С одной стороны океана мы видим американского ученого Хела Броксмайера из Университета Индианы и Арлина Ауэрбаха из Рокфеллер-клиники, а с другой — клинициста Элиану Глюкман из Парижа. Последняя была известна среди пациентов (и коллег) как «железная леди» из-за ее бескомпромиссного подхода к проблематичным пересадкам. События развивались вокруг пятилетнего пациента с редкой формой недостаточности костного мозга (анемией Фанкони), для которого не нашлось подходящего донора. К счастью, его мать была беременна вторым (по словам акушерок) здоровым ребенком. Броксмайер и Ауэрбах знали, как взять пуповинную кровь, проверить ее на совместимость и заморозить, а Глюкман знала, как провести пересадку. Пуповинную кровь, богатую совместимыми клетками, удалось легко собрать и заморозить, правда, потребовался длительный перелет из Индианы в Париж, чтобы вовремя ввести ее реципиенту. После долгих и пугающих 22 дней костный мозг прижился без каких-либо симптомов отторжения (количество эритроцитов и лейкоцитов начало увеличиваться). Сейчас, спустя почти тридцать лет, пациент все еще жив и здоров.
Публикация этого события в 1989 году ознаменовала новую эру в истории трансплантации стволовых клеток. Броксмайер, Ауэрбах и Глюкман не только продемонстрировали, что в одном небольшом количестве пуповинной крови (не более 150 миллилитров) содержится достаточно стволовых клеток для спасения жизни другого ребенка, но и тот факт, что забор пуповинной крови происходит безопасно и без какого-либо риска для матери или ребенка. Кроме того, процедура оказалась простой: после того как пуповину отделили от новорожденного, а его самого с матерью поместили под присмотр акушера, гематолог при помощи простого прокола в оставшейся части пуповины, все еще прикрепленной к плаценте, получил кровь.
Какой смысл бесплатно жертвовать свою пуповинную кровь государственному банку, если можно заморозить ее только для себя?
Чуть позже удалось продемонстрировать, что стволовые клетки в пуповинной крови приводят к меньшему отторжению, поскольку присутствующие в них иммунные клетки все еще незрелые, а некоторые и вовсе «наивные», поэтому другие ткани с наименьшей вероятностью распознают их как чужеродные. Требования к совместимости пуповинной крови гораздо менее строгие, чем к крови или костному мозгу взрослого человека. Больше не было необходимости в полном совпадении групп HLA (8/8 или 10/10), достаточно 6/10. Сразу для многих пациентов, которые безнадежно ждали весточку из мира, шанс на выздоровление мог быть найден ближе к дому.
Пуповинная кровь была доступна и могла быть предоставлена немедленно в любую точку мира. Простая проверка на доступность и совпадение в международных файлах часто давала такое совпадение в течение суток. Только сравните это с тем количеством месяцев, которые раньше уходили на поиск взрослого донора-добровольца. А захочет ли он или она все еще сдать костный мозг? Болен ли сам донор? Или находится в положении? И вообще, удастся ли его или ее найти?
Стоит ли говорить, что несколько месяцев лечения лейкемии иногда кажутся целой вечностью… Еще одним преимуществом пуповинной крови был тот факт, что у стволовых клеток, полученных от невинного плода, вероятнее всего, также отсутствовали вирусы (СПИДа, цитомегаловируса, вируса Эпштейна — Барр, вируса Зика и т. д.).
Однако и недостатки этой пуповинной крови вскоре стали очевидными. Многое зависело от того, как поздно акушер сделал зажим, чтобы в пуповине осталось достаточное количество крови для безопасного трансплантата. Более того, было ясно, что трансплантация стволовых клеток может быть успешной только в том случае, если вводится определенное минимальное количество стволовых клеток на килограмм веса тела реципиента. То есть если пациент весил не более 40 килограммов, обычного количества пуповинной крови было достаточно. А что, если больше?
Начиная с конца 1990-х годов взрослым пациентам разрешалось одновременно вводить одну или несколько порций пуповинной крови. И это иммунологическое трио сработало… конечно, при условии минимальной совместимости между различными материалами донора. Как ни странно, после этих двойных пересадок выживал только один из двух реципиентов и полностью принимал трансплантат. До сих пор неясно почему.
В начале 2000 года было предпринято несколько попыток размножить первоначальную колонию стволовых клеток пуповинной крови в лаборатории, но безрезультатно. Однако в 2006 году с появлением технологии iPS процесс ускорился.
Больше всего гематологов беспокоило медленное выздоровление пациента после трансплантации. При пересадке костного мозга и кроветворных клеток результаты наблюдались примерно через семь-десять дней. С пуповинной кровью (вероятно, из-за незрелости и меньшего количества) это часто занимало от 21 до 25 дней. Таким образом, пациент долгое время продолжал жить без костного мозга, и незначительная инфекция или кровотечение могли его убить. Изначально показатели выживаемости казались чуть лучше из-за более низких показателей отторжения, но после пересадки пуповинной крови риск осложнений оказался выше. В итоге пуповинная кровь работала так же хорошо, как и обычные стволовые клетки, но не лучше. Разумеется, если пациент не нашел донора во взрослых файлах, его перенаправляли в банки пуповинной крови.
Честь основать первый банк пуповинной крови досталась Пабло Рубинштейну в Нью-Йорке в 1992 году. Вскоре за этим появилась Всемирная сеть, и сегодня в базе данных, доступной для свободного просмотра, почти миллион типов. Левенский банк пуповины был создан в 1996 году, затем последовали голландские банки.
Но вскоре у этих публичных банков появятся «кровавые» конкуренты на побережье. Принцип частных коммерческих банков пуповинной крови впервые появился в Америке. Зачем жертвовать свою пуповинную кровь государственному банку бесплатно и для всех, если можно заморозить ее для себя? Кто знает, насколько эти стволовые клетки будут полезны в долгосрочной перспективе?
Коммерсанты быстро почувствовали золотую жилу, манипулируя страхом беременных женщин: «Ваш ребенок — чистый, прекрасный малыш, и все ради него». А кого волнуют вымогательские цены за забор и хранение? Цена достигала 2500 евро, что в два раза больше реальной стоимости в бесплатных государственных банках. Плюс ежегодная оплата за хранение — это еще несколько сотен евро сверху? В целом вся процедура была представлена как страхование жизни собственного ребенка, и эта идея хорошо прижилась в культуре
Тысячи ничего не подозревающих пар оказались в ловушке. Уже на тот момент имелось много данных, которые показали, что собственная пуповинная кровь не может быть использована для лечения возможной лейкемии. Собранная пуповинная кровь уже содержит в себе зародыш этого позднего лейкоза. Другими словами, вы просто перенесете тот же рак обратно в ваше тело.
Коммерческие банки быстро изменили курс. К тому времени уже было доказано, что стволовые клетки все же могут быть полезны при других заболеваниях, таких как болезнь Паркинсона, Альцгеймера, сердечные приступы и т. д. Таким образом, ваше личное хранилище было защищено для возможного последующего использования. Коммерсанты не возражали, так как в то время было еще слишком мало данных о таком гипотетическом использовании в будущем. Они также игнорировали тот факт, что пуповинная кровь в соответствии с международными стандартами качества имеет ограниченный срок годности — максимум двадцать лет при температуре –196 °C — и что те заболевания, при которых эта кровь будет эффективна, очень редко встречаются в возрасте до двадцати лет.
Нередко родители пытаются родить здорового малыша, который станет донором биоматериала.
Гематологи во всем мире публично порицали этот обман и коммерциализацию трансплантаций и донорского материала. Те же, кто мог себе это позволить, заморозили свою пуповинную кровь для собственного использования, но были сильно обмануты. Тогда одна беременная тележурналистка добровольно (с камерой) вызвалась пойти в частный банк и потребовать объяснений, что произойдет с ее пуповинной кровью после пожертвования. Генеральный директор той компании вызвался дать публичное интервью. Он, похоже, действительно не знал, о чем речь, и для него такая услуга была похожа на любую другую. От него последовали заявления: «Это хорошо для всего», «Никаких научных данных»… «Спекуляция?» — «Никогда не слышал об этом!» Затем генеральный директор подал на журналистку иск за клевету и дезинформацию, который и проиграл… После поднятой шумихи он удалился со сцены, скорее всего, с хорошо набитыми карманами.
Но это не отменяет того факта, что во всем мире большая часть пуповинной крови хранится в частной организации, а не в публичной. В США этот показатель выше, чем в Европе. Бессмысленная трата ресурсов. Или еще хуже: те 10 % пациентов, которые безуспешно обращаются в публичные банки, могли бы найти совпадение в частном. «Это кровь моя и для меня»: видимо, пусть лучше эта кровь сгниет, чем станет доступной и спасет жизни. Напряжение еще усилилось после того как несколько крупных частных банков пуповинной крови, в том числе в Лос-Анджелесе, объявили себя банкротами. Печальные документальные кадры фиксировали оттаявшие морозильники и безнадежно испорченные контейнеры с пуповинной кровью.
Исключением во всей этой истории могут стать семьи с высоким риском серьезного наследственного дефекта или лейкемии — в этом случае сохраненная в личных целях пуповинная кровь брата или сестры может пригодиться для возможной в будущем трансплантации.
Известны случаи, когда родители снова пытаются зачать ребенка в надежде на получение биоматериала (родить здорового малыша, который по совместительству станет донором). Это может показаться весьма приемлемым, если мы не будем учитывать интересы неродившегося ребенка-донора, который появился на свет при весьма сомнительной мотивации.
Как бы то ни было, но с конца 1990-х годов пуповинная кровь улучшила перспективы для пациентов с лейкемией, для которых не нашлось ни одного брата или другого взрослого донора. Для некоторых это в буквальном смысле вопрос жизни или смерти. И все благодаря щедрости анонимной матери…
Когда в 1960-х годах под микроскоп были помещены первые культуры костного мозга, гематологи смогли выделить три типа клеток: маленькие круглые клетки, которые, казалось, росли в форме булыжника — истинные кроветворцы; вытянутые клетки, образовывавшие опорные ткани; жировые скопления — пучки жировых клеток, хорошо известные любителям полакомиться оссобуко[92]…
Первоначально на эти поддерживающие клетки ученые смотрели с некоторой долей жалости; настоящие кроветворные стволовые клетки стояли первыми в списке при всевозможных клинических манипуляциях. Считалось, что для жира невозможно найти никакого применения, и эти раздражающие клетки поддержки просто создавали массу.
Но ситуация в корне изменилась в 1973 году, когда Александр Фриденштейн продемонстрировал, что эти удлиненные клетки способны на нечто большее, чем просто обеспечивать поддержку: они могли расти в кости и хрящах и обеспечивать динамическое поддержание ниши (или гнезда), в которой спокойно развивались и росли кроветворные стволовые клетки. Лишь в 1991 году американский эксперт по стволовым клеткам Арнольд Каплан дал им окончательное название: мезенхимальные стволовые клетки[93]. Это был настоящий прорыв, все узнали об этих незаметных клетках и их влиянии на иммунную систему. Хотя впервые мезенхимальные стволовые клетки были выделены из костного мозга, их также довольно много в пуповинной крови и жировой ткани. Они нейтральны, поэтому их применение у пациентов не зависит от совместимости. Их основная способность в качестве иммуномодуляторов состоит в том, чтобы ослаблять различные иммунные реакции, угнетая их, например для снижения риска отторгающей реакции при трансплантации стволовых клеток при раке крови, а также для борьбы с аутоиммунными заболеваниями. Это болезни, при которых иммунная система пациента атакует и разрушает его собственные части тела. Хорошо известные примеры — рассеянный склероз (иммунная система атакует защитную оболочку нервов), диабет (атака на инсулин-продуцирующие клетки) или ревматизм (атака суставных капсул).
До достижения успешных результатов эксперимента исследователи не упомянули о сотне неудачных попыток.
Многочисленные протоколы исследований с мезенхимальными стволовыми клетками были начаты в различных центрах по всему миру с 2000-х годов.
До XXI века священный Грааль гематологов — возможность культивирования в лаборатории достаточного количества стволовых клеток с необходимой способностью к размножению, чтобы у пациента на полке всегда был резерв стволовых клеток на потом, — все еще не был доступен. Годы попыток увеличить количество кроветворных стволовых клеток из костного мозга, крови и пуповинной крови не привели к желаемому результату. Это могло быть связано с тем, что кроветворные стволовые клетки уже слишком далеко продвинулись в своей эволюции в зрелые клетки крови и потеряли способность к пролиферации[94]. Казалось, что их невозможно вернуть в более незрелое состояние.
И все же в 1962 году сэр Джон Гердон (Оксфорд, позже Кембридж) уже попробовал это провернуть: он заменил ядро незрелой яйцеклетки лягушки ядром зрелой кишечной клетки лягушки того же вида и продемонстрировал, что оно может изменить яйцо и появится совершенно новая лягушка. Таким образом, старая клетка может получить вторую жизнь через ядро и вернуться к первоначальному статусу. Также было предоставлено доказательство, что каждая клетка нашего тела, независимо от ее зрелости, все еще содержит информацию для создания всех возможных типов клеток. Осталось только разгадать эту генетическую загадку.
Гердон, получивший Нобелевскую премию по медицине за свою работу в 2012 году, был противоречивой фигурой. Ему нравилось смаковать тот факт, что в 1949 году его учителя в знаменитом Итонском колледже прямо заявили в своем докладе, что это будет «пустой тратой времени» и «полной нелепостью», если он и дальше будет мечтать стать исследователем в области биологии. Хоть его результаты и были классифицированы в течение десяти лет как весьма любопытные, несколько групп исследователей продолжали молча работать над его так называемыми методами переноса ядер соматических клеток. А кульминацией их исследований стало создание овечки Долли в 1996 году в лаборатории Иэна Уилмута в Эдинбурге, о судьбе которой так много говорили. Уилмут провел этот эксперимент путем слияния овечьего яйца со зрелой клеткой вымени и имплантации этой гибридной клетки суррогатной матери-овце. Результатом стала идеально клонированная овечка, полностью идентичная донору клеток вымени. Это событие потрясло мир: всевозможные нарциссы мечтали о том, чтобы их клонировали, а церковные власти выражали отвращение к этому дьявольскому эксперименту.
Исследователи тактично умолчали о сотне неудачных попыток и получении множества клонов с ужасными пороками развития до достижения успешных результатов эксперимента. Кроме того, никому не удавалось повторить такое с человеческими клетками до 2004 года. А чуть позже южнокорейский ученый Хван У Сок шокировал мир своими публикациями. Используя технику переноса ядер соматических клеток, он создал одиннадцать линий стволовых клеток человека. Таким образом, для каждого из одиннадцати доноров он ввел зрелое ядро в донорские яйцеклетки и создал непрерывно растущие клеточные линии. Результатом стал нескончаемый источник клонированных клеток. По его словам, у этих клеток безграничная сфера использования. Сразу же заговорили об их возможном применении для пациентов с травмами головного и спинного мозга, болезнью Паркинсона.
И вот когда бесплодная пара наконец обретает надежду на рождение ребенка, остается несколько ничейных зародышей.
Но, как окажется позже, результаты Хвана были не столь уж впечатляющими. По словам некоторых осведомителей из его собственной лаборатории, он выдумал большую часть данных ради собственного самолюбия и славы. Обман продлился недолго, до того как выяснилось, что у него есть причудливые методы сбора яйцеклеток. Он запугивал молодых студенток колледжа в своей лаборатории, требуя от них жертвовать яйцеклетки в обмен на хорошие оценки, и обманывал пациентов, лечившихся от бесплодия. Последние соглашались на использование любых яйцеклеток, которые были доступны. Доктор не упомянул о том, что лучшие из собранных яйцеклеток он использовал для своих экспериментов, а те, что похуже, оставлял несчастным пациентам. Также в связи с его лабораторией всплыла целая история, связанная с торговлей ооцитами[95]. По имеющейся информации, Хван «насильственным образом» купил более 2000 яиц (по 1400 долларов США за штуку) у более чем 100 женщин.
Хван, который на самом деле был ветеринаром, также клонировал с помощью своей методики различных животных, таких как крупный рогатый скот и собаки. В 2005 году мир увидел рождение первой клонированной собаки. Щенок Снуппи был генетически идентичен своему отцу породы афганская борзая и родился от суррогатной собаки лабрадора. Но карьера Хвана закончилась стремительно: после потери свой должности в Сеульском университете в 2005 году он через четыре года был приговорен к двум годам тюремного заключения. Но все же те, у кого есть лишние 50 тысяч евро, могут сегодня спокойно поехать в Южную Корею (или Калифорнию) и клонировать любимого питомца.
А тем временем на другом конце света Мартину Эвансу в 1981 году удалось выделить так называемые первичные клетки (позже их назовут эмбриональными стволовыми клетками) из эмбрионов мышей. После того как оплодотворенная яйцеклетка (зигота) начала делиться, удалось изолировать клетки от эмбриона до восьмиклеточной стадии без вреда для эмбриона. Изолированные клетки все еще были настоящими плюрипотентными: каждая из них была связана приблизительно с 220 различными клетками и тканями организма. Более того, при правильных условиях культуры они могли храниться неопределенный срок и без ограничений к продолжению размножения. Так и родилась концепция «Стволовая клетка — источник вечной жизни». А Эванс получил Нобелевскую премию по медицине в 2007 году.
И все же пройдет еще пятнадцать лет до 1998 года, прежде чем Джим Томсон из Висконсина (США) попробует проделать то же самое с человеческими эмбрионами. Первые человеческие эмбриональные линии стволовых клеток были созданы из оставшихся эмбрионов после лечения бесплодия.
Использовать подобные виды эмбрионов для исследований было нелегко. Часто при стимуляции яичников у пациенток выделяется определенное количество яйцеклеток и только некоторые из них имплантируют. И вот когда желание бесплодной пары иметь детей исполняется, остается несколько зародышей, которые оказываются ничейными. Даже если родители дали полное согласие, непреодолимые моральные принципы против использования человеческого материала в обществе остаются.
Консервативные религиозные группы были возмущены после обнародования исследований Томсона. А в 2001 году они призвали президента Джорджа Буша и остальных политиков запретить исследования эмбриональных стволовых клеток. На практике это означало, что деятельность лабораторий стволовых клеток, которые зависели от федеральных фондов, была ограниченна, но на частные секторы это не распространялось. Кроме того, линии стволовых клеток, созданные до 2001 года, было разрешено продолжать использовать. Немного лицемерно и неоднозначно, но в любом случае эти правила побудили многих исследователей покинуть США и перебраться назад в Европу или Азию.
Одним из таких исследователей была фламандка Катрин Верфайл. Она уехала из Университета Левена в 1987 году для обучения в США и провела в Миннеаполисе следующие семнадцать лет. Она стала всемирно известным экспертом по стволовым клеткам и не отпускала давнюю левенскую мечту иметь возможность делать кровь в самой лаборатории. Несмотря на использование тысяч культур и лабораторных животных, ей к началу 2000-х годов это так и не удалось. И тут совершенно случайно она находит то, чего не искала. Один из ее дипломных студентов, который отвечал за обновление культур (стволовые клетки нуждаются в ежедневном питании), забывает правильно кормить определенную партию стволовых клеток мышей. Обычно это означало, что стволовые клетки обречены. На следующее утро Катрин просто не может поверить своим глазам: через микроскоп она с удивлением обнаруживает, что не все клетки мертвы. Некоторые выглядят совсем иначе: это уже не красивые круглые кроветворные стволовые клетки, а вытянутые, такие как… нервные. Катрин понимает, что подобная трансформация в соответствии с известными на тот момент законами биологии невозможна, но несколько тестов и испытаний лишь подтверждают результат. Формирующие кровь стволовые клетки претерпели своего рода перепрограммирование от монопотентного (образование крови) до мультипотентного (создание различных тканей и типов клеток) и затем обратно к монопотентным нервным клеткам. Ее публикация 2002 года о клетках, которые она впервые выделила (МВКП, или мультипотентные взрослые клетки-предшественники), породила множество споров, особенно в религиозных кругах. Если выводы Катрин были верны, мультипотентные клетки могли создаваться без использования эмбриональных стволовых клеток. Из этих мультипотентных клеток могли быть получены нервные, мозговые, мышечные, кишечные, печеночные и сердечные клетки, и отпадала необходимость использовать эмбрионы исключительно для исследований… Ватикан вздохнул с облегчением.
Из простой клетки кожи может быть создана эмбриональная, а из нее можно вырастить любую другую.
Верфайл вернулась в Университет Левена, в собственный Институт стволовых клеток SCIL, где продолжила свои исследования. В конце концов, ее революционные результаты еще предстоит подтвердить. Необходимо провести сравнение с эмбриональными стволовыми клетками (золотой стандарт для мультипотентности) и исследовать подобные клетки человека. И хотя подтверждения по животным из других лабораторий не заставили себя долго ждать, с человеческими стволовыми клетками оказалось не все так просто. Они не преобразовывались напрямую в мультипотентные, и их сложно было перепрограммировать.
И затем в 2006 году с Дальнего Востока внезапно приходит весточка. В своем исследовании генетических аспектов формирования зародыша (эмбриогенеза) у мышей японец Синъя Яманака, скромный хирург-ортопед, пришел к удивительному наблюдению, что решающую роль в этом процессе играют не более четырех генов (Oct4, Sox2, KLF4 и c-Myc). Повторно вводя (сверхэкспрессируя) эти гены в зрелые клетки (например, кроветворные стволовые клетки или клетки кожи), Яманаке, по-видимому, удалось перепрограммировать клетки в эмбриональное состояние. Любопытная деталь: из ста попыток японца только одна оказалась успешной…
Только через год Джиму Томпсону из Висконсина удалось воспроизвести эти результаты в клетках человека. Простая клетка кожи может быть перепрограммирована в эмбриональную, и из нее при созревании выращена любая другая (кровь, мышцы, сердце, печень, легкие, почка, мозг, яйцеклетка, сперматозоид и т. д.). Святой Грааль плюрипотентности (индуцированная плюрипотентная стволовая клетка, или iPSK) был найден.
На горизонте замелькал новый вид регенеративной медицины. Извечная нехватка органов для трансплантации осталась в прошлом, путь к искусственному выращиванию органов или тканей в неограниченных количествах был проложен. Больше не было нужды в жестоких экспериментах над животными или долгих поисках добровольцев. Например, тот, кто хотел оценить влияние конкретного лекарства на печень человека, мог запросить модель тканей печени человека:
В начале 2012 года Синъя Яманака получил Нобелевскую премию по медицине, в очередной раз за исследования стволовых клеток…
Консервативные и религиозные группы людей отреагировали с энтузиазмом: ведь в использовании эмбриональных стволовых клеток теперь, казалось, больше нет необходимости. Однако вскоре исследователи предупредили, что все еще остается потребность сравнивать клетки iPSK с эмбриональными стволовыми клетками, поскольку генетическая модификация и последующие повторные деления стволовых клеток могут привести к мутациям, последствия которых никто не может предугадать. Кроме того, последователи Яманаки использовали вирусы для передачи их генов в стволовые клетки. Никто не может гарантировать, что эти вирусы не сохраняются в клеточных линиях. Возможно, они могут вызывать рак, если их пересадить.
Тем временем при исследованиях стали использовать меньше химических вирусов (аденовирусов) для внедрения генов в клетку в дополнение к нанотехнологиям. Также были получены молекулы, которые повторно стимулируют эмбриональные гены (спящие) в клетках крови, и они таким образом перепрограммируются как бы изнутри. Сэр Гердон был прав: все, что нам требуется, чтобы вернуть молодость, находится в нашем генетическом материале, нужно всего лишь его реанимировать. Простая и привлекательная концепция.
В 2014 году другая японская группа во главе с Харуко Обоката опубликовала в престижном журнале
Становится ясно, почему некоторые опухоли могут быстро перейти в стадию рецидива: где-то остается одна устойчивая клетка, пережившая химиотерапию, которая вновь приводит к опухоли, а иногда и к летальному исходу.
Тем временем немногие оставшиеся сторонники эмбриональных стволовых клеток (при поддержке спонсоров, которые несколькими годами ранее вложили свои деньги в исследование эмбрионов) не сидели сложа руки. Они утверждали, что их клетки будут намного чище и, следовательно, безопаснее для трансплантации. В конце концов Яманака взял зрелые клетки крови или кожи, которые подверглись бесчисленным воздействиям окружающей среды и старения, и, применив весь свой опыт, омолодил их. В случае пересадки этот отпечаток из прошлого (их эпигенетическая память) останется с ними навечно.
В начале 2000-х годов исследователи также выразили серьезные сомнения в практической применимости отторжения. В идеале у каждого пациента должен быть свой набор клеток iPSC, чтобы во время пересадки не возникало проблем с отторжением. Но создание одной линии стволовых клеток iPSC занимает не менее шести месяцев и стоит миллион евро. В случае возникновения критической ситуации существует большой риск опоздать, к тому же позволить себе такую роскошь смогут только несколько счастливчиков. Даже сегодня исследователи продолжают искать решение этой проблемы. Манипуляции с иммунным статусом клеток и так называемыми супердонорами могут предотвратить отторжение. Создание банков стволовых клеток с несколькими сотнями (!) клеточных линий сможет обеспечить безопасные трансплантации для более чем 75 % населения. Но это уже история будущего.
Исследования кроветворных стволовых клеток и способов их роста и распространения также привели к целому ряду исследований раковых стволовых клеток. Таинственную клетку, которая лежит в основе каждого роста и порождает страдания людей, старались найти любой ценой.
Еще в XIX веке цирюльники вырезали опухоли у животных, изготавливали из них клеточные суспензии и вводили их другим животным, чтобы увидеть, что произошло. Они заметили, что требуется на удивление мало клеток для выращивания новой опухоли. Определение метастаза впервые появляется в 1880-х годах.
В 1937 году Джейкоб Фюрт и Мортон Кан взбудоражили публику и продемонстрировали на лабораторных животных, что одна клетка, а не какой-то инфекционный агент может передавать рак.
Начиная с 1960-х годов возникла идея, что у рака такая же иерархия, как и в костном мозге: верхние стволовые клетки приводят к разным гетерогенным субпопуляциям. Поэтому опухоли — не однородная система. Это объясняет, почему некоторые опухоли, например при лейкозе, могут довольно быстро перейти в так называемую ремиссию: например, заметные опухолевые клетки уже невозможно обнаружить, но где-то остается одна устойчивая клетка, которая пережила химиотерапию, что вновь приводит к опухоли, а иногда и к летальному исходу.
И сегодня народ масаи, чтобы набраться сил, пьет кровь своего скота, разбавленную молоком.
С 1990 года мы знаем, что раковые стволовые клетки, в отличие от их потомков, не делятся непрерывно, а это значит, что такая клетка не поддается классической химиотерапии. Терапия может навредить лишь ДНК делящейся или готовой к делению клетке. Это делает клетку уязвимой для химических агентов и радиации. Так называемые спящие раковые стволовые клетки (при раке крови соотношение 1 к 250 тысячам лейкозных клеток), таким образом, выживают при самых интенсивных методах лечения. Позже они вызывают рецидив и в конечном итоге могут привести к смерти пациента.
Кстати, этот принцип также применим к нормальным кроветворным стволовым клеткам, которые, по оценкам специалистов, делятся только раз в пять лет. Они впадают в спячку при химиотерапии и начинают производить новый костный мозг уже после того, как шторм утихнет.
Еще один интересный нюанс заключается в том, что такая кроветворная стволовая клетка имеет предел деления около 50 раз (предел Хейфлика), что ограничивает нашу максимальную теоретическую емкость костного мозга, скажем, до двухсот лет. Это, в свою очередь, связано с длиной теломер. Это маленькие концы наших хромосом, которые становятся немного короче с каждым делением клетки, пока после примерно 40 делений они не теряют способность работать в нашей ДНК-машине и размножать материал. Генетики любят сравнивать теломеры с пластиковыми концами шнурков, предназначенными для того, чтобы предотвратить изнашивание. Срежьте их, и завязывание шнурков станет со временем невозможно. У раковых стволовых клеток был свой подход. Им в процессе эволюции удалось сохранить теломеразу — фермент, который предотвращает укорочение хромосом. У них вечная жизнь, как и у (на другом конце спектра) эмбриональных стволовых клеток, которые продолжают размножаться, будучи замороженными в развитии (
Другой многообещающий путь в лечении рака — это, конечно, поиск химиотерапевтического средства, которое убивает исключительно раковые стволовые клетки, чтобы больше не приходилось решать проблему со зрелыми потомками раковых клеток. Они будут самопроизвольно стареть, умирать и перестанут заменяться новыми. Надо искоренить зло на корню…
Справедливости ради, я также должен упомянуть, что концепция раковых стволовых клеток была принята не всеми. Многие выступают сторонниками клональной теории эволюции. Это означает, что первая раковая стволовая клетка может подвергаться дополнительным мутациям, которые делают ее более или менее злокачественной и устойчивой к химиотерапии или лучевой терапии. Результат тот же, что и в теории стволовых клеток, а именно: гетерогенная опухоль, лечение которой становится все труднее. Еще одна важная деталь в том, что само лечение, особенно химиотерапия, может вызвать дополнительные мутации и собственное разрушение. Известно, что некоторые виды рака крови (включая рак лимфатических узлов) из-за лечения могут начать эволюционировать от низкокачественной до острой, агрессивной стадии. Возможно, истина заключается в сочетании этих двух принципов.
Одна из самых красивых глав в истории крови — это переливание. Многие из наших предков считали кровь источником жизни, полным таинственных качеств. По их словам, это красное золото несло в себе энергию, интерес к жизни и вечную молодость. Даже сегодня народ масаи пьет кровь своего скота, разбавленную небольшим количеством молока, чтобы набраться сил. А если им удается убить льва и выпить его кровь, они верят, что становятся почти непобедимыми. Наши современные мифы о потреблении мяса с кровью (саянт), кровяной колбасы или супа из крови создают веру в передачу энергии (железа!) и интереса к жизни. Это до сих пор популярно не только среди поклонников альтернативной медицины.
Уже в древние времена мы натыкаемся на эксперименты по переносу красного золота от одного существа к другому посредством примитивных или иных форм переливания. Обычно это связано с питьем крови. Например, зрители на римских аренах надеялись, что, испив кровь умирающих гладиаторов, они обретут их силу и мужество (точное описание Плиния Старшего, который погиб в результате землетрясения 79 года н. э. с последующим извержением вулкана вокруг города Помпеи). Когда эта практика начала распространяться, в 193 году император Септимий Север разрешил пить человеческую кровь только как средство от эпилепсии и бешенства (хотя, по мнению Цельса, помочь могла также кровь здоровой собаки или ласки).
Римляне были не единственными, кто искал исцеления в крови. Например, в Средние века различные племена викингов пили кровь тюленей и китов в качестве профилактики против эпилепсии и цинги, которых так боятся моряки. Майя приносили военнопленных в жертву на вершинах пирамид, а также часто пили кровь или ели сердца своих жертв. Они делали это не только для того, чтобы бог Солнца воскрес на следующее утро, но и чтобы забрать силу у принесенных в жертву.
Довольно часто мы находим упоминания о реальном переливании крови. Овидий (43 до н. э. — 18 н. э.) в своих «Метаморфозах» посвящает много глав чувственной Медее, жене аргонавта Ясона. Она рассказала, что выпустила старую кровь своего тестя Эсона, заменила ее мощным эликсиром и таким образом омолодила его. Позже кровожадная Медея убеждает дочерей ослабшего короля Пелиаса (соперника ее мужа) повторить эту процедуру. Но когда обескровленный король лежит в окружении своих дочерей, Медея исчезает вместе со своим волшебным эликсиром. Так она выигрывает битву.
Возможно, более реалистичной покажется древнееврейская история о сирийском короле Бен-Хададе, который страдал от проказы. Его врачи применили обильное кровопускание и заменили его кровь на чужую.
У некоторых египетских фараонов (восемнадцатой династии) есть эпитафии, в которых их призывают омывать свои кожные заболевания (возможно, при проказе и слоновости) кровью молодых (предпочтительно еврейских) мужчин. По всей видимости, молодая кровь имела больше целительной силы, чем старая…
Ранняя христианская традиция также почитала кровь: верующие должны были как бы образно омыться кровью Христа, пролитой для спасения человечества. Сегодня во время причастия по-прежнему присутствует (метафорически) питье крови Иисуса. В средневековых монастырях эта символика крови иногда приводила к фанатичным кровопролитиям и покаяниям.
Папа Иннокентий VIII печально известен тем, что вошел в историю как первый, кто перенес настоящее переливание крови. Согласно записям от 1492 года, его личный врач порекомендовал ему взять кровь юных мальчиков для лечения легкого паралича (возможно, вызванного тромбозом головного мозга), от которого он на тот момент страдал уже в течение нескольких недель. Неизвестно, действительно ли он пил, принимал ванну или вводил кровь в свое тело иным образом. Согласно достоверным источникам, это была кровь трех мальчиков-пастухов. Вскоре после этого он испустил дух точно так же, как три мальчика-пастуха. Последние позже, очевидно, к их огромному удовольствию, получили статус мучеников Святой Церкви…
Дени защищал теорию, согласно которой черты характера можно передавать через кровь от одного человека другому.
Настоящая история переливания крови берет свое начало в 1600-х годах, когда Везалий во Фландрии и Уильям Гарвей в Англии дали весьма точное описание кровообращения и его функции. Сразу после этого начинают проводить эксперименты, связанные с заменой крови другой жидкостью, в том числе примитивные эксперименты на лабораторных животных: собакам или свиньям через вены вводили пиво, вино или молоко. Успехом они не увенчались.
В 1650 году англичанин Ричард Лоуэр начал проводить новаторские эксперименты на собаках. В своей работе он опирался на труды соотечественника Кристофера Рена, который разработал способ доступа к кровообращению животных и людей с помощью полой ручки.
Сначала он обескровил одну собаку и спас ее с помощью крови другой собаки. Он определил, что переливание от донора к реципиенту проходит успешнее, если открыть артерию у донора и вену у реципиента. Таким образом, вы можете удобно использовать разницу давления между ними.
Другое важное имя в истории переливания крови — Жан-Батист Дени. Этот врач из Монпелье не смог довольствоваться скудными провинциальными знаниями в области медицины, доступными в его городке. Поэтому в 1660 году он отправляется к парижскому двору Людовика XIV. Там его ожидает весьма равнодушный прием от заносчивых коллег из Французской академии. Но это равнодушие уже очень скоро превратится в зависть.
Жан-Батист был убежден, что переливание крови может спасти гораздо больше жизней, чем кровопускание. Он также был ярым защитником теории, что черты характера можно передавать через кровь от одного человека другому, например от добродушного агрессивному или от жизнерадостного меланхоличному. Неизвестно, знал ли Дени об экспериментах Лоуэра, который тоже задавался вопросом, может ли собака, которой перелили кровь, унаследовать навыки собаки-донора. В отличие от Лоуэра, Дени использовал тонкие серебряные трубки для доступа к кровообращению. Его первые эксперименты, в которых он перекачивает кровь между двумя разными животными, чудесным образом заканчиваются хорошо. Убежденный в том, что кровь обладает универсальными чудесными целебными свойствами, Дени в 1667 году делает следующий шаг (к ужасу консервативного медицинского факультета в Париже): переливание от животного человеку.
К дискуссии присоединился Рене Декарт, который отметил, что переливание крови — механическая манипуляция, не способная передать характер или создать гибрид человека и животного.
Его первый подопытный — молодой человек, который несколько недель мучился от сильной лихорадки и агонии. Кровопускание не помогало. Дени решает перелить обескровленному мужчине кровь теленка. Невероятно, но пациент переживает эксперимент. Несмотря на обильное мочеиспускание (из-за несовместимости), температура полностью спадает.
Новости распространяются по Парижу как лесной пожар. Мясник, который продал Жану-Батисту телят для эксперимента, подумал, что он тоже мог бы использовать немного крови молодого теленка. Процедуру он переживает и угощает сторонников мясом несчастного теленка.
Затем появляется Антуан Моруа, деревенский идиот, известный тем, что неоднократно нападал на свою жену Перрин и жителей города, прогуливался голым по улицам Парижа и занимался поджогами. Согласно исследованиям Дени, ненормальному срочно требовалась кровь от послушного теленка. Антуану принудительно проводят небольшое кровопускание, после чего Дени вводит пол-литра крови теленка прямо в вену. Психоз стихает, и испытуемый начинает вести себя «более нормально», к большой радости Перрин, его жены, которая забирает его домой. И все же вскоре Антуан вновь принимается за старые дела. Избитая жена убеждает доктора Дени повторить процедуру. Ее муж становится спокойнее, но всплывают побочные эффекты: на месте инъекции остается воспаленный след, к тому же появляются почечные колики и кроваво-красная моча, которая позже и вовсе становится черной. Каким-то неведомым чудом Антуан пережил и эту процедуру.
К сожалению, две недели спустя ситуация повторяется. Избитая и отчаявшаяся Перрин теряет самообладание и требует, чтобы Дени снова перелил кровь теленка ее мужу. Жан-Батист боится повторения жестокой реакции и отказывается. Он не хочет ставить под угрозу недавно обретенную репутацию, даже если ему предлагают уже готового теленка в доме Моруа. На этот раз Антуан не выздоравливает от психоза, у него появляются судороги, и он умирает в тот же вечер. Перрин тут же обвиняет Жана-Батиста в убийстве мужа и идет в суд.
Несмотря на то что многие из его уважаемых коллег не сказали ни слова в его защиту (напротив, они не признавали теорию циркуляции Гарвея и даже подкупили Перрин, чтобы она подала жалобу), Жана-Батиста оправдывают. Суд получил доказательства того, что в доме Моруа было обнаружено большое количество мышьяка, который и сыграл решающую роль. А факт того, что Перрин попросила Жана-Батиста заплатить ей большую сумму в обмен на отказ от жалобы, сыграл не в ее пользу.
Сегодня мы можем объяснить те тяжелые побочные эффекты после второго переливания крови как реакцию организма Антуана на несовместимую кровь теленка. Его тело мобилизовало и выработало антитела против введенных эритроцитов, быстро уничтожило их в кровотоке, и они вышли через почки. Из-за окисления кровь стала черной. Антуан, возможно, некоторое время пребывал в шоке, что прекрасно объясняет исчезновение его агрессии и покорность.
Техника переливания крови доктора Дени была раскритикована из-за фиаско с Антуаном. После нескольких повторных экспериментов в Англии и Германии об этой технике стали потихоньку забывать. Существенную роль тут сыграла громкая ссора между Дени и английскими врачами (Лоуэром и другими). Сейчас о них можно говорить как о первых докторах, совершивших переливание крови. Холли Такер, профессор Университета Вандербильта в США, расскажет об этом позже в своей книге Blood Work: A Tale of Medicine and Murder in the Scientific Revolution[97] и назовет этот период первой холодной войной между Англией и Францией за научное господство в XVII веке. Позже к ней присоединятся и другие.
Тем временем в Париже завистливые академики не упускали шанса подпортить репутацию Дени. Они считали переливание крови чудовищным отклонением от нормы. К дискуссии присоединились такие философы, как Рене Декарт, подчеркнув, что переливание крови было лишь механической манипуляцией без передачи характера и создания гибридов человека и животного. Люди не начнут лаять и выть, а животные — разговаривать, не говоря уже о философствовании.
Противники стояли на своем. Что, если кровь все еще содержала душу человека? Это была авантюра, которую люди не могли себе позволить. Когда эта версия, а также слухи о том, что некоторые духовные лица в Ватикане (по-видимому, пожелавшие вернуть молодость и красоту) скончались от перелитой крови ягненка, дошли до английского двора, любое переливание было запрещено парламентом и самим папой. Переливание останется табу на протяжении более 150 лет, не говоря уже о попытках переливания молока от коров и коз людям.
В 1818 году лондонский гинеколог Джеймс Бланделл (1790–1878) решил, что больше не может видеть, как некоторые из его пациенток умирают от кровопотери во время родов. Его предшественники Дени и Лоуэр в основном использовали переливание крови, чтобы передать черты характера и молодость. Он стал первым, кто осознал, что постоянное и обильное кровотечение связано с сильным падением кровяного давления (в их тогдашнем представлении) и смертью от проблем с сердцем. Чтобы не допустить этого, можно было ввести необходимый дополнительный объем крови таким пациентам через переливание. Благодаря новым экспериментам на собаках Бланделл разработал несколько оригинальных устройств, которые позволили ему перекачивать кровь от донора к реципиенту под действием силы тяжести. Позже он назовет свое устройство «гравитатор».
Начинавшая сгущаться кровь вращалась и взбивалась венчиком для яиц, затем сгустки процеживались, и получившаяся жидкость вводилась пациенту.
Приспособление напоминало воронку, в которую поступала кровь донора, затем ее переливали в руку больного через механический насос в основном под действием силы тяжести. В инструкции по применению точно указано, как прикрепить устройство к креслу, чтобы обеспечить необходимую устойчивость…
В 1818 году Бланделл проверил свою технику на пациенте, который был неизлечимо болен раком. Он ввел небольшое количество крови, приблизительно 400–500 миллилитров (14 унций) от разных доноров. Пациент умер через 56 часов. Это не остановило Бланделла, и он попытался применить переливание крови к десяти недавно родившим женщинам с большой кровопотерей и умирающим пациентам. Скорее всего, это была кровь либо его помощника, либо супруга (если он присутствовал во время родов). Улучшения были отмечены только у четырех пациентов, остальные умерли, но это можно было считать подтверждением принципа. Бланделл использовал относительно небольшое количество крови (100–125 миллилитров) и постоянно подвергался критике за то, что этот метод не может быть эффективным, так как большинство женщин теряли куда больше крови.
Поскольку в то время никто не знал о существовании групп крови, иногда возникали негативные реакции на несовместимую кровь, что приводило к сильной лихорадке и ознобу, выделению черной мочи и болезненной блокаде почек. Добавьте к этому риск заражения инфекционными заболеваниями, так как аппарат переливания крови представлял собой открытую систему (попадал воздух), а также высокую скорость (антикоагулянты еще не были известны, поэтому практически сразу образовывались сгустки), так что это была трудная новаторская работа. Некоторые пациенты умирали от переливания, а не от вагинального кровотечения. Медицинское сообщество относилось к такому новаторству с недоверием.
Джеймс Бланделл оставил медицинскую практику в 1847 году в возрасте 57 лет. К тому времени он накопил целых 500 тысяч фунтов стерлингов. Весьма неплохо для гинеколога и трансфузиолога… Последние дни своей жизни он посвятил совершенствованию древнегреческого языка. А где-то другие умы взяли на себя роль первопроходцев в поиске устранения двух главных препятствий при переливании, а именно: свертывание крови и риск заражения.
Шарль Эдуар Броун-Секар (1817–1894) — французский врач, позже подаривший свое имя неврологическому синдрому, — пропагандировал использование дефибринации на дому, в саду и на кухне. Таким образом, кровь, которая начинала сгущаться, вращалась и взбивалась венчиком для яиц, затем сгустки процеживались, и оставшаяся жидкость вводилась пациенту. (Само название «дефибринация» появится после того, как станет известно, что фибрин — это белок крови и фибриновые нити действительно могут быть удалены подобным образом.) К сожалению, яичный миксер не показал эффективности: слишком много белка и клеток крови терялось в процессе. Более того, метод был трудоемким, и имелся высокий риск заражения.