Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: По образу и подобию - Роман Григорьевич Подольный на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Можно ли все это считать моделью воспроизведения? И не слишком ли сложна пища в виде тележек? Не чересчур ли все это просто?

Всякая модель в принципе есть некое упрощение (на этом сходятся, между прочим, все определения термина «модель», независимо от свой широты). А потом… Ведь мы с вами, если судить только по составу пищи, гораздо менее сложны, чем самый обыкновенный пшеничный колос. Он нуждается в сверхпростых соединениях — вроде минеральных солей. А нам нужны «лишь» белки, жиры и углеводы, причем прежде всего самое сложное в этом наборе — белки.

Другое дело, что в природе не бывает, чтобы один «родитель» имел одного «ребенка», и не больше. Ведь тогда любой вид окажется обреченным на быструю гибель. Этот недостаток ВПУ можно исправить, заставив боковые ветки еще ветвиться, чтобы каждый «организм» мог собрать рядом с собой не одну свою копию, а две.

Гораздо серьезнее другое различие между моделью и размножением в природе. Каждая тележка А в «среде» уже несет в себе план построения «организма». При размножении же организм сам создает планы для своих потомков. Это чрезвычайно важный факт, его нельзя не отразить в модели.

Модель самовоспроизведения должна и собирать новые организмы и производить планы для них.

Джекобсон находит, что это возможно. В организме план — хромосомный набор, в ВПУ — перфокарта. Значит, надо дополнить ВПУ третьей тележкой (С). Она во всем похожа на тележку В. Кроме одного — В несет теперь перфокарту — план и перфорирующее устройство, а С — всего лишь чистую карту, на которой можно пробить дырочки, превратив ее в «хромосому». По замкнутой дорожке — «среде» — двигаются теперь только тележки А и С. Тележка В сначала всего одна, и находится она в составе «организма». Но ее перфорирующее устройство срабатывает, превращая следующую за ней тележку С в новую тележку В. После этого бывшая С, а ныне В отделяется и передается в новый организм, собирающийся по старому принципу, только уж не из двух, а из трех тележек.

Наконец, сравнительно несложно сделать так, чтобы после «смерти» отдельных «организмов» их составные части возвращались на дорожку «среды», чтобы их можно было вновь использовать. Ведь в живой природе имеет место постоянный круговорот веществ.

Характерно, что ВПУ — простые собрания очень сложных частей.

Самая сложная часть живого организма — хромосомы. Их аналог в ВПУ — перфокарта, наоборот, представляет собой самую простую часть модели.

И все-таки модели типа ВПУ обещают многое. Сам Джекобсон предлагает, например, заглянуть с их помощью в таинственную область происхождения жизни.

Первые живые существа на Земле тоже должны были состоять из очень небольшого числа частей. Некоторые из этих частей могли бы, по мнению Джекобсона, нести на себе готовые планы целого организма так же, как несут их тележки А в простейшей форме ВПУ.

По подсчетам ряда ученых получается, что сложность первых живых существ должна была быть примерно того же порядка, что и сложность ВПУ. Словом, в начале эволюции могли, как будто, стоять существа, во многом принципиально схожие с моделями Джекобсона — хотя бы бедностью содержащейся в них информации и способами ее передачи потомству.

Постепенно в процессе эволюции эти существа становились все сложнее.

Ну, а можно ли промоделировать эволюцию?

По кругу


Комочек слизи, плававший в первом Мировом океане, стал предком яблони и морской звезды, червя и стрекозы, подберезовика и человека. Для объяснения всего этого построено учеными, начиная с Дарвина, огромное здание учения об эволюции. Эволюция — по-латыни это означает «развертывание», но обычно употребляется в смысле «развитие». Эволюция живого мира включает в себя как непременное условие борьбу за существование и выживание наиболее приспособленных, то есть естественный отбор.

Из двух оленей, за которыми гонятся волки, погибает менее быстроногий. В угольных районах Англии один вид бабочек за сотню с лишним лет заменил природный свой белый цвет черным: в каждом поколении выживали более темные бабочки, незаметные для своих врагов на фоне угольной пыли. Пещерный медведь — последнее животное, бывшее серьезным противником человека, — погиб в борьбе с новым владыкой мира.

А способность живого существа приспособиться (да простится мне эта тавтология) опирается не только на унаследованные свойства, но и на их случайные изменения, которые тоже могут быть унаследованы. Если эти случайные изменения вредны для организма, он гибнет, не оставив потомства, и вместе с ним исчезают и новые его признаки. Если изменения благоприятны, организм оставляет потомство, обладающее ими, поскольку они наследственны. (Давайте не будем сейчас вдаваться в проблему, как, где и почему закрепляются случайные свойства, дающие живому существу добавочные шансы на сохранение жизни.

Для той модели эволюции, о которой сейчас пойдет речь, это не имеет прямого значения.)

Идею такой модели выдвинул академик В. М. Глушков; осуществили ее его сотрудники А. А. Летичевский и А. А. Дородницына.

Это была проверка возможности переноса в программу вычислительной машины некоторых общих принципов естественного отбора. Ох, до чего длинная фраза! Давайте поговорим покороче и поконкретнее.

В эволюции вида два главных сотрудника — организм и среда. Она на него влияет, он к ней приспосабливается — или гибнет. Внешняя среда, говоря сверхусловно, состоит из пространства, в отдельных местах которого можно добыть пищу. Что же, в кибернетической модели в качестве пространства «представительствуют» 40 взятых на окружности точек. В каждой из них может быть «пища». А может и не быть. Состояние клетки с «едой» обозначается цифрой 1, клетки без еды, естественно, — цифрой 0. Разумеется, состояние клеток можно менять, изымая «пищу» из одних клеток и перенося ее в другие. В конкретных опытах «пища» имелась в 15 клетках, расположенных подряд, и весь этот «пищевой массив» двигался по окружности по часовой стрелке, то есть слева направо, сдвигаясь за единицу времени на один шаг. Только что «пищу» содержали, находились в «состоянии один» точки с № 15 по № 29 — и вот уже «питательными» стали точки с № 16 по 30, ну и так далее. Движение пищи имитирует важнейший двигатель эволюции — изменения внешней среды. А шаги «пищи» становятся единицей времени в этом уж подлинно микромире. В таких «шагах» измеряется и возраст его обитателей — автоматов.

Каждый из них занимает одну из точек «среды», каждый из них знает, есть в этой точке «пища» или нет. Знает он еще и то, есть ли «пища» в обеих соседних точках — слева и справа. Когда в его точке «пища» исчезает (с движением пищевого массива), автомат может перебраться в ту из соседних точек, где она еще есть. А если и по соседству нет пищи? Тогда начинаются ее поиски. Автомат наделен особой таблицей переходов, определяющей направление его движения в этом случае. Безрезультатные поиски «пищи», как и в природе, не могут продолжаться до бесконечности. 16 шагов без поступления «еды», 16 шагов без попадания на точку в состоянии 1 — и судьба автомата решена. Он исчезает с «колеса жизни», погибает. Грустно, конечно. Но… все как на самом деле. И, как на самом деле, не может жить бесконечно даже удачливый автомат, в избытке находящий «пищу». Больше 40 шагов «колеса судьбы» он прожить не может. И тоже исчезает. 40 шагов — период полной смены поколений автоматов. А откуда берется смена старшим? Опять-таки все «как в жизни». Автоматы, которым успело «исполниться» 16 шагов, способны к размножению. Конечно, при условии, если перед совершеннолетием они не голодали больше 7 шагов.

Автомат, отвечающий этим условиям, распадается на два автомата. Как это возможно технически? Да очень просто. На самом деле нельзя увидеть своими глазами ни кольцо из 40 точек, ни автоматы, ни тем более их размножение. Все это переведено в формулы и цифры и введено в программу вычислительной машины «Киев». И в виде цифр же сообщает машина нам о том, что происходит с автоматами. А наглядно вообразить себе эти процессы очень несложно. Немногим сложнее, чем по шахматной записи восстановить сыгранную в ваше отсутствие партию.

…Итак, вместо одного автомата налицо два. Они обладают теми же свойствами, что их родитель, за одним исключением. В каждый новорожденный автомат попадает в числе прочих частей таблица переходов, с помощью которой определяется направление движения автомата. Но при раздвоении таблицы ее заместительницы уже не совсем точно копируют свою предшественницу. В них есть изменения, из-за которых автоматы-дети несколько иначе выбирают направление движения, чем автомат-родитель.

Иначе! А лучше или хуже? Ответ на этот вопрос такой: и лучше и хуже. Одни новорожденные тычутся без толку во все стороны, как слепые щенята. Пища может попасться им только случайно. Начинается голод, который через 16 шагов беспощадного времени кончается смертью. Другие же представители молодого поколения умеют найти «пищу» в более короткий срок и остаются в живых. Но и среди выживавших отмечалась разница в поведении. Через 12 поколений, через 500 шагов среди автоматов можно было по поведению выделить два отличных друг от друга типа.

Еще в первом поколении выживали прежде всего те автоматы, которые, обнаружив, что «пищи» нет ни под ними, ни по соседству, начинали двигаться влево, навстречу возвращающемуся к ним по колесу жизни «пищевому массиву».

Во втором поколении таких «умных» автоматов было больше, в третьем — еще больше… Закон выживания наиболее приспособленных действовал вовсю.

Но тут кибернетики разыграли роль бога. Не того бога, о котором говорят церковники XX века, не бога-ленивца, запустившего механизм вселенной и удалившегося на покой. Нет, Летичевский и Дородницына вмешались в жизнь своих подопечных автоматов на манер свирепых богов древности. Они заставили автоматы умирать от голода не на 16-м, а на 13-м шагу без «пищи».

Естественно, автоматы стали гибнуть гораздо чаще. Ведь достаточно было одного-двух неверных шагов или вредной неподвижности, чтобы даже при общем движении влево, навстречу «пищевому массиву», автомат не смог преодолеть пустыню на своем пути и погиб.

Менялись поколения. Одно, другое, третье, девятое… В 76-м поколении — через 3 тысяч шагов! — ученые заметили у части автоматов новую привычку. Находясь в массиве «пищи», они больше не оставались неподвижными, а предусмотрительно двигались внутри него направо. Они, так сказать, предвидели, что «пища» может их покинуть. Поневоле здесь приходит в голову воспоминание о сезонных перелетах птиц, о кочевках степных животных… Но ученые были беспощадны. Они еще сократили время жизни без «пищи». И стали свидетелями массовой гибели своих созданий.


Собственно, один автомат даже в таких бы условиях не погиб. Беда была в том, что автоматы мешали друг другу. Да, я забыл сказать о том, что размножение автоматов было с самого начала ограничено: оно прекращалось, когда их число достигало 20. Но и 20 автоматов в условиях последней стадии опыта — это было слишком много. Ведь в каждой точке мог находиться только один автомат. Если из двух соседних один «хотел» двигаться влево, а другой — вправо, они мешали друг другу и оставались на месте. Точно так же случайно оставшийся неподвижным автомат становился — до своей гибели от голода или естественной кончины — преградой для всех остальных, вынужденных оставаться на месте или двигаться в противоположном направлении.

Так кончилась жизнь микромира в первом его варианте. Затем опыт повторили. Только теперь размножаться, делиться автоматы начинали лишь в возрасте 21-го шага, а умирали от 14 шагов голода. Довольно быстро — через 200–300 шагов, то есть 5–8 поколений, все автоматы вымерли. Ведь теперь случайные ошибки в движении почти наверняка вели к гибели, большая, чем раньше часть автоматов успевала умереть, прежде чем могла дать потомство, а часть доживала до естественной кончины, но доживала впроголодь, и права на деление так и не получала.

Опыт повторили в точно той же форме. Снова картина всеобщей гибели. Еще раз все сначала… И в одном из запусков случай благоприятствовал автоматам. Сочетание цифр в таблице переходов у одного из автоматов оказалось настолько удачным, что его потомство, сохранившее это сочетание, стало благоденствовать даже в столь тяжелых условиях. Приспособилось.

Что сделали кибернетики? Они еще ухудшили жизнь своих созданий. Теперь пища находилась только в 12 (вместо 15) точках из 40 возможных.

Автоматы долго оказывали сопротивление этому машинному «великому оледенению». Они просуществовали еще 2293 шага. Лишь 75-е поколение было последним… Какой трагический конец!

Но эта трагедия — оптимистическая. Она ведь была поставлена намеренно. Жизнь автоматов как модели вида (вида животных) можно было сделать практически бесконечной — в их масштабах времени. Но к чему это было нужно? От модели взяли все, что возможно. Убедились, что эволюционный принцип можно моделировать на вычислительной машине. Теперь настала пора усложнения модели. Эта модель была одномерной — все жизненное пространство автомата представляла собой только одна геометрическая линия окружности, не имевшая, как и полагается геометрической линии, ни ширины, ни толщины. И сами автоматы друг с другом не взаимодействуют, если не считать того, что порой мешают друг другу в силу одномерности их жизненного пространства, где ни одно препятствие нельзя ни обойти, ни перескочить через него.

В модели следующей ступени сложности оба эти недостатка должны отсутствовать. Модель окажется сложнее, а значит, хоть чуточку приблизится к своему прототипу.

Значение машинного розыгрыша естественного отбора гораздо больше, чем может подуматься. Конечно, здорово, что удалось на модели показать реальность биологических теорий. Но это в каком-то смысле второстепенный результат. Гораздо важнее будущее принципа «естественного отбора» в кибернетике. В. М. Глушков видит здесь способ получения сложных информационных систем, которые трудно создать другими способами. А между прочим, понятие «информационная система», то есть система, перерабатывающая информацию, очень широко. Под него подходим и мы с вами.

Конечно, академик имел в виду информационные системы несравненно меньшей сложности. Но сама по себе возможность получать с помощью модели естественного отбора модели животных, притом построенные не по заданной программе, — великолепна.

А в будущем так будут создаваться машины, план которых будет неизвестен их создателям, а вернее, прародителям. Кибернетика выполнит на деле странное задание старой русской сказки — «Найди то, не знаю что».

Последнее море


Говорят, Чингинс-хан дал своим полководцам, отправленным на запад, очень короткую инструкцию: омыть копыта своих коней волнами Последнего моря. С точки зрения средневековых монголов, за Последним морем уже ничего не было.

Великий полководец кибернетиков Винер призвал своих последователей прорваться к Последнему морю науки, постигнуть идеал вычислительных машин — мозг. Кибернетика — наука об управлении. Лучшая известная человеку управляющая машина — мозг. Значит, создание ее модели — высшая цель кибернетики. Собственно, и вычислительная машина «Урал» и даже обыкновенный арифмометр в каком-то, почти одинаково узком смысле, могут быть названы моделями определенных способностей мозга. Скажем, способности совершать арифметические действия. Но ведь нас интересуют совсем иные его свойства и возможности. Как быть с ними? И тут встает бесконечное число раз повторявшийся вопрос: «Может ли машина мыслить?» Ведь достаточно полно отражающая свойства мозга модель докажет эту полноту отражения тем, что окажется в состоянии мыслить.

Но… предположим, что такая модель создана. Как узнать, мыслит ли она? Вспомните «Графа Монте-Кристо» и встречу в подземельях замка Иф Эдмона Дантеса и аббата Фариа. Как каждый из них узнал, что с другой стороны человек? По самому звуку голоса. (Впрочем, в ту пору и мысли не могло возникнуть, что за человека способно выдать себя нечто иное — разве что демон или привидение.)

Но теперь времена изменились. Разговаривают и машины. Как узнать, что через стенку от вас находится не шкафообразный (или человекообразный) автомат, а человек? Раз звука недостаточно, надо вслушаться в смысл его слов. Задавать вопросы и анализировать ответы. И если вы убедитесь, что машина не смогла бы с этим справиться, значит, рядом — ваш брат по разуму. Однако лет через пятьдесят — этот срок называет виднейший кибернетик А. Тьюринг — много шансов будет за то, что вы ошибетесь. К тому времени машина будет в состоянии поддерживать разговор не хуже, чем средний человек. Тьюринг и выдвинул для оценки «разумности» машины критерий поддержания ею разговора. А имело ли это смысл? Ведь до сих пор идут бурные споры о самой возможности создания мыслящей машины.


Я не буду приводить бесчисленных философских и нефилософских аргументов «за» и «против». Не буду и ссылаться на изречения авторитетов. Ведь «пифагоровы штаны» верны не потому, что эту теорему доказал именно Пифагор. Теоремы же есть не только в геометрии, но и в других науках, в том числе в кибернетике. Одну из них недавно выдвинули и доказали ученые Маккаллок и Питтс. Смысл ее таков: любая функция естественной нервной системы, которая может быть логически описана с помощью конечного числа слов, может быть реализована формальной нервной сетью, а следовательно, и воспроизведена машиной.

Вот более простая перефразировка этой теоремы: робот, построенный определенным образом, способен вывести любые правильные заключения из конечного числа посылок.

Есть немало ученых, в том числе и крупных кибернетиков, не согласных с этой теоремой и пытающихся найти слабые места в доказательствах Маккаллока и Питтса. Но эти несогласия носят пока скорее эмоциональный характер: им так же не хочется соглашаться с доводами этих двух кибернетиков, как Эйнштейну не хотелось признавать выводы квантовой механики.

Но вот уже несколько лет, как все попытки опровержений теоремы не удаются. Значит, с солидной долей вероятности ее можно считать верной. Так что же, выходит, до мыслящей модели мозга — рукой подать? Вовсе нет. Принципиальную возможность от возможности практической отделяют иногда тысячелетия. Вспомните! Архимед две с лишним тысячи лет назад обнаружил, что может, в принципе, сдвинуть Землю; вот только точки опоры не было да подходящего рычага не нашлось. Кибернетики, разумеется, в лучшем положении, чем Архимед: они по крайней мере знают, как изготовить свои «рычаги». Говорят, что из всех уже существующих моделей ближе всего к мозгу подошли персептроны — устройства для распознавания образов.

Классическим (хотя уже далеко не новейшим) образцом персептрона считается построенная американским ученым Ф. Розенблатом машина Марк-I.

Сетчатка глаза моделируется здесь полем из нескольких сотен фотосопротивлений. Каждое из них может находиться в двух состояниях — возбужденном или невозбужденном.

Марк-I должен определять, к какому классу изображений относится проецируемая на поле из фотосопротивлений фигура (скажем, круг это или треугольник). Но одной модели сетчатки здесь мало. Позади нее располагаются ассоциативные элементы, к каждому из которых подключается несколько фотосопротивлений. Ассоциативный элемент суммирует сигналы, поступившие в него от тех из «подопечных» сопротивлений, которые в данный момент возбуждены. Если получившаяся сумма больше некоей наперед для всех таких элементов заданной величины, он выдает на выходе единицу (сигнал, равный единице, если уж выражаться точно). Ну, а если сумма меньше заданной величины, на выходе получается ноль. Выходные сигналы ассоциативных элементов в специальных устройствах перемножаются на переменные, не зависящие друг от друга коэффициенты (они могут быть и положительны, и отрицательны, и равны нолю). Результаты суммируются. Если конечная сумма положительна или равна нолю, персептрон дает на выходе единицу. Если она отрицательна — на выходе появляется ноль.


Тут важно добиться того, чтобы при появлении, скажем, на поле из фотосопротивлений контура треугольника прибор выдавал единицу, а при проецировании круга — ноль. Этого можно достичь подбором переменных коэффициентов, на которые умножаются сигналы ассоциативных элементов.

В простейшем случае, когда надо научить простейший персептрон отличать треугольники от кругов, поступают так.

Персептрону предъявляют в произвольном порядке самые разные треугольники и круги. Когда на Марк-I проецируется треугольник, коэффициенты всех возбужденных им элементов увеличиваются, когда проецируется круг, коэффициенты возбужденных последним элементов уменьшаются.

В результате с каждым новым предъявлением треугольника растет вероятность того, что суммарный сигнал окажется положительным. И наоборот: каждый показ круга увеличивает вероятность отрицательного суммарного сигнала.

Прибор обучается на собственном опыте.

Впрочем, этот способ обучения оказался не лучшим. Эффективнее другой, предусматривающий изменение коэффициентов лишь в том случае, если персептрон ошибется. Когда он выдает на выходе ноль вместо единицы, коэффициенты возбужденных элементов увеличиваются, когда единицу вместо ноля — они уменьшаются.

Разумеется, усложненный персептрон в состоянии различать не два образа, а гораздо большее их число. Особенно удивительно и многообещающе следующее обстоятельство. Если в уже «обученном» персептроне выключить часть ассоциативных элементов, он сохраняет большую часть своих «знаний». Персептрон, великолепно различавший буквы Е и К, продолжал правильно определять их в каждых четырех из пяти случаев даже тогда, когда он «потерял» семь из каждых восьми своих элементов.

Однако все это никак не объясняет, почему можно говорить о персептроне именно как о модели мозга. Так вот, он заслужил это следующими своими свойствами.

При распознавании персептрон не перебирает всех знакомых ему фигур и вообще не нуждается в запоминании конкретных, «показанных» ему объектов. Мозг же тоже «знает» собаку вообще, а не собак конкретных.

В состав персептрона входят модель сетчатки глаза и модели нейронов — это модели нейронов ведь и называют ассоциативными элементами. Элементы, как и нейроны, возбуждаются (выдают единицу) только при достаточно большой интенсивности сигнала, а физиологи говорят о «пороге возбуждения» естественных нейронов.

Даже высокая стойкость персептрона сближает его с мозгом, поскольку способность мозга к восстановлению работоспособности при повреждениях почти невероятна (вспомните хотя бы Луи Пастера, сделавшего величайшие свои открытия уже после того, как одно его мозговое полушарие было парализовано).

В общем доказывать здесь право персептрона быть моделью мозга можно долго. Гораздо быстрее и проще убедиться, что это модель лишь очень немногих из свойств мозга, и модель весьма приближенная.

Ну, а где же он, разумный робот, пришествие которого предопределено теоремой Маккаллока и Питтса?

Если теорема верна, он где-то далеко, очень далеко впереди. Или, если хотите, в фантастических рассказах и даже сказках.


Первый автомат, способный мыслить, был построен, по преданию, Талосом, учеником самого Дедала. Этот автомат в виде медного великана охранял от нападений некий остров. Кто знает, может быть, Талос создал бы что-нибудь и почище, но тут, рассказывает древнегреческий миф, произошла история, достойная и в наше время громового фельетона. Дедал позавидовал своему ученику, приревновал его к славе — и убил несчастного Талоса. После этого убийства ему и пришлось скрыться, бежать с родины к царю Миносу на Крит, где он построил Лабиринт и изготовил крылья.

Мне кажется, что убийство Талоса Дедалом так же маловероятно, как создание Талосом первого робота. Но эти древние греки! Даже богов своих они сделали ворами и обманщиками, а о великих людях помнили (или выдумывали) не только хорошее, но и плохое.

Кроме «меднорукого» исполина можно вспомнить еще Голема средневековых легенд — глиняного истукана, подчинявшегося воле волшебника.

В XIX веке жена поэта Перси Биши Шелли, девятнадцатилетняя Мэри Шелли, создает в своем воображении человека, составленного из частей тел людей и животных. Название для него она применяет явно устаревшее — демон.

Затем появляются роботы Карела Чапека, созданные из искусственной живой материи. Затем думающие машины становятся героями рассказов буквально сотен писателей — с тем лишь недостатком, что в отличие от авторов мифов и Чапека создатели образов роботов большей частью следуют за наукой, а не опережают ее.

Талоса боялись только враги его хозяина. Роботы Чапека уничтожают человечество. Тот же мотив входит в немалое число произведений и последних лет. Мало того, сам Норберт Винер предостерегал людей против думающих машин. Страх перед роботами, по исследованиям западных психологов и социологов, распространен довольно широко.

Но ведь роботов еще нет! Почему же там так боятся несуществующего? Увы, у этого страха людей Запада есть основания. И они не в том, что на Земле действительно может воцариться «машинная раса». Чтобы понять, в чем тут дело, заглянем совсем в другую эпоху истории человечества. В средневековье. Как вы думаете, опасны для человека… овцы? Не похоже. Однако в Англии говорили тогда, что овцы едят людей. Имелось в виду вытеснение полей пастбищами, захват помещиками под овечьи пастбища общинных земель. Скотоводство было для них выгодней земледелия, а рабочих рук требовало меньше, и крестьяне оказывались сразу и без земли, и без работы, а значит, без хлеба.

Трудно заподозрить в сознательной злой воле и паровоз и текстильный станок. Однако первые легенды о «бунте машин» появились именно в ту пору, когда это были, пожалуй, самые сложные из машин.

Рабочие, у которых машины отняли хлеб, боялись их так же, как боятся сегодня роботов многие интеллигенты США, которым вполне реально угрожает безработицей применение вычислительных машин.

Таковы, пожалуй, главные социальные корни и предупреждений Винера (которому лично, разумеется, голод не угрожал) и многих других обвинений против «грядущего робота».

А вот что говорит академик А. Н. Колмогоров:

«…Нужно стремиться этот глупый и бессмысленный страх перед имитирующими нас автоматами заменить огромным удовлетворением тем фактом, что такие сложные и прекрасные вещи могут быть созданы человеком».

В общем, по-видимому, «Последнее море» моделирования может быть достигнуто. Но не все согласны с теми признаками, по которым Тьюринг предлагает определить, что мы «вышли на берег».

В гневной книге с подзаголовком «Миф о думающих машинах» обрушивается, в частности, и на концепцию Тьюринга американский ученый Таубе. Он уверяет, и даже довольно убедительно, что уже достигнутые возможности машин переоцениваются, что совершенство того, что уже сделано в кибернетике, сильно преувеличено.

Ссылаясь на ряд теорем, Таубе утверждает, что есть проблемы, принципиально неразрешимые для машины (правда, тут же встает вопрос, разрешимы ли эти проблемы и для человека).

Подвергнув жестокой критике ряд положений кибернетики, поставив под сомнение (правда, бездоказательно) верность теоремы Маккаллока и Питтса, Таубе выдвигает взамен критерия Тьюринга другое условие.

Модель мозга может быть признана достаточно близкой к прототипу лишь в том случае, если она обеспечит своему обладателю (роботу) выживание в сложной обстановке борьбы за существование. То есть модель мозга должна быть в состоянии выполнить те требования, которые предъявляет жизнь к мозгу любого животного. Здесь Таубе наметил финиш, повесил «ленточку», которую должна будет «перерезать» некая достаточно «умная» машина.

Как ни странно, но и условие Таубе и условие Тьюринга удовлетворить гораздо труднее, чем, скажем, построить машину, способную сделать из фактов выводы, заслуживающие присвоения их автору звания кандидата наук. Такие машины ведь фактически уже существуют. Не так давно сообщалось, что одной из них удалось установить определенную взаимозависимость между свойствами нефтеносных пластов. Ту самую зависимость, что на два года раньше открыл ученый (люди, работавшие с машиной, не включили в ее программу сведения о его диссертации, так как ничего об этой диссертации не знали). Выходит, машины уже сейчас способны к творческой работе? Многим ученым кажется, что да. Но ведь так трудно иногда провести границу между работой творческой и нетворческой. Потому и ценны критерии Тьюринга и Таубе, что они более определенны.

Но… ведь все это относится в конечном счете к моделированию разума. А человек — далеко не только разум. Кроме головы, у него есть сердце — благородное сердце, горячее сердце, нежное сердце, верное сердце — одним словом, чувства. Эмоции. Можно ли промоделировать их? Что же! Познакомьтесь со студентом из лент…

Студент из лент


Ему двадцать лет. Он студент Киевского политехнического института, друзья ласково зовут его Эмиком. Впечатлительный, порывистый, остроумный, он сумел справиться с двойным ударом судьбы: ушла к другому невеста, первая научная работа была напечатана под чужим именем — украдена, попросту говоря. Но Эмик все-таки остался оптимистом. Конечно, большой недостаток нашего героя то, что с ним не всегда легко поддерживать разговор. 280 слов — вот и весь его багаж. Для студента позорно мало. Но не торопитесь осуждать Эмика. Ведь у этого начинающего исследователя и незадачливого влюбленного есть еще одно уникальное качество: вместо плоти и крови он состоит из перфорированных лент — длинных полосок бумаги, покрытых дырочками. Эмик не человек, а только отдаленная модель человека.

В кибернетике пришла пора для студента из бумажных лент, для мечтательного и порывистого Эмика, легко впадающего в печаль, приходящего в гнев, умеющего радоваться и огорчаться…

И все это говорится о машине?! Нет, не о машине собственно. О программе для машины. О программе, задача которой — моделирование человеческих эмоций. Сразу оговоримся — речь пойдет только о моделях эмоций. Моделях настолько простых, что печаль и гнев, радость и страх надо бы ставить в кавычки. Да слишком много тогда понадобится для этой главы кавычек! Машина, разумеется, не может переживать — она производит действия, в чем-то аналогичные переживаниям. В очень небольшом «чем-то». Но аналогичные!

…Есть в Киеве место, название которого вы знаете, даже если и не успели еще побывать в зеленой украинской столице. Речь идет не о славном Крещатике, а о несколько мрачноватой Лысой горе. Читали, верно, у Гоголя хотя бы, про ведьм с Лысой горы. Или слышали симфоническую картинку Мусоргского «Ночь на Лысой горе».

Ну, а сегодня на Лысой горе засели кибернетики. Здесь, в Институте кибернетики, которым руководит академик В. Глушков, в отделе биокибернетики, возглавляемом профессором Н. Амосовым, и создан Эмик. А прямые родители и воспитатели Эмика — группа очень и не очень молодых людей.

В ней два инженера и физиолог, два врача и психолог и шесть математиков. Двенадцать человек, поставивших своей целью промоделировать эмоции, дать машине «чувства» (здесь мы еще ставим кавычки, но дальше вам придется каждый раз представлять их мысленно).



Поделиться книгой:

На главную
Назад