Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Стивен Хокинг. О дружбе и физике - Леонард Млодинов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Иметь правильного научного руководителя – очень важно. Не только потому, что со своим наставником желательно иметь хорошие отношения; но еще и потому, что ваш научный путь может оказаться тернистым, если ваши интересы не будут совпадать. Прежде всего вам следует определиться, кем вы хотите быть – теоретиком или экспериментатором. Выбор большинства физиков лежит в области эксперимента. Это очень важно, потому что намного больше ученых требуется для того, чтобы создавать аппаратуру для проверки теории, чем для создания новой теории, и спрос на экспериментальных физиков гораздо больше. Обычно уже на старших курсах вы определяете, к чему лежит ваша душа. В любом случае, это только начало.

Физика – обширная наука. Она включает в себя множество специальностей и узких специализаций. Некоторые физики занимаются тем, что пытаются раскрыть фундаментальные законы природы. Другие пытаются применить эти законы к конкретным явлениям или системам.

В оптике, например, основные законы электромагнетизма применяются к изучению поведения света и его взаимодействия с веществом. Ядерная физика исследует взаимодействия протонов и нейтронов внутри атома. В квантовой информатике основные законы квантовой механики используются с целью создания сверхмощных компьютеров.

Исследование фундаментальных законов, напротив, зиждется всего лишь на двух главных столпах. Один из этих столпов – общая теория относительности, теория гравитации, которая имеет дело только с силами гравитации и пытается понять законы движения вещества в присутствии гравитационных полей. Но в дополнение к гравитации в природе существуют еще три силы, отвечающие за электромагнитное взаимодействие, а также за сильное и слабое ядерные взаимодействия. Эти взаимодействия не рассматриваются общей теорией относительности. Они, а также вызываемые ими эффекты описываются теорией под названием «стандартная модель». Это второй столп, поддерживающий фундаментальные законы.

Стандартная модель – это фактически квантовая теория, основанная на квантовой гипотезе, предложенной Максом Планком в 1900 году. Гипотеза Макса Планка утверждает, что ряд физических величин – например, энергия – могут принимать только дискретные значения. Если в теории Ньютона энергия – непрерывная субстанция, как вода, то в теории Планка она излучается и поглощается отдельными порциями, напоминающими мельчайшие крупинки пудры. В квантовых теориях все свойства частиц, полей и вселенных становятся расплывчатыми и вероятностными. Теории, которые не учитывают квантованность энергии, называются классическими теориями, если даже, подобно общей теории относительности, они далеко отстоят от первоначальной классической теории (теории Ньютона).

Но стандартная модель – это нечто большее, чем квантовая теория. Это квантовая теория специального типа, квантовая теория поля. Она описывает действующие силы с помощью «полей», типа тех силовых полей, которые действуют в научно-фантастических фильмах и которые пронизывают все пространство и время.

Поскольку общая теория относительности – это классическая теория, она несовместима с квантовой теорией, такой как стандартная модель. Тем, кто не следит за развитием физики, может показаться парадоксальным, что у нас есть классическая теория гравитации и квантовая теория для описания других взаимодействий; но теории эти обычно используются в различных ситуациях, так что данная «шизофрения» находится под контролем. Конечно, такое положение вещей далеко от идеального, поэтому многие физики сегодня пытаются придумать квантовую версию общей теории относительности – теорию квантовой гравитации. Конечной целью является создание единой квантовой теории, объединяющей и квантовую гравитацию, и стандартную модель. Эта еще не созданная теория должна будет описывать все четыре взаимодействия, существующие в природе. Вот почему Эйнштейн называл ее единой теорией поля, а современные физики называют ее теорией всего.

Когда Стивен начинал свою учебу в магистратуре, лишь немногие физики работали над квантовой теорией гравитации, или теорией всего. Как я уже говорил, одна из причин заключалась в том, что между общей теорией относительности и квантовой теорией был заключен пакт о мирном сосуществовании. Они описывают различные типы взаимодействий и рассматривают природу на разных пространственных масштабах. Подобно тому, как млекопитающих и бактерии изучают разные отрасли биологии, в физике общая теория относительности стоит особняком от квантовых теорий.

Но Стивен отличался от большинства прочих физиков. Как только он поступил в магистратуру и избрал свой путь, из всего богатого многообразия идей, существующих в физике, его привлекла общая теория относительности, в особенности та ее часть, которая называется космологией. Космология старается использовать общую теорию относительности, чтобы понять происхождение и развитие Вселенной. Стивен заинтересовался космологией, потому что только эта наука обещала ответить на экзистенциальные вопросы, которые сейчас занимали его больше всех прочих. Стивен считал, что ученые, работавшие с теорией элементарных частиц, – теорией, которая впоследствии превратилась в стандартную модель – скорее заняты классификацией многочисленных элементарных частиц и взаимодействий между ними, чем глобальными космологическими проблемами. Они занимаются «ботаникой», говорил про таких физиков-теоретиков Стивен. Сам он не хотел принимать в этом участия.

Фред Хойл, которого Стивен вначале выбрал для себя в качестве руководителя, был фигурой, известной в космологии. Его авторству принадлежит теория стационарной Вселенной. Когда Стивену назначили другого руководителя, Денниса Сиаму, Стивен был разочарован. В очередной раз в жизни Стивена поражение обернулось победой – чем больше Стивен узнавал о теории стационарной Вселенной Хойла, тем меньше она ему нравилась. Еще в самом начале своего обучения в магистратуре Стивен произвел своего рода сенсацию на обсуждении после научно-исследовательского семинара, который проводил Хойл в Королевском научном обществе в Лондоне. Стивен провозгласил, что он нашел ошибку в уравнениях Хойла. Несколько лет спустя Стивен в очередной раз посыпал соль на рану Хойла, посвятив первую главу своей диссертации критике теории стационарной Вселенной.

Хойл был большим ученым. Он положил начало исследованию проблемы того, как тяжелые элементы образуются из водорода и гелия в результате ядерных реакций внутри звезд. Но, как у ученого, у него был серьезный недостаток – он не хотел соглашаться с тем, что взлелеянная им теория, а именно теория стационарной Вселенной, рассыпается под натиском новых полученных фактов. Если бы Хойл стал руководителем Стивена, последнего вряд ли ожидали бы легкие времена. С другой стороны, Сиама также был ведущим космологом; но он к тому времени уже и сам разочаровался в теории Хойла, поэтому пренебрежительное отношение к ней Стивена не могло вызвать между ними конфликт.

Итак, Стивену повезло с научным руководителем. Но все-таки существовала одна проблема: выбрав космологию в качестве своей будущей специализации, Стивен имел о ней весьма отдаленное представление. В Оксфорде он изучал физику, но нельзя сказать, что он сильно поднаторел в этих занятиях. То, что он смог довольно быстро, буквально за несколько лет, набрать солидный научный багаж и сделать себе имя в выбранной отрасли науки, может многое рассказать о его выдающихся способностях. Заодно давайте немного поговорим о физике.

Добиться успеха в теоретической физике можно довольно быстро, так как эта наука основана на понимании основных концепций, а не на запоминании множества фактов – как в юриспруденции или медицине. «Нет необходимости что-то зубрить, – сказал мне как-то Стивен с усмешкой. – Вы можете просто вывести уравнения». Это происходит потому, что физика способна сконцентрировать полученный опыт в компактную форму. Уравнения Эйнштейна, например, можно записать в одну строчку, но в них закодированы поведение и свойства бесчисленных систем, начиная от орбит планет и полета футбольных мячей до коллапса звезд в черные дыры.

В могуществе формул Эйнштейна нет никакой магии. Несколько символов, которые в них входят, представляют собой понятия, крайне трудные для полного понимания. В той или иной степени мы все занимаемся обобщением нашего опыта. Мир был бы слишком сложен для понимания, если бы мы этого не делали. Мы не говорим: «Форд» остановился на красный свет, «Тойота» остановилась на красный свет, «Фольксваген» остановился на красный свет и так далее. Мы сводим все эти наблюдения к простому принципу или закону: машины останавливаются на красный свет. Именно этим занимаемся и мы, физики, только в еще большей степени. Мы записываем законы в элегантной математической форме, и это дает нам возможность выводить один закон из другого. Юристы лишены возможности поступать таким образом: хотя в юриспруденции и могут существовать общие руководящие принципы, законы, созданные человеком, придумываются для решения тех или иных проблем по мере необходимости и их нельзя вывести друг из друга. Подобно этому, доктора не могут вывести детали анатомии человека из какого-то набора первичных принципов. А вот то, на что способны законы физики, у самих физиков неизменно вызывает восхищение.

Стивен изучал книги и статьи, в которых в сжатой форме было изложено наше знание о космологических принципах, и он учился быстро. Он думал, что жить ему осталось несколько лет, но что, по крайней мере, занимаясь космологией, он сможет задавать окружающему миру вопросы, которые его волнуют.

Стивен и Джейн поженились в день взятия Бастилии в 1965 году. После женитьбы они сняли маленький старый домик на Литл-Сент-Мэри-лэйн, около средневековой церкви с одноименным названием в старой части Кембриджа. В доме были маленькие комнаты и низкие потолки. Он был недавно отремонтирован, но отсутствовала мебель, а у молодоженов не было денег на ее покупку. Чета Хокинг купила кровать, обеденный стол, несколько стульев и холодильник, о покупке которого они проспорили целый день.

Двадцатитрехлетний Стивен работал в то время над своей диссертацией. Джейн исполнился двадцать один год. Ей оставался один год до получения диплома бакалавра в лингвистическом колледже Лондона. Как правило, будни Джейн проводила в Лондоне, а выходные супруги проводили вместе. Дом на Литл-Сент-Мэри-лэйн находился всего лишь в сотне ярдов от того места, где в то время располагалось место работы Стивена. Это было очень удобно. Но если добираться до работы Стивену было легко, то о его передвижениях по дому этого сказать было нельзя. Их спальня располагалась на втором этаже, вверх по неудобной винтовой лестнице. Там же была и ванная комната. В доме имелся и третий этаж. Но Стивен пользовался им только короткое время, пока еще мог туда подняться. Чтобы дойти до ванной, которая была на втором этаже, он должен был цепляться за веревочные перила лестницы и подтягивать себя по ступеням лестницы подобно альпинисту. На это требовалось добрых десять минут, но, даже если кто-то находился рядом, он отказывался от помощи. «Это хорошее упражнение», – обычно говорил он.

Стивен в то время пытался изо всех сил игнорировать свою болезнь, хотя все уже понимали, что она прогрессирует, и довольно быстро. Однажды он вышел из дома, чтобы встретить своего приятеля, Роберта Донована, которого пригласил к обеду. Перед другом он предстал в разорванных брюках и с царапинами на лице. Очевидно, по дороге он упал и сильно ушибся. Роберт забеспокоился и предложил Стивену пойти к доктору. Но Стивен не пожелал обращаться к врачу. Он не захотел даже переодеться. Единственное, что он хотел – сесть за стол, как будто ничего не случилось. Они так и сделали.

До женитьбы на Джейн Стивен жил в Кембридже в студенческом общежитии. Это был большой старый особняк, поделенный на комнатки для студентов. За домом – большая лужайка и сад. Иногда на лужайке играли в крокет. В комнате у Стивена была веранда, выходящая на лужайку для крокета. Старый викторианский стиль.

Однажды родители Стивена, Фрэнк и Изабель, приехали к Стивену на чай. Оба они были выпускниками Оксфорда. После окончания университета Изабель поступила на службу, которая ей не нравилась и для которой она была слишком хорошо образована – она стала работать секретарем в медицинском научно-исследовательском институте. Но именно там она встретила Фрэнка – врача-специалиста по тропическим болезням, занимавшегося в институте научными исследованиями. Фрэнк хотел, чтобы Стивен пошел по его стопам и стал врачом. Из всех четверых детей в семье Фрэнка и Изабель лишь сестра Стивена, Мэри, стала врачом. Сам Стивен эту идею всерьез даже и не рассматривал.

В день приезда родителей Стивена к ним присоединился Роберт Донован. Он учился на химическом факультете и был на один курс моложе Стивена. Стивен познакомился с Робертом в день, когда тот прибыл в Кембридж. Роберта поселили в то же самое общежитие, но он не мог найти ни одной живой души, чтобы ему открыли его комнату. Поэтому он вступил в разговор с парнем, который играл сам с собой в крокет на задней лужайке. Роберт обратил внимание на странности походки молодого человека. Этим молодым человеком оказался Стивен, с которым они подружатся и сохранят свою дружбу на протяжении пятидесяти лет.

Примерно через час после начала чаепития Роберт решил откланяться. Ему еще надо было поработать. Фрэнк пошел его проводить. Фрэнк относился к разряду свободолюбивых отцов – каждую зиму он на несколько месяцев уезжал в Африку для проведения исследовательских работ. Но, когда Стивен заболел, Фрэнк стал уделять семье больше внимания. Он даже связался с Деннисом Сиамой и попросил его разрешить Стивену защитить диссертацию пораньше, в обход формальностей, чтобы Стивен успел сделать это при жизни. Сиама эту просьбу отклонил.

Фрэнк раньше не был знаком с Робертом. Он пошел провожать Роберта потому, что увидел, как крепко дружат молодые люди.

– Пожалуйста, позаботьтесь о Стивене, – сказал Фрэнк. – Понаблюдайте за ним. Держите меня в курсе.

Оказалось, что Стивен идет за ними. Он просто кипел от гнева.

– Я сам могу посмотреть за собой, – крикнул он отцу. – Я сам попрошу своих друзей о помощи, если она мне понадобится. Не вмешивайся!

Роберт кивнул, но бросил на отца Стивена взгляд, в котором можно было прочесть: «Не волнуйтесь, сэр. Я сделаю все так, как вы просите». Это произошло в 1963 году. После Джейн Роберт был для Стивена самым близким человеком. Когда у Роберта и его жены родилась дочь, родители назвали ее Джейн. А Стивен и Джейн своего первенца назвали Роберт. В течение последующих семи лет обе семейные пары очень часто виделись. Потом Роберт уехал в Эдинбург, где и работал вплоть до окончания своей научной карьеры.

Стивен и Роберт были разделены расстоянием, но оставались лучшими друзьями, несмотря на пришедшую к Стивену славу, которая сама по себе способна разрушить не одну дружбу. Стивен с удовольствием посещал Эдинбург, а Роберт всегда был готов приехать в Кембридж на семейные праздники. Или на знаменитые вечера, которые устраивал Стивен. Или просто когда Стивен говорил, что хотел бы повидаться. Через много лет после Кембриджского чаепития, уже когда Стивен потерял способность к самостоятельным передвижениям, Роберт вспоминал тот день с теплым чувством. Это напоминало ему то время, когда дух и тело Стивена еще жили в согласии друг с другом.

Отец Стивена умер в 1986 году, его мать дожила до 2013 года. За все семь лет жизни Роберта в Кембридже он ни разу не почувствовал, что у него есть повод подать отцу Стивена сигнал тревоги. И в течение всех последующих десятилетий их дружбы Стивен никогда не давал Роберту повода для беспокойства. За исключением одного раза, в 2017 году. Это случилось холодным темным декабрьским вечером в университетском городке. К тому времени Стивен уже более двадцати лет был в разводе с Джейн, но по-прежнему часто виделся с Робертом. Они собирались отправиться на большой званый обед в колледже. Стивен начал печатать, а голос синтезатора произнес:

– Я думаю, что…

Наступила пауза. Стивен продолжал печатать. Роберт ждал. Прошло пять или шесть минут. Синтезатор хранил молчание. Наконец он заговорил:

– Я думаю, что мне немного осталось.

Роберт растерялся. Стивен вовсе не казался ему больным. Почему же он так сказал? Роберт пытался убедить Стивена обратиться за помощью, как и тогда, несколько десятков лет назад, в тот злополучный вечер, когда Стивен упал, выходя встречать его. Или хотя бы остаться дома и отдохнуть. Но Стивен не согласился – он хотел идти на обед. Они пошли на обед, и это было в последний раз, когда Роберт видел Стивена.

Глава 4

Тот, кто теряет способность получать удовольствие от большинства физических радостей, особенно ценит то, что ему еще доступно. Прикосновение. Симфония. Запах. Вкус. Трапезы всегда имели для Стивена большое значение. Они также были временем для общения – своеобразной передышкой между занятиями математикой и приобщением к сфере человеческих отношений. Но даже обеды не давали Стивену передышки в его интенсивной умственной работе. Если его подход к физике был таким же озорным, как его отношение к роду людскому, то и его подход к людям был таким же проницательным, как и к научным исследованиям.

Однажды, когда Стивен еще работал над своей диссертацией, ему довелось присутствовать на обеде в Колледже Святой Троицы. Он очутился за одним столом с инженером из Южной Африки. Этот инженер только что прибыл в Кембридж. Но если он и восхищался, как я, красотами университета, и особенно Колледжа Святой Троицы – где работал Ньютон, – то он держал это восхищение при себе. А вслух он гордо рассуждал о том, как хорошо живется в Южной Африке. Послушать его, так его родина переживала сказочные времена.

Стивен относился к тем людям, которые всегда говорят в глаза то, что думают. Однажды, уже после того, как к нему пришла известность, он был приглашен в качестве почетного гостя на современную постановку оперы «Мадам Баттерфляй» в Берлине. Это оказалось весьма посредственное представление. После спектакля директор театра, довольный тем, что принимает такого высокого гостя, спросил Стивена:

– Профессор Хокинг, что вы думаете о спектакле?

Стивен ответил:

– Спектакль был не так уж хорош, не правда ли?

Директор был удивлен таким ответом. Но затем подумал и сказал:

– Да. Я согласен.

Разглагольствования инженера из Южной Африки нельзя было назвать ни плохими, ни хорошими. Это была просто его точка зрения, правда, довольно многословная. Она привлекла внимание Стивена. На этот счет у него было свое мнение, и он не собирался держать его при себе. Он спросил у инженера:

– А как насчет чернокожих?

– Их можно не принимать во внимание, – сказал инженер.

Это был обычный ответ для начала 1960-х годов.

– Почему их можно не принимать во внимание? – спросил Стивен.

– Потому что они не в состоянии позаботиться о себе.

Инженер заговорил об апартеиде. Он существует, и он необходим.

Стивен не спорил с ним. Он продолжал задавать наводящие вопросы инженеру, противопоставляя свое мнение точке зрения собеседника, но при этом не спорил с ним в открытую, а, как Сократ, пытался сделать так, чтобы собеседник сам увидел всю правду без прикрас.

В начале разговора инженер полностью был убежден в своей правоте. До этого он никогда не подвергал сомнению сложившееся положение вещей. А Стивен сумел превратить их застольную беседу в настоящее исследование убеждений собеседника, исследование, которым тот сам наверняка никогда раньше не занимался. В конце разговора инженер был откровенно смущен. Теперь, когда его заставили понять, на чем зиждется его убеждение в правоте апартеида, и поставили под сомнение его понятия о природе черного человека, он стал сам себе задавать «неудобные» вопросы.

Я знавал одного профессора физики, который советовал: «Если вы любите задавать вопросы и искать на них ответы, становитесь физиком. Если вам нравится изучать ответы и находить им применение, становитесь инженером». Это, конечно, слишком широкое обобщение, но оно иллюстрирует разницу в философском подходе и психологическом аспекте, которые свойственны этим двум областям знания. Что вам более по душе – заучивать то, что уже известно, и применять полученные знания на практике или задавать вопросы и познавать неведомое? Стивен не был бы Стивеном, если бы он не побудил инженера начать задавать себе вопросы. Ибо только подвергая сомнениям свои убеждения и представления других, можно совершить важное открытие – не только в жизни, но и в физике.

Инженер смотрел на свою страну так, как большинство людей смотрят на ночное небо: они видят совокупность белых светящихся точек в обширном и безликом море черноты. Своими вопросами Стивен заставил собеседника увидеть на небе не просто точки. То же самое Стивен обычно проделывал с коллегами-физиками. Они восхищались звездами и галактиками, а Стивена больше интересовало промежуточное пространство. Откуда оно взялось? Как это все начиналось? Пытаясь понять смысл нашего существования, Стивен считал, что прежде всего нужно ответить на эти вопросы. Когда Стивен начинал работу над своей диссертацией, мало кто задавался подобными вопросами.

Это было время, когда общая теория относительности и космология не были в большом почете. Отсутствие интереса у физиков к проблеме возникновения Вселенной можно было понять, так как физика – эмпирическая наука, а происхождение Вселенной относится к явлениям, которые невозможно наблюдать непосредственно. Да, свету требуется определенное время, чтобы долететь до нас от удаленных галактик; и, наблюдая этот свет, мы действительно можем заглянуть в прошлое. Но все-таки не настолько далекое прошлое! И никто в начале шестидесятых годов не имел понятия, как можно косвенным образом проверить гипотезу о происхождении Вселенной. В результате такого подхода физики склонны были рассматривать космологию как псевдонауку, как игровую площадку для математических игр за пределами его величества эксперимента. Ситуация начала меняться после того, как в 1964 году было случайно открыто слабое свечение, оставшееся после Большого Взрыва – космическое микроволновое фоновое излучение (реликтовое излучение). Когда Стивен начинал учиться в Кембридже, до открытия реликтового излучения оставалось еще более года.

Другой важный момент заключался в том, что никто толком тогда не понимал, что, собственно, предсказывает теория Эйнштейна. Как и любая физическая теория, теория Эйнштейна есть набор математических уравнений и методов действий с входящими в них неизвестными. Для выяснения того, что теория может сказать о той или иной конкретной физической системе, нужно использовать набор математических уравнений, которые подходят к этой системе, и решить их или, по крайней мере, найти их приблизительное решение. В большинстве случаев уравнения Эйнштейна решить очень трудно, поэтому в наши дни мы изучаем их возможные решения с помощью суперкомпьютеров; но в середине прошлого века мощности компьютеров для этого явно не хватало.

Из-за подобных трудностей тогда, когда Стивен приехал в Кембридж, приверженцами общей теории относительности и космологии оставались в основном математики, чьи работы – в частности, создаваемые ими модели Вселенной – были весьма далеки от реальности. Они были «при деле», но при этом на их статьи никто не обращал внимания. Низкий уровень этих работ стал причиной письма, которое физик Ричард Фейнман из Калифорнийского технологического института написал в 1962 году своей жене из Варшавы, где проходила конференция по гравитации: «Так как в этой области физики напрочь отсутствуют экспериментальные исследования, в ней нет никакого движения… Здесь масса остолопов, а это отрицательно сказывается на моем давлении: говорится и серьезно обсуждается такая чушь, что мне поневоле приходится вступать в споры…»

Большинство физиков сходились во мнении, что вопросы о происхождении Вселенной рассматривать бесполезно, ибо они заводят в тупик; но именно эти вопросы и были милы сердцу Стивена Хокинга. Существующий в этой области застой не обескураживал, а наоборот, вдохновлял Стивена: с его точки зрения, это «научное поле» было не засохшим, а созревшим, и именно ему предстояло собрать с него урожай.

Людям, далеким от науки, может показаться, что физики-теоретики в основном занимаются тем, что решают разные задачи. Но гораздо важнее решения самой задачи ее постановка, потому что вопросы, которые вы задаете, уже дают вам направление, в котором следует искать ответ. Вопросы и отражают, и определяют ваш взгляд на мир. Стивен обладал завидным умением отвергать то, что впоследствии действительно оказывалось неважным, и быстро определять суть проблемы. Он интуитивно ставил верные вопросы и подвергал сомнению неоднозначные предположения других. Из-за этого Стивен прослыл в научной среде фрондером. Эта роль «прилипла» к нему естественным образом: он игнорировал общепринятый здравый смысл точно так же, как с легкостью нарушал скоростной режим и пренебрегал советами докторов. Он водил машину крайне безрассудно, и его физические рассуждения тоже были необузданными. Но – не безрассудными. Стивен всегда знал, даже еще будучи аспирантом, чего он хочет добиться в физике и почему.

Физика считается полем действия рассудка и логики. В большой степени это так и есть. Но для того, чтобы рассуждать логически, надо прежде всего иметь рамки мышления, которые определяют те предположения, которые вы делаете; выделяют концепции, которые вы будете использовать; ставят вопросы, на которые вы будете искать ответы. Люди часто принимают на веру рамки мышления, унаследованные ими от других или почерпнутые из истории или собственного прошлого; при этом обычно никогда не подвергают их сомнению и не исследуют их должным образом.

«Как это все началось?» – животрепещущий для Стивена вопрос. В течение двух тысячелетий все придерживались того мнения, что Вселенная либо всегда существовала в неизменном виде, либо была сотворена в некий момент – например, как это описано в Библии – и с тех пор оставалась относительно неизменной[3]. Философы, от Аристотеля до Канта, а также ученые, включая даже Исаака Ньютона, верили именно в это.

Ньютону следовало бы лучше вникнуть в суть проблемы. Как может семейство галактик и звезд поддерживать неизменную конфигурацию, если каждая из них силами гравитации притягивает к себе все остальные? Не должны ли все эти объекты слиться с течением времени в единое целое? И поскольку с момента начала всего сущего прошло много времени, не должно ли все вещество уже успеть соединиться в огромный плотный шар? Ньютон знал об этой проблеме, но не считал ее заслуживающей серьезного внимания. Он говорил себе так: если Вселенная бесконечно большая, то скучивания вещества в ней не произойдет. Но это не так. После Ньютона некоторые ученые пытались модифицировать его теорию, чтобы наделить гравитацию отталкивающими свойствами на больших расстояниях: они применяли небольшую математическую хитрость, в результате которой планеты по-прежнему вращаются по своим орбитам, а на больших расстояниях Вселенная удерживается от коллапса. Но попытки такой модификации теории гравитации не увенчались успехом. Хотя в этой «игре» участвовал сам Эйнштейн: он добавил дополнительный «антигравитационный» член в уравнения общей теории относительности и назвал его космологической постоянной. Эта космологическая постоянная должна была поддерживать силу отталкивания, необходимую для того, чтобы удержать космос от схлопывания[4].

Осознание того, что все эти знаменитые философы и ученые заблуждались и что Вселенная на самом деле меняется, расширяется и эволюционирует, пришло только в XX столетии. Это было одно из самых замечательных открытий века. Свершилось оно благодаря американскому астроному Эдвину Хабблу, который преподавал испанский язык и тренировал баскетбольную команду в школе города Нью-Олбани (США, штат Индиана), пока не решил сделать научную карьеру в Университете Чикаго, где и защитил диссертацию доктора философских наук.

После окончания университета Хабблу повезло: в 1919 году он получил возможность работать в обсерватории Маунт-Вилсон неподалеку от Калифорнийского технологического института. Там как раз устанавливался новый телескоп. В то время преобладала точка зрения, что вся Вселенная состоит из одной Галактики – Млечного Пути. Но в 1924 году Хаббл обнаружил, что пятнышки, которые видят астрономы на небе, когда исследуют туманности – беловатые облака, простирающиеся между звездами – есть не что иное, как иные, удаленные галактики. Такие галактические «облака» были видны во всем пространстве, до которого мог дотянуться телескоп в обсерватории Маунт-Вилсон. Сейчас мы знаем, что они существуют и за пределами досягаемости этого телескопа.

Атомы в атмосферах горячих звезд находятся в состояниях с высокой энергией. Эта энергия включает в себя энергию движения атомов и внутреннюю энергию электронов в атомах. Мы знаем из квантовой механики, что электроны на своих орбитах могут принимать только вполне определенные значения энергии. Когда электрон перепрыгивает с некоторого энергетического уровня на низший, атом излучает свет с частотой, которая соответствует разности энергий между уровнем старта электрона и уровнем, на который он «приземлился». Но каждый элемент имеет свой уникальный набор энергетических уровней. В результате атомы водорода, гелия и других элементов излучают свет, состоящий из уникального набора частот. Этот свет обладает своими характерными признаками – «отпечатками пальцев», – которые можно использовать для отождествления химического элемента, испустившего этот свет. Астрономы используют эти отпечатки для определения состава комет, туманностей и различных типов звезд.

За годы, проведенные в обсерватории Маунт-Вилсон, Хаббл заметил, что по сравнению со светом, излучаемым атомами, находящимися на Земле, свет от других галактик смещен в сторону более низких частот, к красному сегменту спектра. Он заметил, что, чем дальше от нас галактика, тем больше «красное смещение».

В основе сдвига частот, который так поразил воображение Хаббла, лежит явление, впервые изученное австрийским физиком Христианом Доплером в 1842 году. Доплер обнаружил, что цвет наблюдаемого света, приходящего от источника, зависит от движения этого источника по отношению к нам. Свет покраснеет, если источник удаляется о нас, и посинеет, если этот источник приближается. Если принять во внимание теорию Доплера, работа Хаббла показала, что галактики удаляются от нас, и чем дальше они, тем быстрее движутся. Это привело к ошеломляющему выводу: Вселенная не только намного обширнее, чем можно было вообразить, но, более того, она расширяется.

Чтобы объяснить расширение Вселенной по Хабблу, астрофизики иногда пользуются разными аналогиями – например, булочкой с изюмом. Но прежде чем перейти к аналогии, заметим, что расширение Вселенной происходит по-другому, нежели, например, взрыв бомбы. При взрыве бомбы горячий газ и осколки разлетаются в окружающем пространстве. Но у Вселенной нет «окружающего пространства». Когда физики говорят, что Вселенная расширяется, они имеют в виду следующее: растет объем самого пространства, оно раздувается изнутри. Если вы зафиксируете любые две точки во Вселенной, расстояние между ними будет увеличиваться со временем.

А теперь перейдем к аналогии, к нашей булочке. Представим себе, что мы погружены в колобок из теста, напичканный изюмом равномерно по всему объему. Этот колобок представляет собой наше трехмерное пространство. Изюминки изображают скопления галактик. Аналогия неточная, потому что у булочки с изюмом есть край – ее внешняя поверхность. У пространства нет края, но для цели, которую преследует наша аналогия, это не важно. Допустим, тесто поднялось и радиус колобка удвоился. Пусть сначала между нами и какой-либо изюминкой был один дюйм; после того, как тесто поднялось, расстояние между нами и изюминкой выросло вдвое. Если от нас до какой-либо изюминки вначале было три дюйма, то теперь расстояние выросло до шести. Вторая изюминка передвинулась на три дюйма за то же самое время, так что скорость ее удаления от нас в три раза больше скорости первой изюминки. Третья изюминка, которая вначале располагалась в пяти дюймах от нас, будет теперь находиться на расстоянии десяти дюймов, то есть она прошла пять дюймов за то же время. Если тесто будет продолжать подниматься и расширяться, все изюминки будут двигаться от нас в разные стороны, и, чем дальше от нас была изюминка, тем быстрее она будет удаляться.

В 1929 году, почти век спустя после того, как Дарвин начал формулировать свою теорию эволюции в биологии, Хаббл открыл, что Вселенная тоже эволюционирует. Но идея о неизменности Вселенной сдавала свои позиции с большим трудом. Физики горазды на всякие ухищрения, и они начали «стряпать» разные теории, чтобы спасти дорогой их сердцу предрассудок. Авторство одной из самых известных попыток в этом направлении принадлежит Фреду Хойлу: он создал теорию стационарной Вселенной. Последователи этой теории не оспаривали тот факт, что далекие галактики разлетаются от нас, но утверждали, что постоянно образуется новое вещество, так что по мере расширения Вселенной плотность вещества остается неизменной и новое вещество заполняет вновь образующееся пространство. В этом смысле Вселенная может оставаться неизменной в космическом масштабе.

Главным конкурентом теории стационарной Вселенной в то время был Большой взрыв. Хойл теорию о Большом взрыве не поддерживал, но этот термин возник благодаря ему. В 1949 году, во время интервью на радио BBC, Хойл упомянул «гипотезу о том, что все вещество во Вселенной было создано при Большом взрыве в какой-то момент в удаленном прошлом». Некоторые потом утверждали, что он произнес это саркастически. Сам Хойл это отрицал. Как бы то ни было, название за теорией закрепилось.

Если теория оказывается достойной внимания физиков, первое, что они с ней делают, – дают ей название. Теория Большого взрыва получила наименование только через двадцать лет после своего возникновения, и это говорит само за себя. Теорию придумал Жорж Леметр, гениальный бельгийский священник, он же профессор физики. Анализ уравнений Эйнштейна привел его в 1927 году к выводу о том, что Вселенная должна расширяться. Это случилось за два года до того, как Хаббл в своей работе показал, что так оно и есть. Затем Леметр отметил, что, если Вселенная становится больше, значит, она должна была быть меньше в прошлом; и чем дальше в прошлое мы погружаемся, тем меньше она становится. В 1931 году он пришел к мысли о том, что когда-то, в далеком прошлом, размеры Вселенной должны были быть равны нулю – другими словами, вся масса Вселенной должна была быть сосредоточена в одной точке. Он назвал это состояние «первородным атомом».

Казалось, теория Большого взрыва подразумевала существование момента творения, но и тут ловкие физики нашли способ уклониться от такого вывода. Они создали вариант теории Большого взрыва, в которой в незапамятные времена Вселенная была сжата не в одной точке, а в некоем небольшом объеме; в далеком прошлом частицы вещества могли «скользить» мимо друг друга. В результате, вместо того чтобы быть сжатыми в одной точке, частицы могли пролететь рядом друг с другом, а потом вновь разлететься. Таким образом, Вселенная может быть вечной и циклической – циклы расширения и сжатия могут сменять друг друга. Именно эти две точки зрения, теория стационарной Вселенной и варианты Большого взрыва, превалировали среди физиков в тот момент, когда Стивен поступил в Кембридж – по крайней мере, среди тех физиков, которые вообще склонны были задумываться о происхождении Вселенной.

Однажды, когда я затронул тему религии, Стивен сказал мне, что он не увлекается метафизикой. Подобно философам, Стивен хотел дать ответы на глубокие вопросы мироздания, но желал сделать это с помощью науки. Поэтому ему было намного труднее, чем философам. Если в философии вы можете теоретизировать, сколько душе угодно, то в науке одного рассудка недостаточно. Научный эксперимент может подтвердить либо опровергнуть вашу правоту. Стивен чувствовал, что ученых, начиная от Ньютона и заканчивая Эйнштейном, подвели их философские и религиозные убеждения, соблазнив идеями, которые не были в достаточной мере подтверждены теорией или физическими экспериментами. Поэтому с самого начала Стивен подверг сомнению утверждение о неизменности и вечности Вселенной. Не менее важно то, что он не был согласен и с гораздо более распространенным убеждением – что сам этот вопрос не имеет большого значения.

В архиве Кембриджского университета хранится экземпляр докторской диссертации Стивена Хокинга «Свойства расширяющихся вселенных», датированный 1 февраля 1966 года. Когда он защитился, ему было всего двадцать четыре года. Диссертация начиналась словами: «Исследуются некоторые выводы и следствия теории расширяющейся Вселенной…» Диссертация, напечатанная Джейн – Стивен, увы, сам сделать этого не мог, – состоит из четырех глав, испещренных поправками и формулами, написанными от руки. Последняя глава – всего около двадцати страниц – сделала Стивена знаменитым среди его коллег.

Стивен появился в Кембридже в октябре 1962 года. За первые два года учебы в Кембридже он приобрел друзей, с которыми поддерживал отношения всю оставшуюся жизнь, и устроил свою семейную жизнь. Но в физике к постоянному берегу пока не прибился. Он изучал общую теорию относительности, занимался различными проблемами, которые казались многообещающими ему и его научному руководителю Сиаме, но все значительные открытия были еще впереди.

Исследования, которые вошли в первые три главы его докторской диссертации, ничем особенным не отличались. Некоторые из них представляли определенный интерес с точки зрения независимого математического анализа различных проблем, например, содержали критику математических уравнений теории стационарной Вселенной Хойла. Но работа содержала лакуны и оставляла нерешенными некоторые вопросы. Если бы диссертация состояла только из этих глав, ее явно было бы недостаточно для получения степени доктора философии. И конечно, она не принесла бы Стивену широкую известность. Но, познакомившись с произведениями тридцатитрехлетнего математика Роджера Пенроуза, Стивен добавил в диссертацию четвертую главу. Она немного выпадала из общего сюжета, но с нее началось восхождение Стивена к мировой славе. Стивен узнал о работе Пенроуза в январе 1965 года, после того как Пенроуз провел семинар в Королевском колледже в Лондоне. Стивену, который был в то время на десять лет моложе Пенроуза, случалось посещать эти семинары. Он, правда, отсутствовал на семинаре Пенроуза, но узнал о нем от Брэндона Картера, с которым на работе в Кембридже делил один кабинет.

Исследуя Вселенную, очень важно учитывать притяжение вещества ко всему остальному веществу. Это верно также и при изучении эволюции звезды. Например, можно задаться вопросом, почему сумма всех притяжений не заставляет звезду схлопываться. Ответ заключается в ядерных реакциях внутри звезды. Они разогревают звезду, заставляя газы расширяться, таким образом компенсируя сжатие, вызываемое гравитацией. Работа, о которой рассказывал Пенроуз в своем докладе, была посвящена тому, что происходит после выгорания ядерного горючего в массивной звезде, когда звезда начинает остывать. Когда это случается, умирающая звезда начинает коллапсировать под действием собственной силы гравитации.

Пенроуз считал, что коллапс звезды – сложный и хаотический процесс, при этом первоначальная сферическая симметрия звезды может нарушаться. Коллапс может протекать по двум возможным сценариям. Один из них напоминает тот вариант теории Большого взрыва, в котором частицы вещества скользят относительно друг друга: во время коллапса звезды все ее составляющие части падают по направлению к центру, но не в одну и ту же точку. А затем они стремительно проносятся мимо друг друга, и стадия сжатия сменяется расширением. В другом сценарии, несмотря на связанный с коллапсом хаос, вещество звезды притягивается точно в ее центр, где оно сдавливается в единую точку, в которой плотность вещества становится бесконечной.

Как впоследствии доказал Пенроуз, именно второй вариант следует из решения уравнений Эйнштейна. В 1969 году физик Джон Уилер назовет погасшие звезды такого рода – с бесконечной плотностью в центре – черными дырами, но в 1965 году такие объекты еще не вызывали интереса, и поэтому они еще не удостоились специального наименования.

Точку, в которой физические величины становятся бесконечными, физики называют сингулярностью. Физики недолюбливают сингулярности, потому что мы сторонимся бесконечностей. Мы не любим бесконечности: хотя они иногда появляются в математических уравнениях, в повседневной жизни с ними не сталкиваешься. Все, что мы измеряем, имеет начало и конец; поэтому всякая теория, предсказывающая сингулярность, вызывает большие сомнения.

Для того чтобы выйти из тупика, физики попытались объявить сингулярность явлением чисто абстрактным. Было рассмотрено несколько способов обойти эту трудность. Во-первых, было объявлено, что теория Эйнштейна не является квантовой и поэтому в некоторой точке во время коллапса звезды – когда она становится совсем крошечной – эта теория не может применяться без некоторых (пока еще не придуманных) модификаций. Удастся ли с их помощью избежать сингулярности? Мы не знаем. Другой способ. Некоторые говорят так: поскольку мы не можем заглянуть внутрь черной дыры, сингулярность навсегда спрятана от нас – наблюдать ее невозможно – и поэтому она не имеет значения. Звучит разумно, но не все так просто. Черные дыры могут вращаться, и некоторые довольно изощренные вычисления показывают, что это вращение поможет обнаружить сингулярность. Пока вопрос об этом остается открытым.

Однако знаменитая глава, которую Стивен включил в свою диссертацию, касалась других вопросов. Работа Пенроуза вдохновила многих теоретиков на размышления о черных дырах, а Стивен, как обычно, пошел своим путем. Он заметил, что коллапс звезды под действием силы гравитации напоминает Большой взрыв, только происходящий в обратном порядке. Что, если Вселенная представляет собой гигантскую черную дыру, которая, если запустить время вспять, сколлапсирует подобно звезде Пенроуза? Можно ли воспользоваться математическими методами Пенроуза, чтобы постичь то, что ускользнуло даже от Эйнштейна? Сможет ли Стивен доказать, что уравнения Эйнштейна доказывают необходимость Большого взрыва, а вовсе не той версии с повторными циклами расширения и сжатия?

Подобно Галилею, который взял примитивную подзорную трубу, усовершенствовал оптическую систему и направил ее на небо, Стивен воспользовался математическим аппаратом Пенроуза и применил его к изучению космоса. В четвертой главе своей диссертации – и в последующей работе, проделанной совместно с самим Пенроузом, – Стивен вскоре превзошел своего научного руководителя Денниса Сиаму и даже Фреда Хойла, которого когда-то Стивен очень хотел иметь своим научным руководителем: он показал, что сингулярность и Большой взрыв являются неизбежными следствиями общей теории относительности. Не было циклов расширения и сжатия, а было начало, и в этот момент – хотя физики этого и не любят – Вселенная была упакована в пространство нулевого объема. По крайней мере, эти выводы неминуемо следовали из уравнений Эйнштейна.

В то время как Стивен занимался своими теоретическими изысканиями, астрофизики-наблюдатели начали искать экспериментальные подтверждения Большого взрыва. Из ядерной физики следует, что в первые минуты после этого события существовали такие экстремальные значения температуры и давления, которые заставляли ядра водорода (протоны) сливаться в ядра гелия. Детальные расчеты показали, что во Вселенной на каждые десять атомов водорода должен приходиться один атом гелия. Астрономические наблюдения подтвердили, что это так и есть. Теория Большого взрыва предсказывала и то, что от этого события до наших дней должно было остаться некоторое излучение – в виде космического микроволнового фона. И это излучение также было найдено – за два года до защиты Стивеном его диссертации. Но математическое доказательство того, что Большой взрыв с необходимостью следует из уравнений Эйнштейна, привел именно Стивен в своем первом большом «набеге» на мир физики.

Глава 5

Со времени моего «плоскодонного» визита прошло несколько месяцев. И вот я снова в Кембридже. Мы работаем уже несколько дней, но дело продвигается медленно. В тот день, о котором я хочу рассказать, Стивен прислал мне утром необычное письмо по электронной почте. Признаюсь, оно слегка сбило меня с толку, и я спешил обсудить со Стивеном рекомендации, которые он мне прислал. До сих пор нам удавалось достичь согласия по поводу содержания нашей книги, но письмо Стивена предполагало резкую смену курса в довольно важной теме.

Я поднялся по лестнице на этаж, где располагался кабинет Стивена. Дверь была закрыта. Теперь смысл запертой двери был для меня ясен, и я решил подождать в холле. От нечего делать стал разглядывать зеленую грифельную доску на стене слева от двери в кабинет Стивена. Доска, на которой писали мелом, выглядела анахронизмом, ей противоречил весь остальной современный антураж здания: черная дверь в кабинет Стивена; металлическая дверная ручка в виде рычага; фиолетовая стена и ярко-желтая доска объявлений с уведомлениями о предстоящих конференциях. Но эта грифельная доска, с которой сыпался мел, в век чистых электронных демонстрационных досок была явным пережитком прошлого. На доске – графики, нацарапанные студентами, – пространственно-временные диаграммы, которые для наглядности рисуют физики, занимающиеся общей теорией относительности. Выглядели они весьма архаично и напоминали диаграмму, которую придумал в 1907 году Герман Минковский – профессор, у которого в свое время учился Эйнштейн.

Я задумался о Минковском. Примерно сто лет назад в Цюрихе к нему пришла грандиозная идея, и он запечатлел ее на своей грифельной доске. Идея, родившаяся как вдохновение после создания Эйнштейном специальной теории относительности, заключалась в том, чтобы включить время на равных основаниях с тремя направлениями пространства в математические уравнения. Эйнштейн совершил судьбоносный прорыв в науке, но именно Минковский придал смысл понятию пространства-времени, которым мы пользуемся по сей день.

Мы любим рассказывать о грандиозных идеях. Но часто они знаменуют собой не конец, а начало процесса – по крайней мере, так обстоит дело в физике. Когда у физика появляется идея, любая идея, ему предстоит понять, какие следствия она за собой повлечет. Необходимо также разработать математические детали, которые привяжут ее к остальной совокупности знаний и сделают по-настоящему продуктивной. Когда у времени появился статус четвертой координаты, потребовалось определить понятие «расстояния» в новой субстанции «пространство-время». Все мы понимаем, как измерять расстояние между двумя местами в пространстве, но что такое расстояние между точками A и B, если обе эти точки лежат и в пространстве, и во времени[5]? Мы здесь не будем рассматривать, как Минковский решил эту проблему с математической точки зрения. Нам важно знать, что ему в принципе удалось найти ответ. Его новая концепция расстояния сыграла важнейшую роль в том, что идея пространства-времени прижилась в физике. По существу, она легла в основу создания Эйнштейном его общей теории относительности.

Представляя свои идеи, Минковский говорил: «Те понятия о пространстве и времени, которые я хочу вам изложить… являются принципиально новыми. Впредь и пространство, и время сами по себе обречены исчезнуть в царстве теней; и только союз между ними будет представлять собой истинную реальность». Его предсказание сбылось.

И вот я стою в холле перед доской с графиками, и меня озарило: ведь каждый раз, когда мы думаем о пространстве-времени, мы фактически его преодолеваем и устанавливаем связь с Минковским во внепространственной и вневременной плоскости идей. У меня мурашки пробежали по телу, когда я внезапно понял, что идеи Стивена по своей значительности не уступают идеям Минковского и что когда-нибудь физик с горящими глазами, сто лет спустя, замрет в благоговейном трепете перед диаграммой или уравнениями Стивена, ощутив с ним мгновенную мистическую связь.

Благодаря Минковскому теория относительности поднялась на новый уровень. Стивен подхватил идею и взял новое препятствие в ее развитии, совершив прыжок в неизвестность. Правда, Эйнштейн вряд ли одобрил бы такой поворот. Эйнштейн не любил квантовую механику – общая теория относительности нарушала ее принципы. В течение нескольких десятилетий, последовавших за созданием общей теории относительности, ее несовместимость с квантовой механикой мало волновала ученых, поскольку не так уж много физиков разбиралось в идеях относительности. Но Стивен задумался о совместном применении общей теории относительности и квантовой механики в тех областях, где нельзя пренебрегать ни одной из них, – в теориях, описывающих образование Вселенной и черных дыр, – и продемонстрировал, какой огромный потенциал заложен в комбинации двух этих подходов. Стивен открыл новое направление в физике, в котором стала развиваться теория относительности.

Общая теория относительности и квантовая механика относятся к числу замечательных достижений человеческого интеллекта, изящных и весьма успешно применяемых в познании природы. Обе теории оказали огромное влияние на развитие современных технологий и фактически сформировали наше физическое восприятие мира. А вместе с тем, они не могут быть справедливы одновременно. Они конфликтуют; они противоречат друг другу. Когда я узнал Стивена немного лучше и изучил его характер, я понял, что совмещение противоречивых теорий и идей – одна из его сильных сторон. Для него это так же естественно, как для птиц – перелет в теплые края. В конце концов, Стивен был необычным человеком, он все время находился между жизнью и смертью, одновременно беспомощный и могущественный, дерзкий и осторожный. Противоречие для Стивена было не просто философией жизни; это был его способ жизни.

Я ждал, пока откроется дверь в кабинет Стивена, и думал о том огромном объеме информации, который нам с ним нужно перелопатить; о том, как незаметно утекает наше время – подобно тому, как тонкой струйкой течет произносимая Стивеном речь. Как через бутылочное горлышко. Общение с ним требовало огромного терпения. Нужно было сидеть и терпеливо ждать, пока он составит слова и соединит их в предложения. К этому надо было привыкнуть.

За двадцать лет с тех пор, как Стивен узнал о своем диагнозе, его речь становилась все более и более неразборчивой. Дошло до того, что только несколько человек могли понимать его – Джейн, Кип, Роберт Донован, некоторые аспиранты. Они обычно и служили переводчиками – Стивен мог общаться с остальными только в их присутствии. Но в 1985 году, в сорокатрехлетнем возрасте, Стивен перенес серьезную легочную инфекцию. Несколько недель он был подключен к аппарату искусственной вентиляции легких. Каждый раз, когда доктора пытались отключить его от ИВЛ, у него начинался приступ удушья. Врачи сказали Джейн, что единственный шанс, который сохранит Стивену жизнь, – операция трахеостомии. Они объяснили, что в результате этой операции Стивен навсегда потеряет способность говорить. Поскольку он был слишком болен и не мог принимать самостоятельного решения, решать за него предстояло Джейн. Она подписала необходимые документы. Стивен выздоровел, но после операции мог общаться с другими только с помощью специальной карточки с буквами: ассистент указывал на различные буквы, напечатанные на карточке, а Стивен поднимал брови в тот момент, когда выбор падал на нужную ему букву.

Стивен был жив, но полностью деморализован. Он никак не мог смириться со своим положением. Он был в ярости, обвиняя Джейн в том, что она напрасно согласилась на операцию. Стивен не мог ни с кем общаться, впервые с начала своей болезни он пал духом и оказался в глубокой депрессии.



Поделиться книгой:

На главную
Назад