провести опрос, я совершенно уверен, что не найдется ни одного образованного взрослого человека, никогда не слыхавшего о Шекспире, Рембрандте или Бахе. По всей вероятности, участники такого опроса знали бы и имена великих математиков Пифагора, Исаака Ньютона и Альберта Эйнштейна. Но многие ли слышали о Леонарде Эйлере, Сринивасе Рамануджане или Георге Канторе?
Возможно, в этот самый момент вы тоже спрашиваете себя: «Что? Кто это такие? Их имена ни о чем мне не говорят».
Это великие математики. Величайшие математики!
Я всерьез увлекаюсь музыкой, литературой и изобразительным искусством, но искренне считаю, что математические формулы Рамануджана – такое же чудо, как музыкальные построения Баха, а открытия Кантора, касающиеся бесконечности, кажутся мне не менее поразительными, чем произведения Шекспира.
И раз уж мы сравниваем гениев художественного творчества с гениями математики, я хотел бы отметить, что Кантор был специалистом по творчеству Шекспира, а Эйнштейн – прекрасным пианистом и скрипачом. Такое встречается очень часто, и я знаю много математиков, чрезвычайно хорошо знающих литературу, искусство и музыку.
Более того, немецкий математик Карл Вейерштрасс сказал как-то, что математик, в котором нет ничего от поэта, не может быть хорошим математиком. Однако создается впечатление, что этот принцип не действует в обратном направлении: многие из тех, кто работает в области литературы, музыки или изобразительного искусства, по-видимому, испытывают неприязнь к математике.
В чем тут дело? Почему столь многие люди, какими бы образованными они ни были, чураются замысловатости и красоты, которые можно найти в мире чисел и их связях друг с другом?
Возможно, главная причина заключается в неприступности математики и тех трудностях, с которыми сталкиваются желающие познать ее. Действительно, математика весьма сложна, и, чтобы разобраться в ее хитросплетениях, необходимо затратить время и приложить умственные усилия – но и за особо изысканными жемчужинами иногда приходится нырять до самых недоступных глубин.
Мысль написать эту книгу явилась мне однажды, когда я перебирал свою математическую библиотеку. Я заметил, что мои сочинения по большей части относятся к одной из двух категорий:
1. Математические книги, написанные для неспециалистов. Некоторые из них совершенно замечательны, но они в большей степени посвящены рассказам о математике, чем самой математике.
2. Математические книги, написанные для математиков. В этой категории тоже есть множество превосходных работ, но прочесть (и понять) их могут только математики.
Поэтому я решил написать книгу, которая относилась бы еще к одной, третьей категории. Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач.
Для меня важно, чтобы эту книгу мог с удовольствием читать любой человек, достаточно любознательный и стремящийся время от времени поработать головой. Поэтому я воздержался от использования любых устрашающих математических символов (нигде в этой книге вы не найдете никаких
Применяются только базовые математические операции (сложение, вычитание, умножение и деление, плюс несколько операций посложнее, вроде возведения в степень и извлечения корня). Кроме того, я как мог старался сделать текст занимательным: на самом деле никто не любит задач о трех трубах, которые наполняют бассейн, и еще двух, которые (по никому не известным причинам) одновременно с этим пытаются его осушить.
Комментарии к книге, ответы на вопросы и вопросы о вопросах можно присылать по адресу shapirapiano@gmail.com. Желаю вам увлекательного путешествия!
Разминка
Краткое введение в размышления
Если вы не поленились и прочитали предисловие, вы уже знаете, что у меня есть довольно солидная коллекция книг по математике. Одно из моих любимых занятий – возиться с интересными задачами. Ну,
В этом разделе я представлю скромный набор математических задач из числа моих любимых, от довольно простых до весьма глубоких и даже предположительно неразрешимых (а если вы их все-таки решите, вас ждет премия). Я хочу познакомить вас, мой уважаемый читатель, хотя бы с немногими образцами интереснейших размышлений, которые вы можете найти в поразительном мире математики.
Великое маленькое исследование – открытая проблема
Много лет назад я прочитал удостоенную Пулитцеровской премии книгу Дугласа Р. Хофштадтера «Гёдель, Эшер, Бах». Сам автор называет ее «метафорической фугой о разумах и машинах в духе Льюиса Кэрролла». Она рассказывает о самых разнообразных предметах из царств математики, музыки, симметрии, искусственного интеллекта и логики и содержит множество математических загадок. Я хотел бы познакомить вас с одной из них.
Возьмем любое число – точнее, любое целое или натуральное число. Ахилл (он же Ахиллес – тот самый, у которого были проблемы с пяткой), также ставший одним из персонажей книги Хофштадтера, задумал число 15. Вы, разумеется, можете выбрать любое число по своему вкусу.
Теперь сделаем вот что: если это число четное, разделим его на 2. Если оно нечетное, умножим его на 3 и прибавим 1. Будем повторять эту процедуру снова и снова, пока не получим (если получим) число 1. Посмотрим, как это работает:
Поскольку 15 – число нечетное, умножим его на 3 и прибавим 1.
15 × 3 + 1 дает 46.
46 – число четное: разделим его на 2 и получим 23. Поскольку это число нечетное, умножим его на 3 и прибавим 1.
23 × 3 + 1 = 70
Продолжим этот процесс:
70/2 = 35;
35 × 3 + 1 = 106;
106/2 = 53;
53 × 3 + 1 = 160;
160/2 = 80;
80/2 = 40;
40/2 = 20;
20/2 = 10;
10/2 = 5;
5 × 3 + 1 = 16;
16/2 = 8;
8/2 = 4;
4/2 = 2, и наконец 2/2 = 1.
Процесс дошел до конца.
Спрашивается, правда ли, что эта процедура рано или поздно приводит к 1 для
Попробуйте подставить в нее пару других чисел. Для некоторых из них этот процесс может оказаться чрезвычайно долгим, и вам, возможно, понадобится очень большой лист бумаги. Если вы попытаетесь запустить этот процесс на компьютере, имейте в виду – вычисления могут затянуться.
Хофштадтер предложил Ахиллесу попробовать число 27. Вы можете последовать его примеру. Я дам вам пару минут… или, может быть, часов.
Сдаетесь? Если начать с 27, кажется, что процесс все продолжается и продолжается и дает нескончаемую цепочку вычислений. В какой-то момент вы можете решить, что она и впрямь никогда не закончится. На самом деле требуемое в этом случае число шагов равно 111.
В своей книге Хофштадтер предостерегает Ахиллеса относительно попыток найти ответ на заданный выше вопрос (действительно ли из любого числа можно получить 1?) и рассказывает, что эта задача известна под названием «гипотеза Коллатца» (напомню на всякий случай, что «гипотеза» значит «догадка» или, точнее, «предложение возможной новой теоремы, которую еще нужно доказать»). Она утверждает, что, с какого бы числа мы ни начали описанный выше процесс, он рано или поздно приведет к 1. Эта гипотеза названа в честь немецкого математика Лотара Коллатца (1910–1990), впервые описавшего ее в 1937 г. Тем не менее у нее есть и другие названия: в частности, ее называют гипотезой Улама (по имени польского математика Станислава Улама) или задачей Какутани (по имени японского математика Сидзуо Какутани). Иногда говорят просто о гипотезе 3
Когда я впервые узнал о гипотезе 3
Во всяком случае, так я думал…
По-видимому, существует веская причина, по которой эта задача все еще считается «открытой проблемой».
Хотя успеха я не добился, это меня не слишком расстроило. Я нахожу трудные вопросы очень привлекательными. Они заставляют размышлять. На самом деле я даже больше люблю задачи, которые не могу решить (или по меньшей мере не могу решить без труда), чем те, которые решаются в момент и без особых интеллектуальных усилий. Разумеется, это не значит, что я оказываюсь на вершине блаженства, когда не могу справиться с какой-нибудь проблемой – несомненно, решение непростой задачи, доставшееся ценой большого труда, доставляет гораздо больше удовольствия.
Вернемся, однако, к нашей гипотезе. Посмотрите, что тут происходит. Мы столкнулись с математической задачей, в которой используются только базовые арифметические операции – сложение, умножение и деление, – и тем не менее
Как такое может быть? Можно было бы предположить, что задача, которую можно сформулировать таким простым образом, должна иметь простое решение. Не тут-то было! На простой вопрос не всегда есть простой ответ. В математике есть множество вопросов, которые можно задать маленькому ребенку, и он легко поймет, в чем состоит задача, но ответов на них до сих пор не нашли даже самые гениальные взрослые.
Если рассмотреть достаточное количество примеров задачи Коллатца, можно заметить одно обстоятельство: последние числа, появляющиеся в этом процессе представляют собой последовательно уменьшающиеся степени 2. Например, если начать с 15, то последние пять чисел последовательности – это 16, 8, 4, 2 и, наконец, 1.
Это явление можно сформулировать в виде правила, сказав, что если процесс доходит до числа вида 2
Принцип замены исходной задачи на другую называется приведением или упрощением. Этот метод – полезный математический инструмент; в некотором смысле он открывает более естественный путь к решению математических задач. Еще одна, похожая, стратегия решения задач – это рассуждения в обратном порядке (от конца к началу). Этот прием, возможно, знаком вам по лабиринтам. Когда разрабатываешь маршрут по лабиринту, иногда бывает удобнее начать от выхода и прокладывать путь к исходной точке. В некотором глубоком смысле можно сказать, что в том же состоит и метод приведения математической задачи.
Венгерский математик Пал Эрдёш (1913–1996) любил предлагать денежные призы за успешное решение интересовавших его открытых математических проблем. Призы эти начинались с 25 долларов, а доказательство гипотезы Коллатца стоило в его прейскуранте целых 500 долларов – то есть попадало в категорию весьма дорогих задач, хотя сам Эрдёш говорил, что мир математики, возможно, не готов к таким сложным и запутанным задачам, как гипотеза 3
К слову, а также потому, что я хотел бы поделиться этим интересным фактом, самое большое число, когда-либо использованное в математическом доказательстве, названо в честь этого же самого Рона Грэма. Число это настолько велико, что его невозможно записать в стандартной математической нотации.
Пал Эрдёш был математиком исключительно плодовитым. Его превосходную биографию можно найти в книге Пола Хофмана «Человек, который любил только числа» (The Man Who Loved Only Numbers, 1998). Он написал более 1400 научных статей. Эрдёш был страстным поборником командной работы и сотрудничества, и за годы его научной деятельности вместе с ним над его статьями работали целых 511 математиков. Любому математику, который когда-либо писал статью в соавторстве с самим Эрдёшем, присваивается престижное число Эрдёша, равное 1. Те, кто сотрудничал с его соавторами, но не с самим Эрдёшем, получают число Эрдёша, равное 2. Аналогичным образом по мере все большего удаления присваиваются числа Эрдёша, равные 3, 4 и так далее. Общее правило таково: если вы сотрудничаете с человеком, наименьшее число Эрдёша которого равно
Это напоминает популярную салонную игру «Шесть шагов до Кевина Бейкона». Знаменитый голливудский актер Кевин Бейкон заявил однажды, что все до единого актеры в Голливуде либо снимались с ним вместе (Бейкон‐1), либо снимались с кем-нибудь, с кем снимался и он (Бейкон‐2), либо с кем-нибудь, кто снимался с кем-нибудь, кто… (Бейкон‐3, 4 и т. д.). В целом, утверждал он, «число Бейкона» почти всех актеров и актрис Голливуда не превышает 6. Например, у Элвиса Пресли оно равно 2. Связь между ними вы можете восстановить самостоятельно{1}. Кажется, что мир действительно тесен: в нем есть люди, у которых есть и число Эрдёша, и число Бейкона. Например, у Рона Грэма число Эрдёша равно 1, а число Бейкона – 2. А у знаменитой израильской актрисы Натали Портман число Эрдёша равно 5, а число Бейкона – 1 (этого вы не ожидали, правда?).
Вернемся наконец к доказательству гипотезы Коллатца. Его не существует, и, по правде говоря, я знаю множество способов заработать 500 долларов, гораздо более простых, чем возня с этой задачей.
Загадка шахматной доски
Я несколько сомневался, говорить ли о следующей загадке. На самом деле она очень проста. Тем не менее после бурного спора с самим собой я решил все-таки рассказать о ней, потому что она весьма знаменита, причем и сама загадка, и ее решение замечательно красивы.
Рассмотрим сетку размером 8 × 8 ячеек.
Очевидно, всю эту сетку легко покрыть 32 костяшками домино размером 1 × 2 ячейки. А теперь уберем две клетки, расположенные в противоположных углах.
Можно ли покрыть получившуюся сетку всего 31 костяшкой?
Мои друзья (все они не математики, но по большей части люди весьма умные) в большинстве своем уверены, что можно, – нужно только сообразить, как именно их следует расположить.
Но правильный ответ на этот вопрос – «нет». Что бы мы ни делали, 31 костяшка домино не может покрыть сетку с удаленными противоположными угловыми клетками.
Почему это так, немедленно становится ясно, если взять вместо такой незакрашенной сетки черно-белую шахматную доску.
Как видно на рисунке, каждая костяшка домино может закрыть одну черную клетку и одну белую; поэтому 31 костяшка может закрыть в точности 31 белую клетку и 31 черную. Поскольку две клетки, удаленные с доски, одного и того же цвета – белые, – в обрезанной доске осталось 30 белых клеток и 32 черные. Много лет назад, когда я учился на математическом факультете в Тель-Авиве, я вел для «интересующейся наукой молодежи» курс под названием «Парадоксы, загадки и числа». Я давал эту задачу молодым слушателям своего курса. Каждый раз происходила одна любопытная вещь. Многие ученики решительно не соглашались с доказательством, которое показывает, что 31 костяшка домино не может покрыть доску с удаленными противоположными угловыми клетками. Интересно отметить, что в их число входили и ученики, казалось бы, вполне понимавшие объяснение этого доказательства; тем не менее они упорно раскладывали костяшки домино так и эдак, стараясь покрыть эту самую доску с обрезанными углами. Я даже не пытался убедить их в бессмысленности этого занятия – каждый должен учиться на собственных ошибках.
Докажите, что, если из шахматной доски удалить любые две клетки разных цветов, все оставшиеся клетки