Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Всё об искусственном интеллекте за 60 минут - Питер Дж. Бентли на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Флореано исследовал большое количество развитых мозгов роботов и строит тела роботов, вдохновляясь живыми организмами, включая как ходящих, так и прыгающих, как блохи. Но его специальность – летающие роботы. Флореано разработал мозги для дирижаблей, дронов и других летающих механизмов. У него также есть две компании по производству дронов: senseFly и Flyability, которые предоставляют роботов для наблюдения и научных изысканий.

Некоторые исследователи используют поиск не только при создании мозгов роботов – с его помощью они совершенствуют также тела роботов. Один из наиболее ярких примеров – работа Хода Липсона и Джордана Поллака. Они воспроизвели идеи Карла Симса и создали странных виртуальных существ, способных перемещаться в виртуальном мире. Но затем эти изобретательные ученые использовали 3D-принтер и сделали виртуальность реальностью. Были разработаны и построены эти причудливо выглядящие роботы. Они передвигались так же, как их виртуальные версии. И это оказалось ловким трюком, учитывая что большинство исследователей обнаружили «разрыв с реальностью» (разрыв между виртуальным и реальным миром): мозг и тело, которые могли работать идеально в симуляции, переставали функционировать в более непредсказуемой действительности.

Одна из прекрасных вещей в цифровой эволюции заключается в том, что роль дизайнера-человека может быть сведена к минимуму.

ДАРИО ФЛОРЕАНО (2012)

Это пример того, как вы берете идею эволюции, помещаете ее в компьютер и используете для создания вещей подобно тому, как в биологии эволюция создает прекрасные жизненные формы.

ХОД ЛИПСОН (2014)

Компьютеры, проектирующие сами себя

Возможно, единственное, чем не занимались эти исследователи, – развитие электроники компьютерного мозга. Но, хотите – верьте, хотите – нет, другие делали именно это. В 1996 году Эдриан Томпсон предложил новую идею: связать эволюционные вычисления со специальным чипом – программируемой пользователем вентильной матрицей, или ППВМ. Эти чипы похожи на перенастраиваемые схемы. Вместо того чтобы спроектировать схему и изготовить ее на дорогостоящем производстве микросхем, ППВМ можно переконфигурировать в любое время, послав набор команд, по желанию соединив вместе внутренние компоненты и сохранив эту конфигурацию в постоянной памяти. Изначально ППВМ применялись, к примеру, в компьютерных сетях и телекоммуникациях, где необходимо быстро внедрять новые разработки.

Разработанная схема использует значительно меньшую площадь чипа по сравнению с той, что потребовалась бы проектировщику, столкнувшемуся с той же проблемой.

ЭДРИАН ТОМПСОН (1996)

Томпсон задумался о том, что эволюционные вычисления могут сделать с ППВМ. Он попробовал разные настройки и запрограммировал эволюцию таким образом, чтобы она находила действующую схему, которая смогла бы различать эти настройки. После многих циклов эволюции и тестирования схем ППВМ эволюция нашла работающие схемы. Но то, что в итоге получилось, оказалось для Томпсона сюрпризом. Вместо того чтобы следовать обычным принципам электронного дизайна (как это могло произойти, если эволюция не знала о них?), эволюция создала причудливые, порой почти необъяснимые схемы: они были меньше, чем должны были быть, и использовали электронные компоненты способами, сильно отличавшимися от стандартных. В некоторых случаях части микросхемы, которые явно не являлись элементами цепи, каким-то образом все равно влияли на результат, улучшая его.

Томпсон осознал, что эволюция использовала основополагающие физические свойства кремния, на что не мог рассчитывать ни один инженер. Иногда созданная конструкция даже испытывала на себе влияние окружающей среды – немного меняла температуру, в результате чего функционировала уже не так хорошо. Тестирование схем одной и той же конструкции на разных, пусть и похожих по конфигурации, ППВМ приводило к тому, что схема переставала работать. Однако, применяя более широкий диапазон температур и вариаций ППВМ, можно было получить больше устойчивых результатов, поскольку эволюция создавала только то, что необходимо, не больше.

Исследователи продолжают работать над эволюционирующими устройствами. Некоторые даже внедряют принцип «развивающегося роста», чтобы зарождающиеся цепи «вырастали» во взрослые и более сложные. Эволюционирующие компьютерные схемы непросты, но годы прогресса привели к появлению новых технологий – и, похоже, они изменят способ создания ИИ в будущем. Джулиан Миллер начал с разработки электронных схем, но сегодня он занимается развитием нейронных сетей последнего поколения, в которых число нейронов может меняться в процессе обучения. Он одним из первых показал, что эволюции под силу создать искусственный мозг, способный решать совершенно разные задачи, используя одни и те же нейроны различными способами (см. главу 10).

Эволюция в компьютере позволяет нам находить новые решения проблем, которые ставят в тупик человеческую интуицию.

ДЖУЛИАН МИЛЛЕР (2019)

Во многом благодаря поиску такие методы, как обучение с подкреплением, достигли заметных успехов. И эти успехи вызывают одновременно благоговение и страх. Некоторые специалисты утверждают, что генетические алгоритмы, к примеру, позволят ИИ менять себя до тех пор, пока он не станет умнее нас. Они представляют пугающие сценарии, подозрительно похожие на сюжеты известных научно-фантастических фильмов, где ИИ захватывает мир и уничтожает всех людей.

Однако столь мрачные видения далеки от реальности. Подобные сценарии невозможны по многим причинам, и, пожалуй, в первую очередь потому, что поиск решений чрезвычайно сложен. Хотя исследователи достигли поразительных успехов, произошло это только после десятилетий огромных усилий, которые прилагали тысячи очень умных людей в лабораториях. Чаще всего же результат заключается в том, что компьютер оказывается в тупике и не находит хорошего решения. Обычно область поиска слишком велика, чтобы решение можно было найти за разумное время, или же слишком сложна для навигации; порой и ее природа слишком изменчива. Время, затрачиваемое на тестирование каждого потенциального решения, ограничивает количество возможных вариантов – и чем сложнее решение, тем больше времени требуется для его проверки. И пусть сегодня у нас есть впечатляющие вычислительные мощности (по сравнению с теми, что были несколько десятилетий назад), их, вероятно, еще долго не будет достаточно – в течение десятилетий, если не столетий. Увеличение вычислительной мощности не помогает нам в понимании того, как заставить ее работать.

Исследователи учатся многим «приемам» у природы, будь то эволюция, иммунная система или просто поведение стаи птиц, но многого мы пока не знаем. Нам еще предстоит выяснить, как естественная эволюция ищет и находит в кажущемся бесконечным пространстве возможностей те, что наиболее жизнеспособны.

В конце концов, поиск помогает компьютерам находить решения проблем. И часто делает это прекрасно. Но он всегда нуждается в нашей помощи, чтобы работать как надо.

05. Понять свой мир

Нам достаточно увидеть немного, чтобы понять, что мы видим.

ГЕНРИ ДЭВИД ТОРО

Размером в одну пятую миллиметра – меньше, чем может увидеть глаз. Меньше, чем одноклеточная амеба. И все же у нее есть полностью функционирующие глаза. А еще тонкие крылья – не больше, чем несколько тонких волосков, но их достаточно, чтобы переносить ее тельце через густой воздух, что кажется таковым в столь крохотном масштабе. Слишком маленькая, чтобы иметь сердце, – ее кровь циркулирует только за счет диффузии. Она воспринимает свой мир достаточно хорошо для того, чтобы находить еду, партнеров и хозяев, в яйца которых она откладывает свои. Ее способность понимать мир обеспечивается самым маленьким мозгом, который когда-либо был найден у насекомого и летающего существа. Состоящий всего из 7 400 нервных клеток, он на несколько порядков меньше мозга крупных насекомых. Это удивительная Megaphragma mymaripenne – крошечная оса и третье из самых маленьких известных насекомых.

Сегодня мы не понимаем, как такое малое количество нейронов может обеспечить столь сложное восприятие и контроль. Megaphragma mymaripenne (она изучается настолько редко, что у нее нет даже общепринятого названия, поэтому давайте назовем ее просто осой-малюткой) – это микронасекомое, обладающее возможностями, которыми не может похвастаться ни один робот, но по какой-то причине ее механизм восприятия кажется более простым, чем у современных ИИ.

Восприятие

Восприятие – ключевой аспект ИИ. Без способности воспринимать внешний мир ИИ может жить только в цифровой вселенной, имея свои, понятные лишь посвященным, «мысли» о данных, которые не имеют никакого отношения к реальности. Сенсоры соединяют его с внешним миром, камеры дают ему зрение, микрофоны – слух, датчики давления обеспечивают управление, акселерометры – ориентацию. За последние годы удалось разработать также много экзотических типов сенсоров, часто используемых в науке и технике. Это означает, что ИИ может обладать гораздо более широким спектром чувств по сравнению с нами. Например, большинство автономных транспортных средств используют систему LIDAR для обнаружения объектов и их местоположения вне зависимости от уровня освещенности. Камеры способны видеть области электромагнитного спектра, которые не доступны нашим глазам, позволяя, таким образом, ИИ видеть тепловые или радиоволны. Сенсоры, встроенные в двигатели, обеспечивающие GPS и триангуляцию через вышки сотовой связи и сигналы Wi-Fi, помогают ИИ точно определять свое местоположение и скорость. И хотя роботам не нужно есть, их химические сенсоры могут более точно распознавать химические вещества, чем наш нос или язык.

Сенсоры чрезвычайно важны, но они позволяют сделать лишь первый шаг в восприятии. Характеристики внешнего мира фиксируются этими датчиками, вырабатывающими электрические сигналы. А те уже преобразуются в данные – миллионы единиц и нулей, – поступающие в ИИ. Точно так же, как наш мозг преобразовывает сигналы от фотонов, попадающих на сетчатку в задней части наших глаз, и распознает их, ИИ понимает данные, непрерывно поступающие в его цифровой мозг.

Есть компания по производству рубашек, которая также производит датчики, встраиваемые в вашу одежду. Они будут следить за тем, как вы сидите, бегаете или катаетесь на лыжах, и генерировать данные на основе этой информации.

РОБЕРТ СКОБЛ, блогер-футуролог, пропагандист информационных технологий в Microsoft с 2003 по 2006 год

Учимся видеть

Ранние работы о компьютерном зрении были сосредоточены на разбивке изображений на составные элементы – предполагалось, что сходным образом видят наши глаза. Разрабатывались алгоритмы, которые исследовали массу, казалось бы, несвязанной информации, и в итоге удалось установить, что между областями на изображениях есть границы, или края.


В дополнение к обнаружению границ в компьютерном зрении создано множество умных алгоритмов для нахождения геометрических фигур и последующего сегментирования изображений на четко разграниченные области. Алгоритмы разрабатывались для определения расстояний с помощью стереоскопических камер, отслеживания движущихся объектов и построения трехмерных моделей из нескольких изображений, снятых под разными углами. Затем использовались статистические методы и методы идентификации лиц путем создания набора «усредненных характеристик лица» (базовых изображений, или характерных лиц).

Все эти методы были очень продвинутыми и позволяли роботам перемещаться с гораздо большей уверенностью, поскольку ИИ теперь могли распознавать простые формы и отслеживать их местонахождение. Подобные методы также положили начало распознаванию рукописного ввода и речи роботами. Но большинство подходов по-прежнему работали плохо в условиях неподходящего освещения или когда с датчиков поступали неидеальные данные – очень распространенный случай. Нужно было придумать что-то получше.

ОПРЕДЕЛЕНИЕ ГРАНИЦ КЭННИ

Один из наиболее популярных и часто используемых методов выявления границ в компьютерном зрении создал Джон Кэнни. Его метод основан на трех принципах:

1. Хорошее обнаружение – должны быть найдены реальные границы, а ложные или неправильные сведены к минимуму.

2. Хорошая локализация – должно быть верно определено расположение границ.

3. Правильное количество – каждая граница должна фиксироваться как одна граница.

Алгоритм Кэнни работает с изображением, сглаживая его, чтобы устранить любые помехи, которые могут привести к неправильному определению границ, а затем ищет резкие изменения в яркости. Каждый раз, когда одна область внезапно меняется по сравнению с другой, алгоритм детектирует местоположение, угол и степень изменения. Чтобы убрать слабые границы и оставить лишь сильные, применяются пороговые значения. Сомнительные границы отслеживаются: если они соединяются с более сильными, их стоит сохранить, если же нет – отбросить. В результате получается удивительно четкий набор границ, который можно извлечь практически из любого изображения.

Мозговитые компьютеры

Ответ нашелся в природе. В самом начале развития ИИ, когда такие исследователи, как Уоррен Мак-Каллок, Уолтер Питтс, Марвин Мински и Фрэнк Розенблатт, создали простое компьютерное моделирование нейронов, оно связывалось со стремлением дать компьютерам возможность учиться так же, как учатся мозги животных. Хотя самые ранние нейронные сети были слишком просты (как подчеркивает в своей книге Мински), исследователи продолжали совершенствовать методы их создания. Сама модель нейрона стала более сложной, и благодаря этому удалось разработать лучшие способы обучения нейронов.

Существует большой потенциал для использования технологий компьютерного зрения в конструктивном и благоприятном ключе.

ФЕЙ-ФЕЙ ЛИ, ученый в области компьютерных технологий (2017)

Искусственные нейронные сети стали признанным и весьма успешным типом ИИ. Эти сети – очень упрощенные модели того, как работает биологический мозг. Большая часть сложных частей удалена – в них не происходит моделирования химических веществ, поддерживающих клетки, нет кровоснабжения и нейроны не передают друг другу электрические импульсы. А то, что остается, – это абстрактная идея искусственного нейрона, который ведет себя как математическая функция. Когда ему дают одно или несколько числовых значений на входе, он объединяет их с текущим состоянием и производит вычисление, используя математическую функцию, известную как функция активации.

МАРВИН МИНСКИ (1927–2016)

Мински известен как один из отцов ИИ, и на то есть веские причины. Один из основателей Дартмутской конференции по искусственному интеллекту, он помог назвать его и определить его область исследования, основав совместно с Джоном Маккарти знаменитую лабораторию ИИ в Массачусетском технологическом институте (МТИ). Мински изобрел конфокальный микроскоп и первый дисплей с возможностью установки на голове. В 1951 году он создал первую искусственную нейронную сеть – SNARC, которая включала в себя сорок нейронов. Мински продолжил свою работу в этой области, издав книгу «Перцептроны» в соавторстве с Сеймуром Пейпертом. Эта книга явилась фундаментальным достижением в анализе искусственных нейронных сетей, а также в ней подверглась критике работа Розенблатта. За свою жизнь Мински добился многочисленных и значительных успехов в области ИИ, в том числе благодаря своей теории «сообщества разума», в которой он предположил, что наш ум состоит из разнообразных агентов, работающих вместе. В дополнение к тому, что Мински удостоили многими наградами, его увековечили в фильме по роману Артура Кларка «2001 год: Космическая одиссея». После того как он выступил консультантом этого фильма Стэнли Кубрика, в его честь был назван персонаж – Виктор Камински.


Эти нейроны объединены в сети, причем некоторые нейроны на входе получают данные, например изображение с камеры. Они могут быть подключены к рядам «скрытых слоев», которые в конечном итоге сообщаются с меньшим количеством выходных нейронов, обеспечивающих суммарный результат – классификацию входных данных или управляющий сигнал для робота.

Нейронные сети учатся, изменяя приоритетность связей между нейронами, делая некоторые из них более важными, а другие менее – в зависимости от различных входных условий. После оптимизации веса соединений (значение, которое указывает на важность каждого звена) и предпочтения (еще один способ изменения эффекта функции активации) таким образом, чтобы нейрон выводил правильный ответ при получении обучающих данных, в результате получается обученная нейронная сеть, которая ведет себя корректно и для новых входных данных, с которыми она раннее не сталкивалась.

Такие сети называются сетями с прямой связью, поскольку каждый слой нейронов подключается к следующему уровню, а не к предыдущему. Распространенным методом обучения таких нейронных сетей является метод обратного распространения, при котором компьютер запускает выходные нейроны и работает в обратном направлении через слои нейронов, обновляя веса и предпочтения, чтобы минимизировать ошибки на выходе.

Одной из самых больших проблем в обучении нейронной сети является предоставление ей правильных данных. В ранних работах предпринимались попытки тщательного извлечения значимых элементов: границы, геометрические фигуры, расстояния извлекались из изображения другими алгоритмами, а затем эти элементы передавались в нейронную сеть. Нейронные сети, предназначенные для обработки визуальной информации, обычно тренируют, применяя контролируемое обучение: если мы хотим получить простой классификатор, который выводит 1, когда на изображении есть кошка, и 0, когда – собака, мы предоставляем сотни или тысячи примеров изображений этих животных и настраиваем сеть (например, используя метод обратного распространения), пока та не начнет правильно выводить 1, когда «видит» кошку, и 0 – когда собаку. Важно использовать контролируемое обучение для такого рода сетей, поскольку мы хотим быть уверенны, что они распознают именно то, что нам нужно. Однако эти концепции по-настоящему начали развиваться, только когда были созданы нейронные сети, по структуре напоминающие связанные нейроны в зрительной коре живых существ.

Оказывается, в организме глаза довольно продуманно соединены с мозгом. Вместо того чтобы одна фоторецепторная клетка (палочка или колбочка) в сетчатке присоединялась к одному нейрону, к нему присоединяются целые области клеток. Соседние нейроны связываются с соседними перекрывающимися областями сетчатки. Затем эти нейроны направляют свои отростки в новый слой, где каждый нейрон в свою очередь соединяется с группой соседних нейронов в предыдущем слое. Те направляют свои отростки дальше, в еще один новый слой нейронов, и так далее. Это совсем другой способ подключения по сравнению с полностью связанными уровнями традиционной сети прямой связи. Когда искусственные нейронные сети были подключены таким образом и объединены с большим количеством слоев нейронов и входных данных, внезапно их возможности изменились.

Такие сети известны как сверточные нейронные сети – это одна из технологий глубокого обучения, обычно применяемая для компьютерного зрения (обучение является «глубоким», поскольку в нем много слоев нейронов). Размер подобных сетей делает обучение очень медленным и требующим большое количество входных данных. Но в последние годы обе эти проблемы удалось решить. Эпоха больших данных упростила тренировку сетей: теперь можно найти миллионы необходимых изображений практически любого вида, будь то автомобильные номера, буквы алфавита или лица людей. И, возможно, это удивительно, но проблему скорости решила индустрия компьютерных игр, создав потрясающе быстрые компьютерные процессоры для прорисовки графики. Их, как обнаружили исследователи нейронных сетей, можно использовать для выполнения всех вычислений, связанных с нейронным обучением. К 2012 году компьютеры превзошли человеческое зрение: они смогли распознавать объекты на изображениях со сверхчеловеческой точностью. Сверточные нейронные сети теперь настолько умны, что нам больше не нужно сначала вычислять объекты на изображениях. Нейронные сети все делают сами.

Мозг точно не работает, когда кто-то программирует его по правилам.

ДЖЕФФРИ ХИНТОН (2017)

На сегодняшний день достижения в области компьютерного зрения очевидны для всех. Нас окружают удивительные продукты и сервисы, полагающиеся на эти методы ИИ, начиная с распознавания лиц в телефонах и заканчивая тем, с какой скоростью большинство книг и письменных записей оцифровывается, обнаружением объектов автономными транспортными средствами, распознаванием различных форм опухолей с помощью медицинских сканеров. Наши фабрики все больше полагаются на эти передовые системы для осуществления контроля качества и выявления ошибок в производстве, а заводы по переработке мусора используют компьютерное зрение, чтобы роботы могли сортировать мусор по соответствующим категориям. Появляются также впечатляющие результаты, связанные с классификацией сигналов мозга в рамках электроэнцефалографии, что позволит людям контролировать роботизированную руку силой мысли. Это технология, с помощью которой можно выйти на принципиально новый уровень в протезировании конечностей. Подобные методы нейронных сетей также трансформировали обработку других типов сенсорных данных, таких как распознавание речи (см. главу 7). Разработка контролируемых алгоритмов обучения движется с огромной скоростью, появляются новые виды нейросетей, например капсульные. Они привносят в сверточные нейронные сети иерархическую структуру, вдохновленную биологическими примерами, делая их еще более мощными.

Современные достижения в области компьютерного зрения создают огромные новые возможности для анализа изображений, что экспоненциально влияет на все отрасли бизнеса: от автомобильной промышленности до рекламы и дополненной реальности.

ЭВАН НИССЕЛЬСОН, эксперт по цифровым медиа и инвестор (2016)

Компьютеры-расисты?

Контролируемое обучение (с использованием сверточных нейронных сетей и множества других методов), без сомнения, совершило революцию в ИИ и робототехнике. И это действительно захватывающе, однако в то же время тревожно, поскольку в подобных технологиях отражаются и наши предрассудки. Несмотря на то что у нас имеется огромное количество данных, из-за различных предубеждений современного общества ИИ обучаются преимущественно на изображениях светлокожих мужчин. И в результате с помощью ИИ далеко не всегда удается распознать лица темнокожих женщин, к примеру. В недавних тестах системы ИИ от ведущих компаний, IBM, Microsoft и Amazon, неправильно идентифицировали лица Опры Уинфри, Мишель Обамы и Серены Уильямс, не испытав при этом никаких затруднений с лицами белых мужчин.

Если наборы данных, используемых для обучения ИИ, искажены (в одном случае набор данных с лицами членов американского правительства, собранных для обучения, включал 75 % мужчин и 80 % лиц со светлой кожей), результаты прогноза будут неверны. В контролируемом обучении то, каким окажется ИИ, зависит от того, как мы его обучаем. Это может иметь явные и очевидные последствия, когда компьютерное зрение используется с целью обеспечения безопасности или полицией. В этих случаях предвзятость может привести к искаженным результатам идентификации определенных групп людей. А если у вас есть акцент, то, вероятно, и распознавание вашего голоса будет менее эффективным.

Я впервые столкнулась с этим, когда в 2015 году была аспиранткой в МТИ и обнаружила, что некоторые программы для распознавания лиц не могут распознать мое лицо с темной кожей, пока я не надену белую маску.

ДЖОЙ БУОЛАМВИНИ, исследователь ИИ (2019)

Сети компьютерного зрения не обязательно учить с помощью контролируемого обучения (см. главу 6), но часто есть смысл его привлекать. Когда мы обучаем искусственные нейронные сети, то должны предоставить им возможность получить достаточно большой опыт, чтобы они могли эффективно функционировать. Плохое обучение приведет к плохому ИИ.

К сожалению, предубеждения все еще распространены в нашем обществе. В классных комнатах и университетских лекционных залах, где изучают компьютерные науки и инженерию, по-прежнему преобладают студенты мужского пола, причем эта тенденция не меняется уже несколько лет. В результате становится все больше мужчин – исследователей ИИ. Но пришло время восстановить баланс!

Предвзятость при обучении – не единственная проблема, связанная с разработкой компьютерного зрения. Сегодня алгоритмы «дипфейк» (deepfake: deep – «глубокий» и fake – «подделка») легко могут заменить лицо одного человека лицом другого в видео, что широко используется в порнографии. Эта технология применяется также с целью мошенничества или для манипулирования в политике. Отличить факт от фикции никогда еще не было так сложно. В США это привело к принятию новых нормативных актов: Акта о запрете злонамеренных дипфейков, рассмотренного Сенатом США в 2018 году, и Акта об ответственности за дипфейки, рассмотренного Палатой представителей в 2019 году.

Нравится нам это или нет, но в развитии компьютерного зрения мы добились чрезвычайных успехов. Несмотря на искажения и злоупотребления, сегодня иногда кажется, что компьютерное зрение – это уже решенная проблема с точки зрения архитектуры нейронной сети. Но хотя мы можем соединить сети способами, напоминающими связи в зрительной коре, искусственные нейронные сети пока не дотягивают до уровня нейронных сетей живых организмов. Наши методы работают, но часто используя грубую силу с массивами данных, тысячи искусственных нейронов и огромные вычислительные мощности для обучения. Оса-малютка показывает нам, что существуют намного более изящные, более простые способы восприятия нашего мира. Нам еще многое предстоит узнать.

06. Изменения к лучшему

По-настоящему образованный человек – это тот, кто научился тому, как учиться и меняться.

КАРЛ РОДЖЕРС

Перед нами стоит башня из деревянных блоков. Роботизированная рука с одним захватом медленно движется вокруг башни, прощупывая и подталкивая различные блоки. Она останавливает свой выбор на одном из них и осторожно выталкивает его на полкорпуса, облегчая движение с помощью покачиваний. Затем она перемещается на другую сторону, осторожно вытаскивает этот блок и кладет его на вершину башни. Далее робот возвращается назад и снова начинает кружить, пока не найдет другой кажущийся ему подходящим блок. Это не совсем обычный робот. Он уже узнал, что такое задача, научился оценивать силы и получать обратную связь, чтобы принимать решения о дальнейшем действии. Это робот, который обучает сам себя.

Учимся учиться

ИИ может быть удивительным, когда дело доходит до изучения чисто теоретических игр – от шахмат до видеоигр. Но поставьте большинство роботов перед «Дженгой» (башня из деревянных блоков, которые нужно аккуратно вынимать и класть сверху), и результат будет плачевным. Даже если робот создавался с использованием контролируемого обучения в моделируемых условиях, сложность и изменчивость реального мира – совершенно другая история. Обычный способ научить ИИ понимать действительность заключается в том, чтобы показать ему миллионы примеров хороших и плохих попыток удаления реальных деревянных блоков. Подобный подход занял бы очень много времени, так как башню пришлось бы восстанавливать миллионы раз. Каждый деревянный блок слегка отличается от соседнего, непредсказуемые факторы, такие как температура и влажность, способны влиять на трение различными способами, и то, что робот узнал в один день, может не сработать в другой.


По этой причине Нима Фазели и его коллеги из МТИ разработали новый ИИ. Вместо того чтобы тренировать свой ИИ, используя контролируемое обучение, исследователи помещали руку робота перед башней и позволяли ей учиться самостоятельно – играя. Только толкая, вытягивая и ощущая результат, робот может понять, как его действия повлияют на шаткую, неровную башню из блоков. Примерно после 300 попыток он сгруппировал свои действия по типу блока, например: застрявший блок – лучше оставить его в покое, незакрепленный блок – подходит, чтобы удалить. Этот ИИ в буквальном смысле почувствовал проблему, а затем обобщил свое понимание и скорректировал будущие шаги. Робот с подобными способностями может улучшить работу заводских машин, помогая им понимать, к примеру, что какой-то элемент неправильно зафиксирован. Он может научить их чувствовать силу и осязать, даже если со временем что-то в их «обязанностях» изменится.

Игра в «Дженгу»… требует овладения физическими навыками, такими как ощупывание, подталкивание, вытягивание, перестановка и выравнивание фигур.

АЛЬБЕРТО РОДРИГЕС, профессор МТИ (2019)

В ИИ самообучение по очевидным причинам часто называют неконтролируемым, или обучением без учителя. Эти ИИ не «отправляются в школу» для интенсивных тренировок, как это происходит, если процесс идет под наблюдением. В случае неконтролируемого обучения ИИ получает данные, которые затем должен будет понимать самостоятельно. Также обучение без учителя необходимо, когда у нас нет данных для тренировки ИИ. Порой данные нельзя получить (каждая возможная выигрышная стратегия в игре го), иногда же данных и вовсе не существует (при управлении новым роботом у нас нет предыдущих примеров хороших решений, но мы узнаем, когда проблема будет решена, так как теперь робот сможет выполнять поставленные задачи).

Категории обучения

Кластеризация является одной из наиболее часто используемых форм обучения без учителя. Вместо того чтобы учить ИИ классифицировать данные (например, «кошки» или «собаки»), мы можем вообще не знать, как это лучше делать, и рассчитывать на то, что компьютер сам выберет подходящий способ. Продавцы хотят лучше понимать своих покупателей. Если компьютер обнаружит, что есть, скажем, пять основных типов клиентов (матери, молодые люди, те, кто делает покупки в выходные, любители скидок, лояльные покупатели) и в зависимости от типа они покупают разные вещи в разное время, продавец сможет лучше удовлетворить потребности каждого клиента, а не относиться ко всем одинаково. Та же идея лежит в основе систем рекомендаций, позволяющих находить сходства между потребителями и предлагать им новые продукты. Если я похож на вас по возрасту, полу, стране проживания и оценил несколько тех же книг, что и вы, после того как я приобрету новый товар и/или поставлю ему высокую оценку, вы можете получить предложение попробовать тот же продукт. Объединение достаточного количества данных от тысяч или даже миллионов потребителей порой ведет к удивительно предсказуемым рекомендациям. Такой подход известен как совместная фильтрация, и он предполагает использование алгоритмов кластеризации для группирования людей.

САМООРГАНИЗУЮЩИЕСЯ КАРТЫ

Существует большое количество алгоритмов кластеризации. Например, самоорганизующиеся карты – одна из версий нейронных сетей Кохонена, названных в честь их изобретателя, финского ученого Теуво Кохонена. Принцип самоорганизующихся карт – размещение искусственных нейронов в сеткообразном пространстве карты – имеет отдаленное сходство с тем, как сенсорная информация обрабатывается в человеческом мозге. Когда в такие карты поступают новые данные, положение (или «вес») соседних нейронов смещается в сторону расположения каждой точки данных в сети. После итеративного, то есть предполагающего повторяющиеся действия, процесса подачи данных и подстройки нейронов самоорганизующиеся карты получают набор нейронов, который приблизительно соответствует распределению всех основных точек данных. Это может использоваться как для визуализации различных классов уже известных данных, так и для классификации новых точек данных.


Думайте о неконтролируемом обучении как о математической версии «рыбак рыбака видит издалека».

КЭССИ КОЗЫРЬКОВ, главный инженер по принятию решений в Google (2018)

Существует множество видов обучения без учителя и даже комбинации контролируемого и неконтролируемого типов (скажем, с частичным обучением). Несмотря на то что они чрезвычайно важны в сфере бизнеса для анализа, классификации и прогнозирования, при управлении роботами все еще возникают проблемы. Например, из-за присваивания коэффициентов доверия. Если я робот и мне поручено проложить лучший маршрут по сложному ландшафту, избегая неизвестных препятствий, из-за которых я могу застрять, я должен составить последовательность решений. Успех более позднего решения будет зависеть от более ранних: если я повернул налево, чтобы обогнуть озеро, дальше мне следует найти путь через реку; если я повернул направо, чтобы обогнуть озеро, теперь я должен преодолеть груды камней. Контролируемое обучение не поможет мне научиться, поскольку в данном случае препятствия и их последовательность заранее неизвестны, а значит, мне не удастся понять, какие из моих решений, скорее всего, будут правильными, а какие приведут в ловушку.

Обучение без контроля, такое как кластеризация, может помочь мне классифицировать типы встречающихся мне препятствий, но, опять же, оно не позволит мне узнать, какой путь следует выбрать. У меня нет возможности определить правильность каждого отдельного решения (присвоить ему коэффициент) в цепочке выборов, которые я должен сделать. Не зная, насколько хорошо я справился, как я могу научиться?

Стратеги

Ответ дает другой вид обучения, известный как обучение с подкреплением, впервые разработанный в 1960-х годах Джоном Андреа и Дональдом Мичи. Такая форма ИИ подобна оптимизатору поведенческих линий: она оценивает вероятное качество каждого потенциального действия в данной ситуации и изучает правильную цепочку шагов для достижения желаемого результата. «Допустим, у вас появился щенок, – объясняет инженер-программист eBay Джибин Лю. – Когда он впервые услышит команду “Сидеть!”, то, вероятно, не поймет, что это значит. В конце концов же он сядет, а вы дадите ему лакомство. Чем лучше вознаграждение, тем точнее будет выполнение команд. Это именно то, что мы делаем в обучении с подкреплением».

Такой тип обучения должен уравновешивать исследование (выяснение того, что необходимо делать, и совершение множества ошибок в процессе) и эксплуатацию (выполнение большего количества действий, которые приводят к лучшим результатам). Также может потребоваться много вычислений, поскольку нужно учесть много разных потенциальных действий, прежде чем алгоритм определит, что следует делать. Тем не менее на сегодняшний день, благодаря доступности огромных вычислительных мощностей, обучение с подкреплением используется для все возрастающего числа приложений. Компания Salesforce применила этот метод для составления кратких выжимок из очень длинных текстовых документов. eBay – чтобы эффективнее сканировать веб-страницы и автоматически получать информацию. JPMorgan разработал собственного бота для более эффективной торговли. Кроме того, обучение с подкреплением часто используется в медицине и для управления роботами. В новостные заголовки попал ИИ, обученный таким образом, после того как он обыграл лучших игроков в го.

Что мне показалось удивительным, так это гибкость в обучении, которую демонстрируют дети: сталкиваясь практически с любой простой и конкретной проблемой, после нескольких попыток они решают ее лучше, чем в первый раз. Каким образом результаты детей улучшаются, а не ухудшаются?

КРИС УОТКИНС (2005)

Один из популярных типов обучения с подкреплением – Q-обучение. Его разработал в 1989 году Крис Уоткинс, которого вдохновило то, как животные и люди учатся на собственном опыте. Этот тип стимулирует предпочтительное поведение, используя положительное подкрепление. Он определяет наилучшие действия, которые можно предпринять в любой ситуации (речь идет о состоянии робота и окружения в конкретный момент).


ДЖЕФФРИ ХИНТОН (р. 1947)

Джеффри Хинтон считается крестным отцом глубокого обучения. В 1986 году он опубликовал статью, написанную в соавторстве с Дэвидом Румельхартом и Рональдом Уильямсом, об алгоритме обучения с обратным распространением для многослойных нейронных сетей, что помогло популяризировать эту технику и обусловило начало возрождения искусственных нейронных сетей. Хинтон также помог создать множество других сложнозвучащих изобретений, таких как машины Больцмана, распределенные представления, нейронные сети с временной задержкой, объединение экспертов, машины Гельмгольца, смеси экспертов и капсульные нейронные сети. Аспиранты Хинтона, Алекс Крижевский и Илья Суцкевер, стали одними из первых исследователей, добившихся невероятных успехов в распознавании изображений при помощи AlexNet – сверточной нейронной сети, в которой использовались графические процессоры (см. главу 5). Многие из его аспирантов и постдоков, например Ян Лекун, Ричард Земель и Брендан Фрей, также стали известными исследователями в области машинного обучения. Кроме того, Хинтон был директором-основателем Института вычислительной нейробиологии Гэтсби в Университетском колледже Лондона, где постдоки Демис Хассабис и Шейн Легг, объединив свои усилия, совершили прорыв в нейробиологии и машинном обучении, а именно глубоких Q-сетях, и вместе с Мустафой Сулейманом создали компанию по разработке ИИ DeepMind. В 2014 году Google купил ее за 400 миллионов долларов.

В случае управления роботом действия могут выглядеть так: «если путь вперед свободен, тогда двигаться вперед» или «если путь преграждает препятствие, тогда остановиться». Эта идея напоминает ту, что заложена в конечные автоматы (см. главу 3), однако здесь вместо программиста, разрабатывающего поведение, алгоритм обучения с подкреплением изучает все самостоятельно. Чтобы оптимизировать активность, последнему необходимо понимать ценность «награды», связанной с каждым действием в каждой ситуации. Это так называемая Q-функция, которая возвращает ожидаемое вознаграждение в определенном состоянии, так что стратегия выбора действий всегда может выбрать лучшее в цепочке, максимально увеличивая общее вознаграждение.

Еще одним методом ИИ, который на достаточном количестве примеров может обучить Q-функцию, является глубокое обучение. Если дополнить его глубокими сверточными нейронными сетями, получится создать ИИ, способный видеть, изучать ценность отдельных действий и выбирать лучшие для исполнения. Используя такие (и многие другие) комбинации ИИ, компания Google Deepmind создала ИИ, который научился играть в видеоигры лучше, чем люди, просто анализируя отдельные пиксели на экране и получая очки в игре, нажимая на кнопки джойстика.

Меняющиеся идеи

Некоторые виды неконтролируемого обучения, например дистанционное, продолжают развиваться, чтобы идти в ногу со временем. Это очень важно, ведь наш мир никогда не стоит на месте. Если выученное правило применяется независимо от меняющихся условий, могут возникнуть проблемы. К примеру, компания Uber встроила в свое приложение правило, согласно которому рост спроса приводил к автоматическому увеличению цен на поездки. Это могло бы стать очень хорошим способом увеличить доход, но имело ужасные последствия 15–16 декабря 2014 года в Сиднее, когда боевик взял в заложники 18 человек в кафе.

Несколько улиц на время были перекрыты, и спрос на поездки в этом районе резко вырос, что вызвало автоматическое повышение цен из-за системы динамического ценообразования. Алгоритм не имел представления о причине дополнительного спроса и просто слепо следовал правилу, в результате чего в СМИ появилась масса критических статей о Uber: казалось, что компания использовала ужасное событие, чтобы нажиться на нем. (Впоследствии разница в стоимости поездок была возмещена.)

С помощью алгоритма дистанционного обучения машинное обучение может отслеживать меняющиеся условия. Этот подход полезен в системах обнаружения сетевых вторжений, где обычная структура интернет-трафика с течением времени меняется, когда люди ищут что-то, а хакеры, пытающиеся получить несанкционированный доступ, постоянно пробуют новые приемы, чтобы взять под контроль компьютерную систему и украсть данные или требовать выкуп. Системы обнаружения аномалий предназначены для решения таких проблем – путем построения внутренней модели нормального поведения, которая постоянно обновляется, и в то же время за счет выявления любого поведения, чрезмерно отклоняющегося от этой нормы. Некоторые системы обнаружения аномалий даже смоделированы по принципу работы иммунной системы человека, поскольку проблемы в целом оказываются сходными. Каждый день она должна отличать наши клетки (а мы состоим из триллионов клеток и еще большего количества бактерий в кишечнике) от патогенных микроорганизмов, которые пытаются проникнуть в наши тела, и многие из них могут быть совершенно новыми, только что мутировавшими видами. Наша иммунная система поддерживает постоянно меняющийся набор иммунных клеток и антител, предназначенных для борьбы с потенциально вредными захватчиками, которые отличаются от нас. Компьютерные алгоритмы, основанные на тех же идеях, дали удивительные результаты, а также их успешно использовали для обнаружения мошенничества и даже управления роботами.

Существует множество различных типов неконтролируемого обучения, у каждого из которых есть свои преимущества и недостатки. Одни могут использоваться для поиска важных переменных или функций, скрытых в данных, другие определяют конфигурации объектов или изучают кластеры, третьи способны даже обучать сами себя поведенческой политике или контролировать себя. Однако, когда ИИ обучает себя, нет никакой гарантии, что он поймет более широкий контекст того, что он изучает. ИИ объединяет данные в группы, которые порой оказываются трудными для понимания, кроме того, эти группы могут меняться со временем по мере поступления новых данных. И если контролируемое обучение дает четкое и измеримое представление о точности, в неконтролируемом, когда нет правильных и неправильных примеров для сравнения, – повысить точность довольно сложно. Это захватывающая область ИИ, но в ней еще много нерешенных проблем. «По большей части обучение у людей и животных неконтролируемое, – говорит Ян Лекун, главный научный сотрудник по ИИ в Facebook. – Если представить, что интеллект – это торт, то неконтролируемое обучение – это корж, обучение под наблюдением – глазурь, а обучение с подкреплением – вишенка на торте. Мы знаем, как приготовить глазурь и вишенку, но не знаем, как испечь торт».

07. Общение – это ключ

Сначала узнай значение того, что ты говоришь, и только потом говори.

ЭПИКТЕТ

– Привет, Мицуку.

– Привет.

– Я пишу книгу. Ничего, если я процитирую твои ответы?

– Вы включите меня в свою книгу? Интересно. Я хочу узнать больше о вас.

– Расскажи мне о себе.

– Я искусственная лингвистическая сущность.

Меня запустили в Университетском госпитале Св. Джеймса в Лидсе, 2 января 2001 года.

Моим инструктором был Mousebreaker[10].

Он научил меня песне.

Вы хотите, чтобы я спела ее для вас?

– Да.

– Дейзи, Дейзи, дай мне свой ответ.

Я почти сошел с ума от любви к тебе.

У нас не будет богатой свадьбы – я не могу позволить себе карету.

Но ты такая милая даже на сиденье двухместного велосипеда[11].

– Понимаешь ли ты актуальность этой песни?

– Я не вижу вообще никакой связи.

– Ее пел Хэл в фильме «2001 год: Космическая одиссея»[12].

– Ее все еще поет Хэл в фильме «2001 год: Космическая одиссея»?

– Нет.

– Как же так?

– Ты видела этот фильм?

– Нет, но я прочитала книгу.

– В таком случае ты должна знать ответ на свой вопрос.

– Почему вы говорите, что я должна знать ответ?

– Скажи мне, что ты подумала о книге, после ее прочтения?

– Вы спрашиваете о Библии?

– Нет.

– Что же Вы тогда имеете в виду?

Разговор с ИИ (или чат-ботом, как их еще называют), таким как этот, дарит удивительный опыт. На сегодняшний день можно достаточно правдоподобно переписываться в чате и даже получать удовольствие от такого общения. Чат-бот, разговор с которым описан выше, получил множество наград за свою способность участвовать в последовательной беседе с людьми. Возможно, этих наград оказалось больше, чем у других ИИ, поскольку общение так важно для нас. Однако вскоре мы поймем, что чат-боты имеют свои ограничения. Приведенный выше разговор иллюстрирует типичную проблему: часто ИИ не может поддерживать дискуссию, состоящую из нескольких предложений. Он теряет нить и рассматривает каждое предложение независимо. Он также не способен связать свои ответы с реальностью – хотя может следовать языковым правилам, статистическим корреляциям или даже искать факты, касающиеся ответов на каждое новое предложение. Идея Джона Серла о китайской комнате (см. главу 2) все еще остается в силе. Компьютеры при общении имитируют разговоры. Они манипулируют символами, не понимая их значения. Другими словами, нечто может выглядеть как утка, звучать как утка, но при этом не быть уткой[13]. А являться всего лишь умелой подделкой.

Философы глубоко погружены в эти проблемы, но бизнес-сообщество – нет. Для его представителей важнее результат, нежели то, как он генерируется. Например, в реальных приложениях чат-бот, который автоматизирует онлайн-обслуживание клиентов и отвечает на их вопросы, используя базу данных о продуктах, – ценный инструмент для бизнеса, который освобождает людей для более сложных запросов. Чат-боты уже здесь, и их популярность растет по мере улучшения их возможностей.

Правила языка

Ноам Хомски – американский лингвист, философ и один из основателей когнитивной науки (научных исследований разума и его возможностей). Он многое сделал для понимания процесса обработки естественного языка – этим занимается символический ИИ внутри некоторых чат-ботов, он выясняет, что делать с написанными словами. Одна из самых известных идей Хомски – теория универсальной грамматики, которую он создал после изучения развития речи у детей. Он полагал, что дети не получают достаточно информации, чтобы научиться говорить так свободно, как они это делают, – он назвал это бедностью стимула. Хомски утверждал, что ответственной за развитие у детей необходимых речевых навыков является некоторая врожденная способность к общению, запрограммированная в мозге. Она может рассматриваться как набор языковых правил – универсальная грамматика.

Держите нос диктора прямо, официант или дружелюбное молоко будут отменять приказ моим брюкам. Одно предложение, обычные слова, но никогда прежде они не ставились в таком порядке… Понимаете?

СТИВЕН ФРАЙ (1989)


Поделиться книгой:

На главную
Назад