Электронные конфигурации атомов, термы и тонкая структура энергетических уровней
Атомные спин-орбитали, описывающие одноэлектронные состояния в атоме, приближенно (без учета спин-орбитального взаимодействия) можно представить в виде произведения бесспиновой одноэлектронной волновой функции, называемой орбиталью, на одноэлектронную спиновую функцию, которая является собственной функцией оператора проекции собственного момента импульса электрона
Собственные функции
Слэтеровский детерминант, составленный из N спин-орбиталей, является N-электронной функцией, удовлетворяющей принципу Паули и соответствующей определенным проекциям N-электронных орбитального и спинового моментов, определяемых квантовыми числами ML и MS. Однако однодетерминантная волновая функция не обязательно будет собственной для операторов квадрата полного орбитального и полного спинового моментов. Собственные функции этих операторов представляются линейными комбинациями детерминантов Слэтера, соответствующих одним и тем же значениям квантовых чисел
Под электронной конфигурацией атома понимается определенное распределение электронов по nl-оболочкам:
Каждая (nрlр)-оболочка представляет набор
Термом называется совокупность многоэлектронных функций определенной конфигурации, характеризующаяся общими для; всех функций терма значениями квантовых чисел полных орбитального и спинового моментов (L и S). Отдельные волновые функции терма различаются по квантовым числам проекций указанных моментов (ML и MS). Если не принимать во внимание взаимодействие орбитального и спинового моментов, то все волновые функции терма отвечают одному и тому же (2L + 1)(2S + 1) — кратно вырожденному энергетическому уровню атома. Спин-орбитальное взаимодействие приводит к расщеплению этого вырожденного уровня на уровни тонкой структуры, характеризуемые квантовым числом полного спин-орбитального момента J. Поправка на спин-орбитальное взаимодействие определяется приближенным выражением
из которого следует правило Ланде для константы спин-орбитального взаимодействия
Легко убедиться, что
т. е. энергия терма равна средневзвешенному значению энергетических уровней тонкой структуры:
Согласно правилам Хунда, энергия EKLS,J будет наименьшей, если: 1) квантовое число S максимально; 2) при равных S максимально квантовое число L; 3) при равных S и L квантовое число J максимально при AKLS<0 и минимально при AKLS> 0.
В качестве примера использования правил Хунда рассмотрим структуру энергетических уровней атома углерода для конфигурации ls22s22p2 (рис. 4). Из пятнадцати однодетерминантных шестиэлектронных функций этой конфигурации можно составить девять функций терма 3Р (L = 1 и S = 1), пять функций терма 1D (L = 2 и S = 0) и единственную функцию терма 1S (L = 0 и S = 0). Наименьшей энергии отвечает терм 3Р, обладающий максимальной мультиплетностью по спину. За ним следует терм 1D, поскольку он характеризуется большим значением квантового числа L, чем терм 1S, при равной спиновой мультиплетности.
Рис. 4. Структура энергетических уровней атома углерода
Спин-орбитальное взаимодействие приводит к расщеплению лишь терма 3Р, так как для остальных термов полный спиновый момент равен нулю (а мультиплетность — единице). Для терма 3Р константа А > 0 и, следовательно, уровни тонкой структуры этого терма возрастают в последовательности 3Р0, 3P1, 3Р2, где нижний индекс указывает значения квантового числа J.
Строго говоря, орбитальные энергии ε
Таким образом, расстояние между энергетическими уровнями 2s- и 2p-АО при переходе от терма 3Р к терму 1S увеличивается почти на 0,16 ат. ед., что соответствует 4,3 эВ или 98 ккал/моль.
В большей степени орбитальные энергии зависят от атомной конфигурации. Эту зависимость можно показать на примере рассмотренной выше 1s22s22p2-конфигурации и возбужденных 1s22s22p3- и 1s22р4-конфигураций атома углерода [70]. Из множества термов, соответствующих этим конфигурациям, выберем термы 3Р и 1D:
Под полной электронной энергией атомной конфигурации следует понимать средневзвешенное значение энергии ее термов:
Было бы ошибкой отождествлять энергию конфигурации с суммой орбитальных энергий
Эта величина, как и орбитальные энергии, определяется не только конфигурацией, но и термом атомного состояния. Кроме того, Eoрб составляет лишь часть, причем меньшую часть, полной электронной энергии термов.
По мере увеличения заряда атомного ядра погрешности, связанные с пренебрежением одноэлектронным спин-орбитальньм взаимодействием, увеличиваются, и приходится учитывать расщепление каждой (
При этом атомные спин-орбитали уже не могут быть представлены как произведение орбитали и спиновой функции (
Рис. 5. Структура энергетических уровней атома свинца
Многоэлектронные волновые функции, соответствующие уровням тонкой структуры, строятся в этом приближении, называемом приближением
Схему
Следует подчеркнуть, что выбор квантовых чисел, определяющих состояние атома, зависит от того, в каком приближении мы его рассматриваем. Так, без учета спин-орбитального взаимодействия состояние атома характеризуется квантовыми числами L и S. Однако при учете этого взаимодействия уже нельзя говорить о сохранении орбитального и спинового моментов по отдельности, и соответствующие им квантовые числа L и S не будут более "хорошими" квантовыми числами. Вместо них следует использовать квантовое число J, характеризующее полный спин-орбитальный момент импульса, который в этом приближении будет сохраняться. В то же время если спин-орбитальное расщепление энергетических уровней достаточно мало, можно установить соответствие между уровнями тонкой структуры и определяемыми в более грубом приближении энергетическими уровнями термов. Точно так же для тяжелых атомов квантовое число
Атомные орбитали и их графическое представление
Рассмотрим атом водорода — простейший из атомов, включающий лишь один электрон, который взаимодействует с ядром по закону Кулона. Задача определения электронных состояний атома водорода (квантовомеханическая проблема Кеплера) — одна из немногих задач квантовой механики, имеющих точное аналитическое решение. Такая возможность обусловлена тем, что в этом случае гамильтониан допускает разделение переменных в сферической системе координат (r, υ, φ), т. е. орбиталь ψ, описывающая движение электрона в поле ядра, может быть представлена в виде произведения трех функций и каждая из них зависит только от одной независимой переменной:
При этом орбиталь ψ
Таблица 1. Атомные орбитали атома водорода для n = 1, 2, 3
Квантовое число
Квантовое число
Главное квантовое число
Характерным для атома водорода является то, что энергия
Для многоэлектронных атомов проблема усложняется. Хотя одноэлектронное приближение и сферическая модель самосогласованного поля позволяют произвести разделение переменных r, υ, φ и в этом случае, точное аналитическое выражение для радиальных функций R(r), к сожалению, не получается. Они определяются в приближении самосогласованного поля решением уравнений Хартри-Фока (см. гл. 3). Соответствующие орбитальные энергии
Радиальная зависимость орбиталей в многоэлектронных атомах может быть довольно сложной, но их узловая структура подобна узловой структуре орбиталей атома водорода: радиальная функция
Графическое представление радиальных функций. Для графического представления радиальных функций используется либо график самой функции Rnl(r), либо график соответствующей ей плотности вероятности локализации электрона на расстоянии
причем функция ρnl(r) нормирована на единицу:
Следует отметить, что в соответствии с условием формировки сферических функций интегрирование по углам υ и φ не приводит к появлению множителя 4π, который иногда ошибочно включается в выражение для ρnl(r).
Примеры графического представления радиальных функций приведены на рис. 6.
Рис. 6. Графическое представление радиальных функций
Графическое представление угловой зависимости атомных орбиталей. Для графического представления сферических функций
используются полярные диаграммы, т. е. графики функций
в сферической системе координат.
Полярная диаграмма описывает распределение вероятности локализации электрона по направлениям, заданным углами υ и φ. Легко видеть, что полярные диаграммы аксиально симметричны, если атомные орбитали характеризуются определенными значениями квантового числа
и
На рис. 7 приведены сечения полярных диаграмм плоскостью
Рис. 7. Полярные диаграммы
Изовероятностные поверхности. Соответствующее атомным орбиталям распределение плотности вероятности локализации электрона в определенной точке трехмерного пространства может характеризоваться семейством изовероятностных поверхностей (или поверхностей равной вероятности), определяемых уравнением
где С — некоторая константа.
В частности, распределение электронной плотности, соответствующее
Рис. 8. К определению изовероятностных поверхностей для 2s-АО
В качестве других примеров на рис. 9 приведены изовероятностные поверхности для 1s-, 2s-, 2p-, 3s-, 3p- и Зd-орбиталей атома водорода.
Вещественные атомные орбитали. До сих пор мы рассматривали комплексные атомные орбитали, характеризующиеся определенными значениями проекции орбитального момента импульса. Однако в квантовой химии часто используют вещественные комбинации таких орбиталей, определяемые по формулам
Здесь индекс
Если выразить
Легко убедиться, что между комплексными и вещественными атомными орбиталями существует следующее соответствие:
Поверхности, представляющие вещественные
О порядке заполнение атомных орбиталей
Как правило, порядок заполнения электронных
Рис. 9. Изовероятностные поверхности для 1s, 2s, 2p, 3s, 3p и 3d-AO, характеризуемых определенными значениями проекции момента импульса m числа на рисунке)
Однако это объяснение нельзя признать удачным. Во-первых, разница в узловой структуре орбиталей одинаковой симметрии сама по себе еще не гарантирует определенное соотношение их энергий. Во-вторых (и это самое важное!), появление локальных максимумов, обусловленных ортогональностью 4s-АО к s-орбиталям остова, следует рассматривать скорее как проявление эффекта "выталкивания" этих орбиталей из остова. Не будь условий ортогональности, 4s-орбиталь "провалилась" бы в остов, превратившись в безузловую 1s-AO, имеющую только один большой максимум на ядре. Следует также заметить, что учет условий ортогональности возможен и при использовании безузловых 4s-орбиталей, но с соответствующей заменой потенциала эффективного поля, действующего на описываемые этой орбиталью электроны, псевдопотенциалом, который отличается от исходного некоторой положительной добавкой. Иными словами, условия ортогональности должны приводить к увеличению орбитальных энергий.