«Продукция, изготовленная новым 3D-принтером, должна будет перед использованием пройти серию испытаний, так как аэрокосмическая индустрия выдвигает крайне высокие требования к качеству оборудования», — сказал Ван Ляньфэн.
ПО СЛЕДАМ СЕНСАЦИЙ
Прибавление в Солнечной системе?
В Солнечной системе астрономы долгое время насчитывали 9 планет. В 2006 году из этого разряда был исключен Плутон — специалисты решили, что он слишком мал, чтобы считаться планетой. Сейчас состав нашей системы может увеличиться с 8 до 10 планет, поскольку на орбите за Нептуном испанские астрономы предположили еще как минимум два крупных небесных тела, причем в несколько раз больше Земли. Что натолкнуло их на такую гипотезу?
По утверждениям европейских планетологов, как минимум две новые неизвестные планеты могут находиться в дальних уголках, пишет газета The Guardian. К подобным выводам их подтолкнули наблюдения за астероидами, расположенными на орбитах за Нептуном и Плутоном.
Обычно траектории движения таких космических тел вокруг Солнца имеют определенные характеристики. Однако некоторые из них, как выяснилось, периодически отклоняются от стандартных маршрутов под действием гравитационного поля неких невидимых с Земли объектов крупных размеров.
«Мы считаем, что за Нептуном и Плутоном расположены другие неизвестные нам планеты, — утверждает профессор Карлос де ла Фуенте Маркос из Мадридского университета Комплутенсе. — Пока невозможно точно назвать их количество, учитывая, что мы обладаем ограниченным объемом данных, но, похоже, их может быть даже больше двух».
Споры среди астрономов о количестве планет в Солнечной системе продолжаются не один десяток лет. В свое время именно по возмущениям движения окраинных планет астрономы вычислили, а затем и открыли Уран и Плутон. Вслед за тем в Солнечной системе были обнаружены и другие подобные Плутону космические тела, такие как Эрида, Макемаке и Хаумеа. Теперь ученые всерьез задумались о возможности существования новых планет, обращающихся вокруг Солнца.
Эти планеты могут находиться на самом краю Солнечной системы, в той области, которая носит название «пояс Койпера» и состоит из множества малых небесных тел, оставшихся после ее формирования. К такому выводу астрономы пришли на основании того, что тела в поясе Койпера опять-таки двигаются по странным траекториям. Возможно, их опять-таки притягивают какие-то невидимые нам крупные небесные тела.
«Теория профессора Маркоса основывается на эффекте Козаи, — прояснил ситуацию завотделом физики и эволюции звезд Института астрономии РАН (ИНАСАН) Дмитрий Вибе. — Говоря проще, несколько астероидов летают не по привычному маршруту, а на каждом витке словно облетают какой-то невидимый предмет».
По словам ученого, попытки отыскать загадочное тело за Нептуном предпринимали не один раз многие астрономы при помощи различных телескопов. Однако мощности оптических инструментов пока недостаточно, чтобы увидеть эти небесные тела воочию. Но расчеты по гравитационным возмущениям показывают, что по размерам они должны превышать Землю. Установили исследователи и расстояние до этих тел: одно должно находиться в 200 астрономических единицах (а.е.) от Солнца, другое — в 250 а.е.
ЗА СТРАНИЦАМИ УЧЕБНИКА
«Живое — от неживого»?
Все на свете состоит из электронов и протонов, возьмите хоть камень, хоть слона. Каким же образом неживые молекулы неорганических веществ смогли превратиться в «живые» органические соединения?
Ученые выдвинули немало гипотез по этому поводу. А недавно нашли и довольно оригинальные способы их проверки.
Долгое время главной гипотезой о происхождении жизни на Земле считалась выдвинутая еще в 1922 году гипотеза Опарина-Холдейна. В ее основе лежит теория абиогенного синтеза (абиогенез — происхождение живого из неживого).
То есть, говоря проще, ученые, именами которых была названа данная гипотеза, полагали, что вначале на нашей планете были лишь водород, вода, углекислый газ, метан и аммиак. Солнечное излучение, молнии, радиация и вулканическая лава создали из этих веществ первые органические соединения, которые затем соединились в аминокислоты, полисахариды и нуклеотиды, из которых затем образовались первые белки.
Параллельно из тех же составляющих (конечно, тоже совершенно случайно!) были синтезированы и первые молекулы ДНК, которым затем суждено было стать хранительницами генетической информации. Потом молекулы белка и ДНК опять-таки случайно встретились и непостижимым образом «договорились» существовать и работать в едином организме, в котором белок защищал бы ДНК от стрессов, а ДНК хранила бы в себе информацию о строении этого белка. Так возникли простейшие безъядерные бактерии (молекулы ДНК, завернутые в белковую оболочку), а потом и первые организмы.
Главным сторонником гипотезы Опарина-Холдейна считается американский биохимик Стенли Миллер из Калифорнийского университета в Сан-Диего. Именно ему первому в начале 50-х годов ХХ века удалось, пропуская в колбе через смесь метана, аммиака, водорода и паров воды мощные электрические разряды, получить отдельные молекулы аминокислот — «кирпичиков», из которых строятся белки. Более того, в экстремальных условиях — внутри мощных автоклавов, где создавались чрезвычайно высокие давления и температуры — исследователям удавалось несколько раз создавать из водорода, углекислоты, метана и аммиака пептиды — простейшие белки.
Однако правоту гипотезы Опарина-Холдейна это вовсе не доказывало. Во-первых, в лаборатории вряд ли в точности воспроизводились условия, что некогда существовали на Земле. Во-вторых, синтезированные белки никак не хотели самоорганизовываться, а, напротив, норовили распасться на простые соединения.
Далее, профессор МГУ Лев Блюменфельд вычислил, что вероятность случайного появления на свет молекулы ДНК за время существования Земли равна 10800.То есть для того, чтобы получить всего одну ДНК, у нас должно быть 10800 планет возраста Земли. А наша Вселенная, считают специалисты, состоит всего из 1080 атомов, не говоря уж о планетах.
Между тем, как показали исследования геологов, на Земле в породах, возраст которых 3,8 млрд. лет (а возраст самой нашей планеты, напомним, чуть превышает 4 млрд. лет), уже наблюдаются ископаемые остатки довольно-таки сложных организмов. Откуда они взялись?
Все это привело к тому, что ныне среди ученых становится все более популярным принцип: «Живое только от живого», имея в виду, что жизнь на нашу планету, скорее всего, попала в виде зародышей из космоса. Что вроде и подтверждается анализом вещества, добытого из недр кометы Темпель-1, а также из метеоритов, некогда упавших на нашу планету.
Однако недавно исследователи из университета Глазго под руководством профессора Ли Кронина вернулись и к варианту Опарина-Холдейна-Миллера, поскольку им все же удалось добиться положительных результатов, создав химическую систему, способную эволюционировать, подобно простейшим организмам.
Работы ведутся в рамках программы, целью которой является создание необычных форм жизни, не использующие молекулы ДНК и другие биологические составляющие сложных соединений. Этот этап исследований базируется на предыдущей работе профессора Кронина, в которой было исследовано множество видов оснований — составляющих компонентов для синтетической жизни.
На этот раз процесс создания искусственной жизни был автоматизирован с помощью усовершенствованного 3D-принтера, который впрыскивал строго дозированные капельки специальных маслянистых составов в определенные места чашек Петри, наполненных водой.
Капельки эти представляют собой смесь 4 различных химических соединений-оснований. Комбинации соотношения количества этих соединений позволяют создать около 225 видов составов, отличающихся свойствами, поведением и способностью к преобразованию химической энергии в энергию движения. Наличие же источника энергии для движения превращает каждую капельку в своего рода примитивный движущийся робот.
При помощи видеокамер система позволяет исследователям наблюдать за перемещениями групп капелек, их разделением и слиянием. Те группы, которые преуспели в этих процессах, пополняются свежими веществами и продолжают эволюционировать дальше.
В итоге выяснилось, что уже после смены 20 «поколений» капелек процессы химического совершенствования начинают походить на процесс естественной эволюции, а поведение самой колонии становится более стабильным и прогнозируемым.
«В природе процессы развития организмов от простых к более сложным идут долго, — рассказал профессор Кронин. — Но в нашей системе мы можем изучать эволюционные процессы на более простом уровне. К тому же в чашке Петри реакции происходят гораздо быстрее, чем в природе, что позволяет нам экспериментировать с химической эволюцией достаточно широко».
В дальнейшем ученые планируют уже не просто проводить пассивное наблюдение за происходящими эволюционными процессами. Они будут выискивать случаи неожиданных отклонений и искать возможность вмешиваться в ход процессов, так, чтобы еще больше усугублять эти отклонения.
«В последние годы нам удалось узнать немало нового о процессах биологической эволюции благодаря возможностям современной компьютерной техники и сложных математических моделей. Наши же исследования позволяют взглянуть на эволюционные процессы с новой точки зрения. Благодаря этому, возможно, нам удастся не только открыть некоторые тайны происхождения всего живого на свете, но и создать образцы синтетической жизни, в основе которой лежит не биология, а простая химия», — подчеркнул Л. Кронин.
Параллельно с экспериментами в области химической эволюции группа профессора Кронина занимается созданием первых неорганических аналогов живых клеток, которые ученые называют iCHELL. Эти клетки будут состоять преимущественно из металлов с примесями молекул других соединений. Они станут демонстрировать некоторые черты поведения, присущего живым клеткам, входящим в состав биологических организмов.
Не останавливаются на достигнутом и сторонники теории панспермии, согласно которой жизнь на нашу планету была занесена из космоса. Недавно ученые из Франции и Мексики в своих лабораториях воссоздали условия существования космических льдов и получили… органические соединения, являющиеся важными блоками для образования нуклеиновых кислот!
Опыты ученых означают, что основные соединения для образования сложных биомолекул и возникновения жизни могли появиться еще в межзвездной среде, пишет журнал Proceedings of the National Academy of Sciences. Ученые воспроизвели условия, которые имеют место в молекулярных облаках, из которых развиваются звезды, а затем и планетные системы.
Конкретно исследователей интересовали льды, выступающие основными строительными элементами в таких процессах. В частности, подобные образования имеются в составе астероидов и комет. Они содержат много соединений, необходимых для жизни — воду, оксид и диоксид углерода, метанол, аммиак и метан.
Ученые попытались получить из этих соединений более сложные, служащие промежуточными для образования макромолекул, например, нуклеиновых кислот (РНК и ДНК). С этой целью они воспроизвели в аналогах межзвездных облаков интенсивное космическое излучение. В результате им удалось получить альдегиды (в частности, гликолевый и глицериновый), являющиеся, как считается, промежуточными соединениями для синтеза рибонуклеотидов (мономеров РНК).
Следующим шагом исследователей будет поиск следов таких соединений в космосе. Ожидается, что в этом специалистам помогут мощные современные телескопы.
Таким образом, как видите, проблема возникновения жизни на нашей планете все еще не решена, хотя и получены довольно интересные результаты. Исследования продолжаются.
ПРЕМИИ
Ловец волн-убийц
Начиная с 2008 года в России ежегодно присуждаются 4 президентские премии молодым ученым, которые внесли наибольший вклад в развитие науки и инновационную деятельность.
В этом номере мы расскажем о работе
Говоря языком официальным, Ирина Игоревна Диденкулова — доктор физико-математических наук, старший научный сотрудник Нижегородского государственного технического университета имени Р. Е. Алексеева, а также старший научный сотрудник Института прикладной физики РАН — известна среди ученых-океанологов России и зарубежных коллег как специалист в области интенсивных волновых движений в океане. Или, проще, она занимается охотой за цунами и так называемыми одиночными волнами-убийцами, стараясь предсказать их появление в том или ином регионе. Именно для этого Ирина Диденкулова занялась разработкой физико-математических моделей морских природных катастроф в прибрежной зоне, написала 2 диссертации и около 70 научных работ по этой тематике, сделала свыше сотни докладов на различных конференциях и международных симпозиумах.
Заинтересовалась же этой проблематикой она так. Уроженка Нижнего Новгорода, все детство провела на Волге, по которой среди прочих ходили и суда на подводных крыльях, созданные по проекту ее земляка — конструктора Ростислава Алексеева. В университет, который носит его имя, она и поступила учиться. На последнем курсе всерьез заинтересовалась поведением волн. Тех самых, которые мешают движению судов по воде, а случается, и губят эти корабли.
Более того, огромные волны подчас обрушиваются и на сушу, принося неисчислимые бедствия и сухопутным жителям. Но почему они образуются? Где их следует опасаться более всего? Ирина стала собирать свидетельства подобных случаев и выяснила много чего интересного и даже таинственного.
Оказалось, что большие волны бывают двух видов — цунами (что в переводе с японского означает «большая волна в гавани») и так называемые одиночные волны-убийцы.
С причинами образования цунами исследователи разобрались довольно быстро. Оказалось, что их эпицентром обычно является очаг подводного землетрясения. Вместе с морским дном сотрясается и вода над ним. В результате возникают колебания жидкости, которые образуют огромные волны. В открытом море моряки таких волн почти не замечают — вода плавно приподнимает и столь же плавно опускает их корабль. Но по мере приближения к суше характер волны значительно меняется. На мелководье она как бы опирается о дно, вырастает прямо на глазах и обрушивает на берег громадный вал высотой в десятки метров. Такая гигантская волна способна прокатиться в глубь суши на несколько километров, сметая на своем пути автомобили, дороги, дома.
Но почему в одном месте волна словно щадит людей, а в другом она беспощадна? Заинтересовавшись этим вопросом, Ирина Диденкулова разработала физико-математическую модель распространения такой волны и предложила новый подход к оценке наката волн на берег. Это оказалось крайне важно для экономики. Ведь, зная рельеф дна в конкретном месте, можно рассчитать возможные риски от цунами и с ясной головой принимать решение, где и что строить. Кстати, отсутствие такой оценки стало одной из главных причин трагедии с японской АЭС «Фукусима». Местные ученые недооценили возможный размах стихии.