«ЭЛЕКТРОНИКА ШАГ ЗА ШАГОМ»
Практическая энциклопедия юного радиолюбителя
(Изд. 3-е, дополн. и исправл.)
Глава 1
Предисловие-путеводитель
Пройдут годы, появятся термоядерные электростанции и личные минивертолеты, космонавты высадятся на Марсе, будут раскрыты загадки человеческой памяти и секреты зарождения жизни. К тому времени, возможно, будет проведен и строгий научный анализ притягательных сил радиолюбительства… Пока же по этому поводу можно лишь высказывать предположения.
К радиолюбительскому конструированию наверняка влечет естественная потребность творить, создавать, строить. Она в самой человеческой природе, запрограммирована в нас, закреплена тысячелетиями. Так же как не может человек жить без воды и пищи, без воздуха, вот так же не может он без интересного дела. А радиолюбительство, конечно же, дело интересное, творческое. Наука на грани искусства.
Наверняка привлекает радиолюбительство и своей полезностью, тем, что позволяет легко приобщиться к самой современной технике.
Можете вы построить дома настоящий синхрофазотрон? А космический корабль? Атомный реактор? Самолет? Не можете… А вот настоящий магнитофон или настоящий радиоприемник можно изготовить прямо на краешке кухонного стола. И настоящую вычисляющую машину тоже, хотя, конечно, очень простую.
К радиолюбительству тянется не только тот, кто хочет связать свое будущее с электроникой. Сегодня электронная техника применяется повсюду, с ней вполне может встретиться летчик и врач, биохимик и экономист, металлург и музыкант. И каждый, кто занимается практической электроникой, как говорится, в порядке любительства, прекрасно понимает, что это приятное дело окажется полезным для человека любой профессии.
И вот еще что: радиолюбительство не только учит, но в сильной мере и воспитывает. Оно, например, делает человека более сообразительным, находчивым, изобретательным. Более собранным, четким, аккуратным — несколько раз пострадаешь из-за собственной небрежности, и, смотришь, появляется привычка тщательно проверять сделанное, работать быстро, но не спеша. Потеряешь час на поиски какой-нибудь детали, и совсем уже по-иному звучат слова: «порядок на рабочем столе» или «организация рабочего места».
Собирая электронные схемы, налаживая их, выискивая какую-нибудь неисправность, вы учитесь логически мыслить, рассуждать, учитесь использовать имеющиеся знания, добывать новые. Учитесь учиться.
Вспоминается, как известный советский радиофизик академик Александр Львович Минц, принимая специалистов на работу, всегда отдавал предпочтение радиолюбителям. И не только за конкретные знания, но главным образом за умение мыслить, работать творчески, изобретать.
Каждый схемный блок, как правило, связывает с внешним миром всего несколько проводов (на схемах они заканчиваются небольшими треугольниками), в частности провод «Вход» («
Вскоре вы научитесь и сами компоновать сложные схемы из простых типовых блоков, используя для этого интересные элементы не только из этой книги, но и из других источников, из различных любительских и промышленных электронных схем.
Все имеющиеся в книге практические схемы сгруппированы на отдельных страницах, имеют самостоятельную нумерацию по всей книге и обозначение «К», от слова «конструирование». У каждой отдельной схемы или чертежа на такой странице есть свой порядковый номер, на который и дается ссылка в тексте. Так, например, ссылка К-2;7 означает, что имеется в виду седьмая схема на рисунке К-2.
В некоторых случаях принципиальные схемы дополнены объемными схемами (например, К-1;2 или К-3;2), которые наверняка помогут начинающему радиолюбителю совершить трудный переход от принципиальной схемы к монтажной. Часто дается еще и один из вариантов монтажной схемы, в расчете на навесной монтаж (К-П;2) или на печатный (К-17;5).
Кроме практических схем, буквой «К» обозначены еще и три вспомогательных рисунка: К-5 и К-6 с условными обозначениями некоторых деталей и К-7 с некоторыми технологическими рекомендациями и эскизами самодельных деталей. Нужно сказать, что в описаниях практических схем везде, где это возможно, предусмотрено применение самодельных деталей, даже таких, как реле, переключатели, контурные катушки. Сделано это на тот случай, если под руками не будет нужных «фирменных» деталей заводского изготовления. Или если захочется, как говорится, из спортивного интереса все, что можно, сделать своими руками.
Именно здесь, пожалуй, уместно сделать важное предупреждение. Так уж случилось, что система условных изображений и сокращенных буквенных обозначений радиодеталей менялась несколько раз. В результате в радиолюбительской литературе разных лет одни и те же детали изображаются и обозначаются по-разному. Правда, изображения, как правило, очень похожи, но все же различия есть и конденсатор с резистором не спутаешь. Последние изменения связаны с появлением так называемой машинной графики: чертежи и схемы сейчас во многих случаях выполняет не человек, а весьма распространенное устройство — графопостроитель, автоматическим пером которого управляет электронная вычислительная машина (об этом рассказано в
Этот последний узаконенный стандартом вариант условных обозначений показан на К-3;15–41 в небольших синих рамках. Все остальные варианты условных изображений и буквенных значений, показанные на рисунках 15–41, использовались еще сравнительно недавно, их можно встретить в радиолюбительских книгах и журналах, выпускающихся на протяжении нескольких десятилетий. Для рисунков этой книги выбраны именно эти условные изображения деталей, они несколько отличаются от последнего стандарта, но зато более броские и выразительные, в основном за счет использования линий разной толщины.
Принятые в книге сокращенные буквенные обозначения деталей тоже отличаются от приведенных в тех же синих рамках буквенных обозначений, узаконенных последним стандартом. Сделано это потому, что начинающий радиолюбитель будет проще воспринимать обозначения, которые легко связать со знакомыми словами:
В случае же если вам придется знакомиться со схемами в свежих журналах, имеющими иные обозначения и начертания деталей, или придется готовить не упрощенный рисунок, а официальный документ или схему, которая должна строго соответствовать стандарту, то вы легко найдете нужное условное обозначение на рисунках К-3;15–41.
Большинство приведенных в книге практических схем можно для начала собрать на небольшом куске фанеры с монтажными лепестками из жести (К-7). На таком макете удобно подобрать нужные детали, установить заданные напряжения, привыкнуть к схеме, а затем уже, если захочется, перенести ее на более элегантную панель и упрятать в корпус. Правда, многие схемы можно так и оставить на фанерной монтажной панели: в таком развернутом монтаже есть даже какая-то красота. Не говоря уже о том, что схема всегда открыта, к любой детали можно быстро добраться, если нужно устранить неисправность или проверить какую-нибудь свежую идею совершенствования прибора.
Некоторые справочные данные, такие, скажем, как расчетные формулы, можно найти на рисунках, относящихся к основному тексту, и в самом этом тексте, о котором хочется сказать особо.
А вот другой способ. Человеку, который хочет водить машину, нужно сначала рассказать, хотя бы в самых общих чертах, о том, как этот автомобиль устроен. Как работает двигатель, как вращение передается колесам, что происходит при переключении скоростей, при нажатии на педаль сцепления, открывании дроссельной заслонки карбюратора, рассказать о всех основных процессах, которые происходят во время управления машиной. И только после такого рассказа будущему водителю показывают, какие ручки и педали управляют теми или иными агрегатами, объясняют, в каких случаях и как ими пользоваться.
Эти два варианта освоения автомобиля очень похожи на два типичных пути, которыми радиолюбители идут к конструированию электронных приборов. Первый начинается с того, что человек берет в руки паяльник и по готовому описанию со схемой пытается сразу же собрать приемник, усилитель, магнитофон, не вдаваясь в такие мелочи, как принцип действия тех или иных приборов и назначение тех или иных элементов схемы. А вот другой путь — изучение основ электротехники и радиоэлектроники, а затем уже со знанием дела практическая работа, конструирование электронных установок и аппаратов.
Если разобраться строго, то правильней и разумней идти вторым путем — от теории к практике, от понимания к действию. Но знакомство с основами электроники — дело не простое и не быстрое, тем более что предварительно нужно укрепить фундамент, вспомнить основы электротехники. А человеку не терпится, хочется побыстрее заняться делом — сверлить, паять, налаживать, побыстрее сделать что-нибудь такое, что само поет, играет, мигает лампочками. Хочется побыстрее нажать на педали и двинуться в путь.
С учетом всех этих «хочется» и «нужно» книга построена так, что допускает некий, если можно так сказать, гибридный путь в радиолюбительство. Из всего множества приведенных здесь схем и конструкций выделено несколько, рассчитанных на самого что ни на есть начинающего радиолюбителя, на того, кто в части радиоэлектроники находится на нулевой отметке. К числу таких «нулевых конструкций» относятся представители «поющих» и «мигающих» схем — мультивибраторы (К-10), детекторный приемник (К-9;3), приемник прямого усиления (К-3), простейшие схемы и конструкции, собранные на рисунках К-1 и К-2: электропроигрыватель с усилителем (К-1; 1, 6, 7), приставка к гитаре, превращающая ее в электрогитару (К-1; 8, 9), световой тир (К-2; 1, 2, 3, 4), электронная мандолина (К-2; 5, 6, 7), электронный камертон (К-1; 11), простейшие приборы для проверки и налаживания электронных схем (К-1; 10 и К-2; 9,10). Описания этих схем и конструкций сделаны несколько более подробно, чем всех остальных, в описания введены сведения о работе схемы, о назначении некоторых ее деталей. Одним словом, все рассчитано на то, чтобы эти «нулевые» конструкции можно было сделать еще до знакомства с теоретическими разделами книги или параллельно с изучением основ электроники, в какой-то степени сочетая таким образом то, что нужно, и то, что хочется.
Теория — это сконцентрированный опыт миллионов, собранные, приведенные в систему правильные решения, отброшенные в сторону бессчетные ошибки. Теория — это молниеносные мысленные эксперименты вместо долгих и дорогостоящих опытов «в металле», быстрый выбор правильного ответа вместо бесконечного слепого перебора и гадания. Теория — это кратчайший путь к нужному практическому результату. Прекрасно сказал великий итальянский физик Энрико Ферми: «Нет ничего практичнее хорошей теории».
В этой книге весь теоретический материал разбит на двадцать глав. Первые десять посвящены основам электротехники, радиотехники, электроники, это фундамент, необходимый для того, чтобы построить прочное здание знаний и умений. Последние десять глав посвящены некоторым конкретным областям электроники — радиоприемникам, высококачественному воспроизведению звука, магнитной записи, телевидению, электронной автоматике, измерениям, электронной музыке, вычислительным машинам и др.
В каждой главе есть некоторое количество сравнительно небольших разделов, они имеют сквозную нумерацию по всей книге и обозначаются буквой «Т» — от слова «теория». Конечно же, основной текст книги, тот, что назван «теорией», не очень-то похож на теорию в истинном, высоком смысле этого слова, теорию, насыщенную математическими формулами, охватывающую весь комплекс вопросов, связанных с данной темой. Основной текст книги — это очень краткий и по возможности предельно упрощенный пересказ некоторых элементов теории; теорией его можно называть только условно. Если же применение слова «теория» покажется вам вообще недопустимым, можете считать, что обозначение «Т» идет от слова «текст».
На рисунках помещены и формулы — как основные, так и расчетные, вспомогательные. Ссылка на формулу выглядит точно так же, как и ссылка на рисунок. Обозначение в скобках возле той или иной величины в формуле говорит о том, в каких единицах должна быть выражена эта величина.
Рисунки подобраны и скомпонованы так, что они как бы образуют самостоятельную сюжетную линию книги: просматривая эти рисунки, можно освежить в памяти знакомые разделы электротехники и электроники, вспомнить, о чем говорилось в той или иной главе и насколько подробно. Одним словом, рисунки «Р» — это своего рода сжатый конспект основного текста.
Каждый человек думает словами, думает на том языке, на котором говорит. Или скажем иначе: человек говорит на том языке, на котором мыслит. И не случайно преподаватели иностранных языков считают, что вы только тогда по-настоящему изучили язык, когда начали мыслить на нем так же, как и на своем родном.
Но вот шахматист, автоматически сделав несколько первых ходов, задумывается над сложной позицией. Неужели же и он в это время думает словами, слышит неслышимые: «Ес-ли я на-па-ду ко-нем на е-го сло-на, то он пой-дет на по-ле вэ-че-ты-ре и, заб-рав мо-ю пеш-ку, по-па-дет под у-дар мо-е-го фер-зя, и тог-да…»?
Нет, конечно же, шахматист не думает звучащими словами разговорного языка. Он думает совсем на другом языке, на специфическом языке шахмат, оперирует в своем сознании готовыми образами фигур, позиций, ходов, комбинаций. Точно так же, как механик, всматриваясь в сложную машину, мыслит на своем языке, «слова» которого — это образы конкретных деталей, их типичные взаимодействия, скажем, зацепление шестерен или червячной передачи. И так же, как математик, читая свои математические тексты, тоже обходится без разговорного языка, мыслит математическими символами и действиями, а композитор — мелодиями, аккордами, ритмами.
Нас окружает огромный мир, мир вещей и явлений. И в нашей вычислительной машине, в нашем мозгу, по мере того как мы познаем этот мир, строится его модель, которая состоит из записанных в память слов, картин, элементов их взаимосвязи. (Пока никто не знает, как вводятся в мозг или извлекаются эти записи, в каком виде они существуют: то ли это комбинации возбужденных нервных клеток, то ли комбинации молекул в клетке или атомов в молекуле, то ли комбинации электрических или химических сигналов.)
Самое универсальное средство для описания мира, для построения его модели — наш разговорный язык. Но для некоторых фрагментов этой модели, таких, как устройство машин, шахматы, музыка, электронные аппараты, химические соединения, существуют и специальные языки, более удобные, более оперативные и экономные. Здесь может быть уместно такое сравнение: универсальный автомобиль для перевозки грузов — это грузовик с откидными бортами, на нем можно перевозить все. Но для перевозки песка удобней самосвал, для перевозки людей — автобус, для перевозки молока — автоцистерна. Мы пользуемся универсальным языком звучащих слов или осваиваем новые языки в зависимости от того, какую задачу нужно решить, что нужно описать — простую житейскую ситуацию «я иду в школу», устройство машины или состав вещества. В первом случае удобен разговорный язык, во втором — язык чертежа, в третьем — язык химических формул.
Чтобы заниматься электроникой, обязательно нужно освоить несколько новых языков. Прежде всего, это язык схем, на котором осуществляется описание электрических цепей электронных приборов (Т-34, Т-36, Т-156, и др.). Затем — язык графиков, с его помощью удобней всего рассказать о процессах, которые происходят в электронном приборе (Т-64). Еще язык спектров, который лучше всего описывает важнейшие преобразования электрического сигнала, этого главного героя электронных схем (Т-100). Очень удобен и язык математических формул, он, в частности, помогает экономно и наглядно представить важнейшие законы электрических цепей (Т-32).
Чтобы знать электронику, нужно прежде всего знать эти специальные языки, пусть не в очень большом объеме, но знать очень хорошо, свободно мыслить на них, мыслить на языке схем, графиков, простейших математических формул. Освоение этих языков — одна из главных наших целей, к ней мы будем постепенно, шаг за шагом, продвигаться, с каждым шагом чувствуя себя уверенней и свободней в сложном мире электроники.
Мы будем, например, представлять себе атомные ядра и даже сами атомы маленькими шариками, этакими горошинами или маковыми зернышками, в то время как все это сложнейшие системы, собранные из множества разнообразных деталей, размеры которых невообразимо малы.
Мы будем часто пользоваться аналогиями, сравнивая, например, электромагнитные процессы с механическими (переменный ток с качелями или заряд конденсатора с наполнением ведра), в то время как сходство между ними чисто внешнее, физическая сущность этих похожих процессов совершенно разная.
Мы будем, наконец, пользоваться привычными, житейскими словами, чтобы рассказать о сложных электрических явлениях, будем, например, употреблять такие выражения, как «электроны быстро побежали», или «магнитное поле старается помешать нарастанию тока», или даже «атомное ядро не хочет отпускать электроны». Подобные выражения в тексте встречаются настолько часто, что пришлось отказаться от спасительных кавычек, иначе страницы текста просто пестрили бы кавычками.
Все это делается только для того, чтобы можно было думать о вещах сложных и непривычных в терминах знакомых и понятных, чтобы облегчить познание нового, пользуясь самым, пожалуй, сильным средством — сравнением, сопоставлением, связыванием с тем, что уже известно. И еще для того, чтобы по возможности не выпускать на эти страницы огромное количество слов и символов, необходимых для достаточно аккуратного, достаточно строгого описания сути дела. Встречаясь в тексте с грубыми механическими моделями электронных схем, с искаженными масштабами, с сильно упрощенными процессами или структурами, с разного рода прыжками электронов или стараниями магнитных полей, нужно помнить, что все это лишь «военная хитрость», необходимая для штурма крепостей непонятного. И что упрощенное описание какой-либо физической сложности — это не более чем упрощенное описание.
Поиск нужного материала облегчает алфавитный указатель, он помещен на так называемом форзаце — это обратная сторона первой и последней обложки и примыкающие к ним страницы. Кроме того, в конце книги имеются оглавления, отдельные для основного текста Т, чертежей и схем К, справочных материалов С. Краткое, правильнее даже сказать сверхкраткое содержание всех разделов текста Т приводится в начале каждого раздела (жирным шрифтом, перед основным текстом). Эти краткие резюме могут быть полезны и в том случае, когда нужно повторить пройденное, чтобы двинуться дальше.
Выйти к вершинам любительского конструирования электронных приборов, конечно, не просто. И дело это не быстрое — за два дня не научишься конструировать магнитофон или налаживать телевизор. Однако же и путь от простейшего однотранзисторного приемника к сложным электронным схемам, к усилителям высококачественного звучания, цветным телевизорам, карманным магнитофонам, электрогитарам, электронным роботам — путь этот прошли уже многие тысячи людей. Хочется верить, что эта книжка поможет вам сделать первые шаги на пути в электронику, поможет запастись фундаментальными знаниями и приобрести практическую хватку. А это есть самые важные слагаемые дальнейшего успешного продвижения вперед.
Многие важные темы, затронутые в книге, представлены в виде своеобразного конспекта — серии из примерно 200 юмористических рисунков (стр. 11, 25, 50, 70, 85, 111, 152, 171, 206, 224, 252, 287, 299, 309, 321, 340, 357, 387, 400, 420, 000, 000, 000, 000, 000, 000, 000, 000). Большинство из них выполнено на основе рисунков из первых трех книг серии «Шаг за шагом» (Т-310). Веселые картинки для этих книг по эскизам автора сделал Николай Алексеевич Фролов — военный строитель, ученый и талантливый самодеятельный художник, безвременно ушедший из жизни много лет назад. Так случалось, что издатели книги «Электроника шаг за шагом» возражали против большого количества веселых картинок, и автор только сейчас получил возможность представить их читателю.
Художник Зоя Флоринская выполнила огромную работу по подготовке к печати старых рисунков и дополнила их двумя десятками новых. Рисунки имеют собственную нумерацию, и редкие ссылки на них содержат номер рисунка после букв ВК — «Веселый конспект».
1, 2.
3.
4.
Глава 2
Встреча с электричеством
Не торопитесь, пожалуйста, выводить своему далекому предку двойку по природоведению. Таким же, наверное, виделось бы окружающее любому из нас, если бы он вырос где-нибудь на необитаемом острове, без парового отопления и шариковых ручек, без магазинов «Гастроном» и журнала «Юный техник». А потом, если вдуматься, запас знаний человека древнего, необученного был не таким уж скудным, и в школе природы он никогда не был в числе отстающих.
Великая мастерица — эволюция долго и тщательно работала над своим лучшим творением Человеком и снабдила его изумительными инструментами познания мира. Зрение, слух, обоняние, осязание, датчики температуры и давления, тонкие химические анализаторы вкуса и, наконец, изумительный компьютер мозг — все это открыло Человеку мир в огромном многообразии вещей и явлений. На школьном уроке, который длился тысячелетия, работая и наблюдая, замерзая и обжигаясь, в борьбе со стихиями, голодом и хищным зверьем, твердо усвоил Человек такие понятия, как «быстрый» и «медленный», «тяжелый» и «легкий», «теплый», «холодный», «далекий», «большой», «горький». В плоть и кровь человеческую вошли представления о плотности вещества и скорости движения, о массе, размерах, времени, температуре — словом, важнейшие представления о мире, в котором нашим предкам приходилось жить и бороться за жизнь. Никакой другой житель планеты не имел столь детальной картины мира.
И все-таки…
И все-таки это была картина мира, созданная всего лишь диким обитателем лесов и пещер, собирателем плодов, охотником, имевшим в своем арсенале только палку и камень. Эту картину, конечно же, не сравнишь с тем, что знает современный человек, пассажир реактивного лайнера и владелец карманного магнитофона, исследователь живой клетки, строитель небоскребов.
И еще одно, наверное, самое великое, — школа: человек научился передавать знания потомкам, с тем чтобы они не начинали все с самого начала, «с нуля», а могли бы пользоваться уже достигнутым. И идти дальше.
В далекой, уже невидимой древности начались бои на огромном фронте познания мира. Было время — линия этого фронта, линия, отделяющая знание от неизвестности, продвигалась вперед очень медленно. Века, тысячелетия уходили на то, чтобы понять какую-нибудь простую, как сейчас кажется, истину — задачи, которые приходилось решать древним мыслителям и исследователям, были для них столь же мучительно трудными, как и современные научные проблемы для ученых наших дней. Но с каждой новой победой, с новым открытием росли силы наступающей армии, знание помогало добывать знание, все быстрее шли вперед передовые части науки. И вот уже восхищенное человечество рукоплещет глубоким прорывам в тайны жизни, в глубины вещества и просторы Вселенной, фантастическим успехам химии, медицины, астрофизики, энергетики, блистательным научным победам последних столетий, так сильно изменившим не только наше миропонимание, но и сам образ нашей жизни.
В нескольких популярных книгах о науке встречается интересный прием, помогающий почувствовать темпы человеческого» прогресса в разные времена. Авторы сжимают масштаб времени в тридцать миллионов раз, так что каждый год прошлого превращается в секунду. Вот как располагаются некоторые события на такой сжатой шкале времени.
Примерно сто пятьдесят лет назад в неприметном уголке огромной Вселенной из газопылевого облака, окружавшего звезду Солнце, образовалась цепочка планет, и в их числе — наша Земля. Лет двадцать Земля остывала, а еще через десять на некоторых участках ее поверхности в теплых водах Мирового океана начались сложные химические процессы с образованием больших молекул, началась предыстория жизни. Около ста лет назад появились первые примитивные живые клетки, а затем много десятилетий они совершенствовались, специализировались, объединялись в многоклеточные организмы. Лет десять — двенадцать назад появились рыбы и папоротники, пять лет назад — динозавры, которые, правда, уже через год исчезли с лица земли. Немногим более четырех лет назад в небо поднялись первые птицы, примерно через год начали появляться млекопитающие.
И только месяц прошел с тех пор, как из царства животных выделился человек.
Из всего этого множества черточек-отметок несколько нужно было бы как-то выделить, скажем, сделать их подлиннее или нарисовать другим цветом. Это были бы отметки, соответствующие особо важным открытиям, суперважным. Открытиям совершенно новых для человека, принципиально новых свойств окружающего мира.
Вы подняли с земли небольшой камушек, а затем разжали ладонь, и камушек падает вниз, тянется к земле. Почему? Так устроен мир, в котором мы живем, — все тела притягиваются друг к другу, стремятся сблизиться, и это явление мы называем гравитацией, гравитационным взаимодействием. Откуда оно берется? Почему действует именно так, а не иначе? Ответ все тот же — так устроен мир…
Один из примеров гравитационного взаимодействия — притягивание предметов к земле, то, что в нашем сознании связывается со словами «сила тяжести», «вес», «земное притяжение». Железный шар тянется к земле сильнее, чем деревянный, большой — сильнее, чем маленький. Характеристика какого-либо физического тела, которая показывает, насколько сильно, насколько активно это тело участвует в гравитационных взаимодействиях, называется его массой. Чем сильнее физическое тело — камень, железный или деревянный шар, капля воды, планета — тянется к другому физическому телу под действием гравитационных сил, тем, говорим мы, больше масса этого тела. А можно сказать так: чем больше массы взаимодействующих тел, тем сильнее их гравитационное притяжение. Кстати, именно поэтому такими легкими чувствуют себя космонавты на Луне: ее масса меньше, чем масса Земли, и Луна тянет к себе в несколько раз слабее.
С гравитацией человек познакомился тогда, когда он еще не был Человеком. Мы привыкли к ней, считаем ее совершенно естественной и чуть ли не единственной силой, которая правит миром.
Но вот около двух с половиной тысяч лет назад древнегреческий философ и исследователь природы Фалес Милетский впервые отмечает, что у гравитации есть могучий соперник, ранее ловко скрывавшийся от людей. Обнаружилось, что если натереть шерстью янтарную палочку, то палочка притягивает к себе легкие предметы, скажем клочки ткани. Под действием своей тяжести, то есть под действием гравитационного притяжения к земле, эти клочки ткани должны были бы падать, двигаться вниз. А они, преодолевая силы гравитации, упрямо поднимаются вверх (Р-1).
Р-1