Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Юный техник, 2012 № 02 - Журнал «Юный техник» на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Конвертоплан-беспилотник

Конструкторы Казанского авиационного института и их коллеги из Казанского научно-исследовательского технического университета недавно успешно завершили испытания диковинного аппарата — беспилотника, взлетающего и садящегося по-вертолетному, а летящего по-самолетному.

Идея самолета-вертолета давно занимала авиаконструкторов. Но вот создать такой аппарат оказалось чрезвычайно сложно. На сегодня единственная схема, удовлетворяющая самолетно-вертолетным условиям, — конвертоплан.

«Гибридность» достигается изменением в полете положения гондол с турбовинтовыми двигателями — из вертикального в горизонтальное.

В мире есть экспериментальные конструкции, у которых поворачивается все крыло, а не только двигатели. Но пока известен лишь один серийный конвертоплан — американский транспортно-десантный V-22 Osprey. Авиастроительные фирмы Bell и Boeing-Vertol создавали его 30 лет, но до сих пор нельзя сказать, что все проблемы решены.

У разработавшей конвертоплан конструкторской группы уже есть опыт создания беспилотных летательных аппаратов (БПЛА) по заказу известной фирмы ООО «Ижмаш» — Беспилотные системы». Но в тех проектах специалисты занимались исключительно аэродинамикой, не затрагивая математического обеспечения.

А без сложного математического обеспечения полет конвертоплана невозможен — процесс перехода из горизонтального полета в вертикальный требует высокой автоматизации управления. Справиться с математикой нашим специалистам удалось, что и показали испытания аппарата.

Конвертоплану не нужны и громоздкие стартовые устройства, вроде катапульты — он взлетает и садится в любом месте. При этом в полете он тратит вчетверо меньше энергии, чем вертолет. Плюс летает гораздо быстрее вертолета — почти как самолет… Но в то же время способен и зависнуть в воздухе, чтобы произвести съемку или запустить ракету.

Сегодня казанскими специалистами запатентованы две конвертопланные схемы. На аппарате, построенном по одной из них, уже проведены первые полеты.


Казанский конвертоплан.


Американский транспортно-десантный конвертоплан V-22 Osprey.

ПО СЛЕДАМ СЕНСАЦИЙ

СУПЕР — суперлазер

Лазер невиданной на Земле мощности может быть построен к 2017 году в Великобритании. А пока ученые в Чехии, Венгрии и в Румынии создают прототипы этого устройства.

Вслед за Большим адронным коллайдером (БАК) исследователи хотят заполучить в свое распоряжение еще одну большую «игрушку» — супер лазер, названный ELI (Extreme Light Infrastructure Ultra-High Field Facility). БАК должен помочь понять ученым, как зародилась Вселенная, a ELI — из чего она построена.

По словам директора лазерного центра и научного руководителя проекта ELI, профессора Джона Колльера, мощность лазера составит 200 петаватт. Это в 100 000 раз больше, чем вырабатывается на всей Земле. Причем вся эта чудовищная сила будет сконцентрирована в невероятно коротком выстреле-импульсе. Его продолжительность меньше триллионной доли секунды (10-14 с) — за это время даже свет успевает пробежать лишь доли микрона.

«Самый мощный на Земле лазер позволит нам вторгнуться в совершенно неизведанную область физики, — говорит Колльер. — Речь идет о том, что выстрел будет столь мощным, что он сможет прожечь само пространство-время. То есть, по сути, сделать дырку в ткани мироздания, на месте которой образуется пустота — вакуум».

По одной из теорий, в этом вакууме — непредсказуемо, можно сказать, из ничего и ниоткуда — возникают неуловимые пока частицы. И там же — в вакууме — они и исчезают. Но благодаря ELI их, возможно, удастся увидеть и даже поймать. Ожидается, что импульс ELI еще и поделит материю на вещество и антивещество, откроет ходы в другие измерения, может быть, даже «засветит» темную материю и покажет, как все-таки устроены ее атомы.

От подобных перспектив захватывает дух. Они даже пугают; опыты на ELI выглядят еще более пугающе, чем на БАКе. На коллайдере уже поэкспериментировали. И вроде бы ничего особенного не произошло. По крайней мере, обещанной некоторыми паникерами черной дыры на месте Швейцарии не получилось. Хотя на полную мощность БАК еще так и не вышел.


Проект комплекса для размещения суперлазера ELI.

А чего можно ожидать от дырок в мироздании? Этого тоже пока никто толком не знает. Сами физики честно признаются, что не могут предсказать, какие результаты дадут предстоящие эксперименты.

Скептики вспоминают, что БАК, вопреки ожиданиям ученых, пока не привел к открытиям в физике. Не поймали даже легендарный бозон Хиггса — частицу, ради обнаружения которой, как уверяют многие академики, и были потрачены миллиарды долларов на строительство коллайдера.

Оправдает ли вложения суперлазер? Это опять-таки не известно. Но видимо, человечество время от времени должно браться за масштабные проекты. Впрочем, от ELI может быть и несомненная практическая польза. Он способен будет, например, уничтожить астероид, грозящий врезаться в нашу планету.

С. СЛАВИН

Кстати…

ДЫРА ВО ВСЕЛЕННОЙ

Наша галактика весьма неоднородна, и в ней часто возникают различного рода пустые пространства — этакие дыры в материи Вселенной. По мнению профессора Каролинского университета Лауры Мерсини, эти дыры не могли образоваться сами по себе.

Исследовательница считает, что космическая дыра определенно является следом воздействия из иной вселенной — мира, параллельного нашему.

Это заявление тут же вызвало бурю споров в научном мире; тем не менее, даже ярые скептики вынуждены были признать, что данная гипотеза не противоречит существующим законам физики.

Более того, если гипотеза подтвердится, то мы получим первое доказательство существования параллельных миров. А сама дыра является лишь входом в пространственный тоннель, выход из которого находится в другой вселенной.

Кстати, первым до такой возможности перехода в иной мир додумался еще в 1895 году писатель-фантаст Герберт Уэллс (рассказ «Дверь в стене»). А спустя 62 года такую возможность описал уже формулами выпускник Принстонского университета Хью Эверетт. В своей докторской диссертации он показал возможность расщепления миров. По его мнению, каждый миг вселенная делится на множество себе подобных, а уже в следующий миг каждая из этих новорожденных расщепляется точно таким же образом. И в этом огромном множестве есть множество миров, в которых каждый человек существует во множестве копий. В одном мире вы, читая эту статью, едете в метро, в другом — летите в самолете, в третьем — и знать не хотите о каких-то сумасбродных теориях. Причем в одном мире вы можете быть профессором, а в другом — неграмотным батраком…


«Толчком к размножению миров служат наши поступки, — объяснял Эверетт. — В каждый момент времени любой из миллиардов землян делает свой выбор. И в зависимости от его поступка ход последующих событий меняется. То же самое происходит в каждом из множества параллельных миров»…

Ныне эту концепцию поддерживает наш бывший соотечественник, сотрудник Физического института имени П.Н. Лебедева Академии наук, а ныне — профессор физики Стэнфордского университета Андрей Линде. Начиная с 80-х годов прошлого столетия, он развивает идею параллельных вселенных, полагая, что она может стать одним из краеугольных камней новой структуры мироздания.

Теоретик строит свои рассуждения на базе модели Большого взрыва, в результате которого возник молниеносно расширяющийся пузырек — зародыш нашей Вселенной. Но если какое-то космическое «яйцо» оказалось способным породить Вселенную, то почему нельзя предположить возможность существования других подобных «яиц»? Задавшись этим вопросом, Линде построил модель, в которой инфляционные (inflation — раздувание) вселенные возникают непрерывно, отпочковываясь от своих родительниц.

В пространстве они разнесены настолько далеко, что не чувствуют присутствия друг друга. Более того, они могут находиться даже в разных измерениях. Но, тем не менее, все это составляющие единого целого. И в строении этого странного мира нам еще разбираться и разбираться…

В. ВЛАДИМИРОВ

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Кремний — соперник графена

Сравнительно недавно наши бывшие соотечественники были удостоены Нобелевской премии за открытие графена — графитовых пленок с уникальными свойствами.

Как выяснилось, пленки толщиной всего лишь в один атом можно получать и из кремния. Что это сулит специалистам?

Вспомним для начала, что кремний в периодической таблице Менделеева стоит под углеродом, а значит, имеет много сходных свойств. Поэтому после того как в 2004 году Андрэ Гейм и Константин Новоселов впервые получили пленки графена, некоторые исследователи предположили, что похожие структуры можно получать и из кремния. И вот теперь материал, во многом похожий на графен, но только из кремния, создали японские исследователи. При этом атомы располагаются в решетке в виде шестиугольных сот, как и в графене. В естественных условиях никто такую сотовую конфигурацию атомов не наблюдал — кремний не формирует необходимые атомные связи. Однако теоретически такое вполне возможно. Поэтому название материалу, первое время существовавшему лишь на кончике пера, все же придумали. Его назвали силицен.

А в конце 2011 года Антуан Флёранс и его коллеги из Национального института науки и техники Японии (JAIST) на встрече Американского физического общества доложили, что им удалось вырастить пленки из атомов кремния на подложке из диборида циркония (керамический материал).

Рентгеновское исследование полученных структур показало, что атомы образуют такую же ячеистую структуру из шестиугольников, как и графен.

Графен имеет отличные свойства: электроны в нем обладают высокой подвижностью. Но современная электроника десятилетиями работала с кремнием, а потому исследователи видели прямой смысл поработать над созданием кремниевого аналога графена.

Попытка удалась. Причем еще раньше, чем в Японии, наноленты из атомов кремния получили физики университета Прованса (Франция). Но то были образования шириной 1,6 нанометра и длиной несколько сотен нанометров, и к тому же ученые вырастили их на подложке из серебра, то есть на проводящем материале, что затрудняло исследование электронных свойств силицена.

Теперь же изучать их будет проще. Правда, соревноваться силицену с графеном все равно пока трудно. Во-первых, получить пленки из углеродных атомов легче. Во-вторых, исследователи, которые работают с графеном, тоже не собираются почивать на лаврах. Так, недавно ученые из университета штата Иллинойс обнаружили, что транзисторы, в которых используется графен, обладают интересным свойством. В них проявляется термоэлектрический эффект, приводящий к понижению температуры прибора.


Ленты из атомов кремния (показаны белым цветом) на подложке из атомов серебра.

В настоящее время на пути микроминиатюризации кремниевых микросхем стоит фундаментальное препятствие — плотность размещения элементов приблизилась к температурному пределу, когда эффективный отвод тепла становится невозможен. Приходится использовать радиаторы, вентиляторы, водяные системы охлаждения — расходуя на их работу дополнительную энергию, увеличивая габариты электронных устройств.

А вот чипы из графена смогут работать без дополнительного охлаждения. Таким образом, привлекательность графена в качестве перспективного материала для микросхем будущего дополнительно возрастает.

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Стеклянная память будущего

Мы не раз говорили о проблемах, с которыми сталкиваются компьютерщики в поисках надежного способа хранения информации.

Ее объемы все нарастают, но никто толком не знает, сколь долго смогут хранить данные нынешние жесткие диски и флеш-накопители. Один из способов решения проблемы специалисты видят в создании оптических систем долговременной памяти.

За свою долгую историю человечество, кажется, перепробовало уже все. Люди писали на глиняных табличках, которые потом высушивали на солнце или даже обжигали в огне. Высекали скрижали на камне. Писали на бересте, папирусе, пергаменте, бумаге и специальном пластике. Записывали информацию на перфокартах, магнитных лентах, потом очередь дошла до компьютерных дисков.

Как показывает практика, сегодняшний жесткий диск может прослужить около двух десятков лет, причем он не терпит ударов высоких температур и влажности. Флеш-память устойчивее к физическому воздействию, однако срок ее жизни сокращается с каждым новым циклом перезаписи. То же самое можно сказать о CD- и DVD-дисках. Так что же делать?

Именно этот вопрос и задают себе сегодня специалисты по хранению информации — создатели новых систем памяти, пишет британская газета The Daily Mail. Ученым из центра оптоэлектроники Саутгемптонского университета (Великобритания) удалось изменить конфигурацию атомов в стеклянном кристалле, превратив его в цифровой накопитель,


Так выглядит стеклянный оптический диск.


Маритинас Бересна, руководитель проекта в Саутгемптонском университете.

«Кто бы мог подумать, что такой простой материал, как стекло, может служить в качестве накопителя, то есть постоянной компьютерной памяти! — удивляется корреспондент газеты. — Более того, стеклянный накопитель оказывается более стабильным и долговечным, чем современные средства хранения данных, например, винчестеры».

Маритинас Бересна, руководитель проекта в Саутгемптонском университете, рассказал на пресс-конференции, что его группе удалось сохранить около 50 гигабайт на стеклянном кристалле, сравнимом по габаритам с дисплеем мобильного телефона. Такой объем информации примерно равен емкости двухслойного диска Blu-ray.

В результате процесса записи стекло незначительно мутнеет, и проходящий через него луч поляризуется. Поляризацию впоследствии можно считать при помощи оптического детектора. Атомная структура определяет прохождение света через кристалл, изменяя ее, а лазер позволяет записывать, стирать и перезаписывать информацию.

Процесс оптической записи позволяет обеспечить очень высокую плотность записи при сохранении максимальной скорости доступа к данным. Это осуществляется фокусировкой лазерного луча и созданием ячеек в трехмерном пространстве чистого кварцевого стекла. Данные кодируются в один большой блок, который записывается всего за одно обращение. В процессе считывания этот блок целиком извлекают из памяти.

Кристаллы выдерживают нагревание до температуры почти 1000 градусов, им не страшна вода, а информация на них может храниться несколько тысяч лет, утверждает профессор Маритинас Бересна.

По словам ученого, новый тип портативных накопителей может оказаться полезным для библиотек, архивов, музеев, компаний, которые вынуждены создавать резервные копии своих архивов каждые пять-десять лет, потому что у винчестеров относительно короткий срок службы.

Подобные накопители, сообщает газета, очень напоминают «кристаллы памяти» из комиксов и фантастических фильмов.

Университет Саутгемптон уже договорился о сотрудничестве с литовской компанией Altechna, которая поможет наладить серийное производство «стеклянных» устройств памяти.

Кстати…

ПАМЯТЬ РСМ

Еще один вариант устройства компьютерной памяти, которое может прийти на смену флеш-памяти в 2015–2016 годах, основан на записи информации с изменением фазового состояния вещества, сообщает журнал Popular Mechanics.

PCM (Phase-change memory) использует превращение вещества из кристаллического в аморфное под воздействием тепла при протекании тока через ячейку. При этом изменяется и электрическое сопротивление каждой ячейки — от низкого до высокого.

Память на основе РСМ надежна, поскольку в устройстве нет движущихся частей, и способна хранить информацию даже при отключении электропитания. Но у нее имелся один существенный недостаток. В аморфной фазе постепенно увеличивалось, дрейфовало сопротивление и за счет этого возникали ошибки при считывании информации.

Сотрудникам Исследовательского центра компании IBM в Цюрихе удалось решить проблему, минимизировав дрейф. А кроме того, в IBM разработали способ записи нескольких бит информации в одну ячейку. В итоге скорость записи РСМ более чем в 100 раз превосходит показатели флеш-памяти типа NAND. Новое устройство рассчитано как минимум на 10 млн. циклов записи, тогда как ресурс флеш-памяти — от 3000 (потребительские устройства) до 30 000 (промышленные системы) циклов.



Поделиться книгой:

На главную
Назад