— Отлично! Но у нашей машины есть специальный канал, по которому из внешнего мира поступают целые фразы — конгломераты слов. Назовем их табличками со словами. В этом канале таблички разбиваются на отдельные буквы. Получается котел, наполненный всеми буквами латинского алфавита. Из этих букв машина строит свои сто слов и тратит их на всевозможные "жизненные" нужды.
— А для чего такая сложность? — спросил тот же юноша. — Не проще ли машине заимствовать из внешнего мира готовые слова?
— Видите ли, — пояснил я, — во-первых, это была бы ненадежная система. Нужного слова можно долго не услышать. А во-вторых, в машину не должны проникать посторонние слова, не входящие в ее сотню. Это строжайшее правило. Посланное в качестве команды лишнее или неправильное слово машина в лучшем случае не воспримет. В худшем случае реакция будет неправильной. Стихи утратят смысл. Машина погибнет.
В процессе рассказа я старался все в большей мере говорить о нашей фантастической машине как о живом существе. В этом мне помог аспирант-бионик.
— Ну а если посторонние слова и фразы, или, как вы назвали, таблички, все-таки будут попадать в машину? — спросил он. Проникать, минуя "естественный" путь — канал, в котором эти таблички разбиваются на составляющие их кирпичики-буквы? Они могут попасть случайно, или мы можем индуцировать их извне. Так сказать, введем чужие слова во внутреннюю среду машины, минуя канал обработки.
— В машине предусмотрена такая возможность, — поспешил сказать я. — В каналах связи по всему телу машины расположены специальные устройства. Они распознают свое и чужое. Распознающий механизм абсолютно строг и не выключается никогда. Любая проплывающая табличка внутреннего или внешнего происхождения подвергается "цензуре". Таблички прочитываются. И если в них хоть одно слово чужое или в своем слове не та буква, дается команда и табличка выкидывается из машины. Это правило строжайше соблюдается, так как оно жизненно обусловлено. Чуждая информация может вывести из строя важную часть или всю машину.
— Следовательно, если мы искусственно введем в каналы связи машины табличку с любыми из ее ста слов, эту табличку "цензура" пропустит? — спросил кто-то из слушателей.
— Пропустит. Ведь чужой информации не проникает. Если на табличке ничего не будет написано, она тоже не будет выброшена. Она не представит опасности и может быть использована для собственных записей, — закончил я характеристику нашего кибернетического существа. Теперь осталось только вызвать активное обсуждение его "жизни".
— Ответьте мне на вопрос, — начал я развертывать боевые действия. — Допустим, мы ввели в нашу машину, минуя естественный путь, табличку, записи на которой сделаны не латинским шрифтом, а китайскими иероглифами. Пропустит ее "цензура" или отдаст команду и машина ее выбросит?
— Выбросит! Пропустит! Пропустит! Выбросит! — раздалось одновременно несколько мнений.
— Почему вы считаете, что выбросит? — спросил я кибернетика.
— Да потому, что там написаны незнакомые знаки.
— Но ведь, — вмешался бионик, — китайские иероглифы настолько отличны от латинского шрифта, что "цензура" ничего не увидит. Она примет эту табличку за пустую и пропустит в машину.
В спор включились другие. Начались непонятные для меня рассуждения о возможностях современных машин и способах считывания. К единому мнению не пришли. Одни утверждали, что табличка, заполненная коренным образом отличающимися письменами, будет расценена как пустая и пропущена в каналы связи машины. Другие настаивали на том, что эта табличка будет выброшена.
Клуб 'Под интегралом'
Я уселся в сторонке и молча слушал дискуссию. Наконец кто-то обратился ко мне:
— К чему мы, собственно, спорим? Ведь таких машин нет, и мы не собираемся их строить. Да и зачем вся эта фантазия?
Ошибаетесь. Их необыкновенно много. Эта машина не выдумка. Ее прототипы, если угодно, мы с вами. И все другие млекопитающие планеты Земля, и птицы, и земноводные, и рыбы. Наша машина — модель живого существа, обладающего иммунитетом. Слова — основной жизненный субстрат.
Для всего живого на Земле таким субстратом служат белки. Сто слов — это сто условных белков живого организма. Буквы, из которых складываются слова, — аминокислоты, из которых построены все белки. Самые разнообразные белки человеческого тела и тела кролика, кошки, лошади и лягушки, орла и окуня составлены из двадцати основных аминокислот — алфавита белковых слов. И как из малого количества букв алфавита складывается бесконечное число совершенно различных по смыслу слов и фраз, так из двадцати аминокислот получается бесконечное число разнообразных по форме и свойствам белковых молекул земных организмов.
Каждый организм воспроизводит свои "сто слов", типичные только для него белки. Белки он строит по матрицам-генам. Они находятся в ядрах клеток. Набор генов каждого организма — индивидуума уникален и неповторим. Как уникален и неповторим и "узор" белковых молекул каждого индивидуума. Он их расходует на осуществление своих жизненных функций, а поистратив, строит снова.
Канал, по которому в нашу машину поступают буквы из внешнего мира, — аналогия с пищеварительным каналом животных. В нем, как и в машине, приходящие извне с пищей чужеродные белки — слова, или, как мы их назвали, таблички, разбиваются на составляющие их буквы — аминокислоты. Это необходимо потому, что "узор" чужих белков иной. Они построены под влиянием чужеродной генетической информации, тоже уникальной, а следовательно, иной. По чужим чертежам, чужим матрицам. Белки пищи сначала необходимо разбить на составляющие буквы — аминокислоты, чтобы построить свои слова.
Если же ввести животному или человеку чужеродные белки — таблички, минуя пищеварительный канал, например, прямо в кровь, то вступит в действие страж внутреннего постоянства — иммунитет. Система цензуры в нашей машине — это иммунологическая система организма. Введем в кровь животному не белки, а их составные части — аминокислоты, то есть таблички, состоящие из букв. Иммунологическая система цензуры их пропустит: разрозненные буквы не несут признаков чужой информации. Если ввести табличку из белков, то цензура прежде всего прочтет эту табличку и сравнит все ее белки-слова со своей сотней слов, чтобы распознать свое от чужого. Теперь представим, что один белок является незнакомым словом, которое не могло быть написано под влиянием собственной генетической информации. Иммунологическая цензура в тот же миг отдаст приказ уничтожить и выкинуть табличку из организма. Начнется выработка антител, фагоцитирование и отторжение чужеродного пришельца. Будь то микроб, чужеродные клетки крови, чужеродные белки или пересаженные ткани и органы.
Итак, что же самое главное? То, что иммунитет — не только способ защиты от микробов. Иммунитет — это способ защиты внутреннего постоянства организма от живых тел и веществ, несущих признаки генетически чужеродной информации. А уж поскольку микроб тоже чужеродный биологический агент, действие иммунных механизмов распространяется и на него. Вот и все.
— А загадка с китайскими иероглифами? — спросил аспирант-бионик.
— Вот это как раз и есть одна из проблем космической иммунологии. Иммунитет как способ защиты от всего биологически чужеродного возник в результате развития жизни на Земле. Основа жизни на нашей планете — белки. Вспомним опять таблички машины, исписанные словами, состоящими из букв — аминокислот. Наша цензура знает лишь земной аминокислотный алфавит. И охрана порядка строится в соответствии со знакомыми явлениями.
Если жизнь на других планетах основана на других принципах, строит иной итог генетической информации — не аминокислоты и белки, а человек столкнется с мельчайшими, может быть, микроскопическими, наверняка непонятными обитателями такой планеты, то сможет ли иммунологическая "цензура", веками обученная лишь аминокислотному алфавиту, распознать чужаков? Это мы и должны выяснить. Она может пропустить их, приняв эти таблички с "китайскими иероглифами" за пустые. А тогда они размножатся в крови и тканях и могут погубить человека.
Помните, в "Войне миров" Герберта Уэллса пришельцы с Марса гибнут от невинных, неболезнетворных земных бактерий? Сейчас это уже не фантазия. Это существующая научная проблема.
Мы долго беседовали, обсуждая эту проблему космической биологии. Я рассказывал о достоверных фактах, свидетельствующих о реальности таких опасений. В дискуссию включились химики; их больше волновал вопрос: может ли жизнь быть построена на иных, чем на Земле, принципах? Потом говорили о путях изучения этой проблемы. Потом пили кофе и вино. Потом танцевали. Со стены смотрели две бронзовые маски: одна глубокомысленная, другая — смеющаяся.
Иммунология и космос
Конечно, говорить "иммунология и космос" не совсем верно. Иммунология вступает в связь не с самим космическим пространством, а с другой научной отраслью. Не будем придираться к словам. Понятно, что речь идет о космической медицине и биологии самых последних лет.
В наиболее краткой и приближенной форме задачи космической медицины: изучить влияние космического полета — невесомости, ускорения, космической радиации на человека; обеспечить нормальную жизнедеятельность организма в герметически замкнутом пространстве корабля, а в будущем и на других планетах и небесных телах.
Возникает масса биологических проблем. А перед иммунологией встает вопрос: как поведет себя в необычных условиях космического полета одна из важнейших систем человеческого организма — иммунологическая система защиты от микробов? Будет ли устойчивость организма к бактериям и вирусам столь же надежна, как в нормальных условиях жизни на Земле?
Вопрос может показаться излишним. Ведь и результаты известных всему миру космических полетов не дают оснований опасаться инфекционных осложнений. Космонавты отлично переносят все условия полета. Правда, продолжительность полетов измерялась пока лишь днями и месяцами.
Но нельзя забывать: мы живем в такое время, когда первый этап завоевания космоса, освоение и исследование околоземного космического пространства завершается. Следующий этап — освоение ближайших небесных тел, в частности, планет солнечной системы. А наименьшее из возможных расстояний от Земли до Марса — 78 миллионов километров.
С медико-биологической точки зрения главная особенность следующего этапа — длительность. Космическая медицина и биология наших дней должны изучить и обеспечить длительные космические полеты, продолжающиеся месяцы и годы. Пока главным образом изучали поведение организма при кратковременных перегрузках и невесомости, функциональные возможности и особенности сердечно-сосудистой, нервной и других систем в этих условиях, вопросы работоспособности, тренировки, психофизиологии. С наступлением эры длительных космических полетов возникают новые ведущие биологические проблемы. В частности, иммунологические: взаимодействие человеческого организма и микробов во внеземных условиях. Это уже целая отрасль науки — космическая иммунология.
По меньшей мере три предпосылки определяют возникновение этой отрасли.
Во-первых, люди путешествуют в космических кораблях и везут с собой обязательных бесплатных пассажиров- микробов — обитателей кишечника, кожи, рта... Кабина корабля — замкнутое пространство, своеобразная ампула, в которую помещены люди. Стерильность человека невозможна хотя бы потому, что ряд микробов выполняет жизненно важные для организма функции — ферментативные, витаминообразующие и прочие, и расстаться с ними нам будет не просто тяжело, сегодня это абсолютно невозможно. Вместе с тем многие представители нормального микробного населения нашего тела, безусловно, носители зла. Либо всегда, либо при определенных условиях. Например, стафилококки, стрептококки, кишечная палочка, возбудители газовой гангрены, вирусы.
В условиях закупоренной "ампулы" — кабины процессы циркуляции и удаления микробов будут иные, чем в обычных наземных условиях. Возникнут изменения в микробных ассоциациях воздуха, поверхностей кабины и в теле человека. Изменение привычных, индивидуальных для данного человека микробных сообществ может произойти также вследствие тесного контакта космонавтов в герметизированном пространстве. Встает ранее не существовавшая проблема заражения одного человека микробами, безвредными для другого. Но у первого они могут вызвать различные болезненные состояния.
Недавно были опубликованы данные советских исследователей об условиях длительного обитания людей в герметических пространствах, имитирующих условия полета. Выяснилось, что количество микробов, в том числе и болезнетворных, как в окружающей среде, так и на теле человека значительно возрастает.
Таким образом, в условиях длительных космических полетов реально возможны изменения нормального микробного населения тела космонавтов и окружающего их пространства. Ожидаются изменения обычных микробных ассоциаций и чрезмерное накопление отдельных форм бактерий. По-видимому, в результате, например, мутаций, возникающих под влиянием ионизирующих излучений, изменяются также и свойства микробов.
Иммунологию волнует, какие виды микроорганизмов займут главенствующее положение в этих новых ассоциациях, какие типы внутри этих видов. И кто может явиться наиболее вероятным и частым болезнетворным агентом? Эти вопросы ставятся не для удовлетворения научной любознательности. Решение их должно ответить: против каких возбудителей необходимо вакцинировать перед полетом?
Второе, что интересует космическую иммунологию: действие условий длительного полета на невосприимчивость к возбудителям инфекций, в том числе и к представителям обычной микрофлоры тела человека. Ведь в космических кораблях человек окажется под воздействием новых, длительно действующих факторов: невесомость или искусственная гравитация, специальная диета и искусственная атмосфера, вынужденное ограничение подвижности, влияние космической радиации и др. И как поведет себя иммунологическая защита при всех этих странностях, пока неизвестно.
Основной путь решения этих вопросов — моделирование необычных условий космического полета на Земле и изучение их воздействия на иммунитет. Надо выяснить, сколь эффективна будет вакцинация. Вскрыть механизм действия этих условий на основные иммунные процессы. Космическая иммунология должна не только решить эти задачи, но и найти пути предотвращения возможных осложнений.
Третья предпосылка — почти фантастика. Но она не менее важна, а со временем может стать ведущей проблемой космической иммунологии. Речь идет о возможном столкновений человека с внеземными формами жизни. Отправляясь в космос, мы отправляемся почти в неведомое. Кто знает, что будет при очередном полете и особенно при залете куда-нибудь?
Иммунологов прежде всего интересуют встречи с микробами, писателей — контакты с разумными существами. Но встречи с микробами могут оказаться более фееричны, необычны и фантастичны по своим результатам, что писатели еще пожалеют об упущенных возможностях. Неизвестные микробы могут помочь ликвидировать болезни, сделать человека светящимся в темноте. Это первое, что приходит в голову. А если поработать, то можно дойти до совершенно сногсшибательно заманчивых выдумок.
В конце концов микробы, наиболее вероятно, станут первыми встретившимися нам аборигенами. Рано или поздно такое столкновение произойдет. Проблемы, возникающие в связи с этим, имеют самое тесное отношение к экзобиологии — науке о жизни за пределами нашей планеты. Иммунологию прежде всего интересует, что произойдет, когда встретятся землянин и совсем-совсем чужой микроб. Окажется ли человеческий организм столь же невосприимчивым к чужим микробам, как и к своим, земным? Вот в чем вопрос.
Иммунитет как способ защиты организма возник вследствие эволюции жизни в конкретных земных условиях. Реакции иммунитета направлены на отторжение или нейтрализацию всего чужого, проникающего в организм: вирусов, бактерий, животных клеток, тканей, белков. Но чтобы включились реакции иммунитета, посторонние тела (живые или мертвые) должны быть распознаны и признаны чужеродными.
Первая задача защитных сил — сказать: "свой" или "чужой". Любые клетки или их продукты принимаются за чужое и включают реакции иммунитета, если несут генетически чужеродную информацию. Но для этого они должны быть построены из эволюционно знакомых для иммунных механизмов молекул и признаки чужеродности должны быть записаны земным "шрифтом".
Степень универсальности иммунитета неизвестна. Если внеземные микроорганизмы и продукты их жизнедеятельности не несут химических группировок, позволяющих нашим иммунным механизмам определить их как чужеродных, если они не будут распознаны и не включат защитные реакции, возможно безудержное размножение чужих микробов в крови и тканях человека. Что тогда?
Еще раз вспомним Герберта Уэллса. "Война миров". Пришельцы с Марса погибают от невинных земных бактерий. Сегодня уэллсовская фантазия превращается в реальную научную проблему. Иммунология уже сейчас имеет настораживающие в этом отношении факты. Как говорится, иммунология уже "получила сигнал".
Нам уже абсолютно ясно: иммунитет стимулируется чужеродными веществами — антигенами. Синтезированы очень большие молекулы полипептидов, состоящие из основных компонентов белка — аминокислот. При определенной величине молекул эти искусственные полипептиды становятся антигенами. Но при одном условии. Если они составлены из таких же в оптическом отношении аминокислот, из каких построено все живое на Земле. Из аминокислот, отклоняющих плоскость поляризованного света влево, из левовращающих изомеров.
Правовращающие соединения имеют абсолютно тоже химическое строение. Лишь одна группировка расположена под иным углом ко всей молекуле. И этого достаточно, чтобы сложное органическое вещество не воспринималось как чужое, не стимулировало иммунологических реакций! Земной организм, построенный на основе левовращающих соединений, не может распознать (или делает это несовершенно) чужеродное вещество, составленное из правовращающих аминокислот.
А что, если микроорганизмы других миров построены на основе правовращающих соединений и наш иммунитет окажется бессильным перед ними?
Задачи космической иммунологии в этой области чрезвычайно трудны и интересны: моделирование возможных реакций млекопитающих на различные природные и искусственные высокополимерные соединения. Ибо какова бы ни была форма внеземной жизни, она обязательно связана с высокополимерными соединениями. Изыскание путей стимуляции иммунитета по отношению к необычным полимерам, путей превращения неантигенных соединений в антигены и иммунологические исследования объектов из космоса — вот этапы космической иммунологии в этой области.
Отцы иммунологии
Эдвард Дженнер
Ученый чаще всего не знает, насколько правилен его замысел и подтвердится ли его идея. Тем не менее он работает, верит в замысел, верит в идею.
Уверенность рождает решимость. Но не только решимость к многолетним научным исканиям. Порой она концентрируется в одном кульминационном пункте.
Эдвард Дженнер родился более двухсот лет назад в Англии, в графстве Глесстершир, в местечке Беркли.
Дженнеру 21 год.
Молодой врач обратил внимание на существовавшее в народе поверье: человек, переболевший весьма безобидной коровьей оспой, никогда не заболевает натуральной, или, как ее называют, черной, оспой, от которой только в Лондоне умирало от одной до трех тысяч человек ежегодно.
Дженнер поверил в народную молву. 26 лет зрела эта вера. 26 лет он наблюдал и сопоставлял факты. Сомнений оставалось все меньше и меньше. Люди, чаще всего доярки, перенесшие коровью оспу, действительно не заболевали натуральной!
Дженнеру 47 лет.
Эдвард Дженнер
14 мая 1796 года врач и ученый Эдвард Дженнер решился на эксперимент, который избавил человечество от оспы, и стал прародителем новой науки — иммунологии. Уверенный в своей правоте, ученый ставит опыт на человеке.
Крестьянка Сарра Нелмс заразилась коровьей оспой, и у нее на руке появилось несколько типичных пузырьков. Содержимое одного из них будет привито Эдвардом Дженнером восьмилетнему мальчику Джеймсу Фиппсу. Но этого мало. Потом мальчика надо будет заразить настоящей черной оспой. Если он ошибется, мальчик умрет. После этого нельзя будет жить и Дженнеру...
Достаточно ли он уверен? Достаточно ли доказательств, подтверждающих идею? Как жаль, что опыт нельзя поставить на себе... Нужен человек, никогда раньше не контактировавший с больными оспой. Впрочем, это и опыт на себе. Если вспомнить, как боролись в той же Англии с противооспенной вакциной в последующие годы.
"Для того чтобы с большей точностью наблюдать за ходом заражения, — пишет Дженнер, — я выбрал здорового мальчика (Джеймса Фиппса) около восьми лет с целью привить ему коровью оспу. Я взял материю с пустулы на руке одной скотницы (Сарры Нелмс), которая заразилась коровьей оспой от коров своего хозяина. Эту материю я привил на руку мальчика 14 мая 1796 года посредством двух поверхностных надрезов, едва проникнувших через толщу кожи, длиной около полудюйма каждый. На седьмой день мальчик начал жаловаться на боль под мышкой, а на девятый его стало немного лихорадить, он потерял аппетит, и появилась легкая головная боль. На следующий день он был совершенно здоров... Все болезненные явления исчезли, оставив на месте прививки струпья и незначительные рубцы, но не причинив ни малейшего беспокойства ни мне, ни моему пациенту. Для того чтобы удостовериться в том, что мальчик, над которым я производил опыт, после этого легкого заболевания от прививки яда коровьей оспы был огражден от заражения настоящей оспой, я произвел ему 1 июля того же года инокуляцию человеческой оспы, взятой непосредственно с оспенной пустулы.
Несколько легких уколов и надрезов были сделаны на его обеих руках и материя тщательно втерта, но какого-либо заметного заболевания не последовало".
Решающий эксперимент — апофеоз идеи — прошел успешно. Маленький Фиппс приобрел в результате безопасной прививки невосприимчивость к одной из самых страшных болезней — черной оспе. Эта прививка была названа вакцинацией, от латинского слова "вакка", что значит "корова". Термин прижился, и всякая профилактическая прививка болезнетворного начала с тех пор и называется вакцинацией, хотя вакцина может быть приготовлена из мозга зараженного кролика, как в случае бешенства, или из легочной ткани мышей, как в случае сыпного тифа.
Уверенность ученого родила решимость. Решимость ученого привела к открытию. Нужно ли подчеркивать слово ученого? Да, нужно. Уверенность и решимость невежды может привести в лучшем случае к нелепости, в худшем — к трагедии. Уверенность ученого — это вера, основанная на длительных наблюдениях, сопоставлениях, точных знаниях. Вера ученого, основанная на строгих доводах разума, — великая созидающая сила.
Рассказывать ли о том, что значили для Дженнера эти дни и ночи наблюдения за мальчиком! Говорить ли о той радости, которая пришла в итоге!
Эдвард Дженнер полюбил мальчика как родного сына. Ведь в конце концов, если Дженнер активное начало в этом открытии, то мальчик тоже был соавтором. Хотя он даже не знал, чему он помог и чем рисковал.
Но активный родитель знал. И никогда не забывал. Он любил мальчика, любил соавтора. Любил свое детище, свою воплощенную идею.
Луи Пастер
И все-таки открытие Дженнера не родило новой науки. Это было гениальное наблюдение, опередившее время почти на 100 лет. Но оно дало человечеству лишь способ предупреждать оспу.
Нет слов, это очень большой подарок. И человечество благодарило великого англичанина еще при жизни. Его способ предупреждения оспы был признан и распространен во многих странах. Лондонское медицинское общество выбило в честь Дженнера Большую золотую медаль. Английский парламент вручил ему награду в 10 тысяч фунтов стерлингов, а потом вторично в 20 тысяч. Дженнер стал почетным гражданином Лондона. Русская императрица Елизавета — жена Александра I — послала Дженнеру в подарок перстень с крупным бриллиантом. Первого вакцинированного русского ребенка, Антона Петрова, нарекли Вакциновым и воспитывали за казенный счет. Во Франции Наполеон Бонапарт официально содействовал оспопрививанию и сделал его обязательным в армии. Рассказывают, что однажды Наполеона попросили об освобождении английского пленного. "Об этом просит Дженнер", — заметила Жозефина. "Ах, Дженнер! — воскликнул Наполеон. — Ну Дженнеру я ни в чем не могу отказать".
Итак, Дженнер научил человечество не бояться оспы. Но ни он, ни медицина того времени не создали всеобщего метода предупреждения заразных болезней. Не было учения, не было теории.
Наука должна была еще немножко подрасти. Человечество должно было еще кое-что познать. Наконец, должен был родиться Луи Пастер, чтобы через 85 лет после открытия Дженнера создать науку иммунологию и дать людям принципы изготовления вакцин против любой инфекции.
В Париже на одном из зданий висит мемориальная доска. На этой доске даты — вехи открытий Луи Пастера.
"Здесь — была лаборатория Пастера.
1857. Брожение.
1860. Самопроизвольное зарождение.
1865. Болезни вина и пива.
1868. Болезни шелковичных червей.
1881. Зараза и вакцина.
1885. Предохранение от бешенства."
1881 год — год рождения иммунологии. И опять все началось с того, что ученый должен был поверить мелькнувшей в результате исследования догадке, поверить себе.
Внешне открытие пришло случайно. Но нужно было обладать гениальным умом Пастера, чтобы сделать как будто бы "немного": заметить, проверить и глубоко уверовать во всеобщность принципа.
1880 год. Пастер изучает куриную холеру. У кур своя холера, безопасная для человека. Микроб, живущий в пробирках лаборатории, действовал безотказно, когда им заражали подопытных птиц. Смерть наступала через день-два. В каникулярный период работу временно прервали и пробирки оставили в термостате при свободном доступе воздуха. Когда через три недели микробами из этих пробирок заразили кур, они заболели... но не погибли. Неудачу решили исправить: через несколько дней птиц заразили свежими микробами.
Птицы даже не заболели!
На основании этого, казалось бы, неудачного эксперимента у Пастера возникла обобщающая идея. Он проверил то, что заметил, и глубоко уверовал во всеобщность принципа: если понизить ядовитость микробов, понизить их способность вызывать болезнь и смерть, они превращаются в препарат, защищающий от этой болезни. Ученый поверил, хотя и говорил в ответ на расспросы: "Я ничего не могу сказать, я не осмеливаюсь громко формулировать все то, на что я надеюсь". И это он говорил, создавая в соответствии со своей идеей новую вакцину. Уже не против куриной холеры, а против сибирской язвы, которая поражает и животных и людей. Он готовил ее, создавая "ужасные жизненные условия" сибироязвенным бациллам. Их длительно держали в подогретом состоянии.
Когда вакцина против сибирской язвы была готова, Луи Пастер, абсолютно уверенный в успехе, решился на публичный эксперимент.
Пастер был мастером публичных выступлений. Он умел вызывать слезы на глазах слушателей, он умел и любил запугать, а затем указать путь к спасению. Он устраивал научные вечера, приглашал на них Александра Дюма, Жорж Санд, высокопоставленных вельмож. Темноту зала пронзал лучом света и, указывая на пляшущие пылинки, говорил о мириадах микробов, несущих болезни и смерть. Он знал, как расшевелить журналистов, интеллигентов, снобов, буржуа, молодежь.
Ученых расшевелить сложнее. Особенно умудренных опытом членов Французской академии наук. Не всякий ученый, добившись успеха и усевшись в кресло академика, склонен воспринимать новое, особенно устрашающее новое. К тому же строгим, педантичным ученым нелегко воспринимать идеи, низвергаемые на них бурным, непостижимо уверенным Пастером. Но он был гениален. Он почти всегда был прав. Он увлекался, но никогда не придумывал.
Французская академия наук уже знала о создании сибиреязвенной вакцины. Сообщение о своем открытии Пастер сделал в академии 28 февраля 1881 года. Как всегда, новая идея многими была встречена весьма сдержанно. Но Пастер обещал публичный эксперимент. Было принято решение проверить его идеи, его работу, его вакцину на скотоводческой ферме в Пуильи-ле-Фор. Пастер вынес на суд ученых, и не только ученых, на суд толпы сановников, журналистов, обывателей свое открытие.