Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: 99 секретов науки - Наталья Петровна Сердцева на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Вода перестает быть дистиллированной, как только в нее попадают любые примеси. Они и несут в себе отрицательные или положительные заряды, делающие их прекрасными проводниками электрического тока. В природе дистиллированной воды не бывает, в наших кранах, так же как в реках, озерах и ручьях, течет вода с различными примесями. Обычно это кальций, натрий, магний, железо, хлор, сульфат, карбонат. Каждый из этих элементов хорошо проводит электрический ток и передает это качество воде, в которую попадает. Поэтому нужно всегда помнить о правилах безопасности и не допускать контакта электричества с водой.

№ 77. Волны, но не морские. Электромагнитные взаимодействия

Мы постоянно плаваем в океане электромагнитных волн, хотя не ощущаем и не видим этого. Ими пронизано все пространство и на Земле, и в космосе. Один из видов электромагнитного излучения мы все же можем наблюдать невооруженным глазом: самый обычный свет по своей физической природе – тоже волна. Среди других видов волн такие знакомые явления, как радиоволны, инфракрасное излучение, ультрафиолет, рентген, гамма-лучи и терагерцевое излучение.

За последнюю сотню лет человек научился укрощать разные виды электромагнитных волн, благодаря этому у нас появились такие удобные вещи, как сотовая связь, микроволновые печи, рентгеновские аппараты, радио, телевидение, мощные телескопы и микроскопы.

Итак, как образуются электромагнитные волны? Чтобы понять это, переместимся с нашего привычного уровня на микроуровень, составные части которого можно рассмотреть только в микроскоп. На этом уровне все – и мы с вами, и Вселенная – состоит из элементарных частиц: электронов, протонов, нейтронов и т. п.

Нас на данный момент интересует электрон – отрицательно заряженная частица. Каждый электрон создает вокруг себя поле, влияющее на другие частицы. Представим, что электрон, мирно покоящийся на одном месте, вдруг перенесся на какое-то расстояние. Он может перенестись мгновенно, но его поле этого сделать не способно. Некоторое время оно будет оставаться там, где был электрон. Но постепенно, волной, оно перейдет в новое местонахождение электрона. Этот волновой переход и есть электромагнитная волна, или электромагнитное излучение. Так как электроны все время находятся в движении, то и волны не прекращаются никогда.

С электроном все понятно, но где тут магнит и почему излучение называется электромагнитным? Дело в том, что любое колебание в электрическом поле автоматически вызывает ответную реакцию в поле магнитном, которое так же пронизывает все пространство.

№ 78. Ниоткуда не появляется и никуда не исчезает. Энергия

Энергия есть везде – в людях, механизмах, растениях, животных, атмосферных явлениях и т. д. Что же она собой представляет? С точки зрения физики это способность производить работу, движение и взаимодействие. Видов энергии множество: при движении объектов появляется кинетическая энергия, при смешивании разных веществ – химическая, ядерная энергия порождается распадом атомов, а тепловая возникает во время нагревания.


Энергия обладает уникальным свойством переходить из одного вида в другой, она ниоткуда не появляется и никуда не исчезает, просто трансформируется. Например, вы видите на земле мяч, пинаете его, придав ему кинетическую энергию. Во время удара мяча о штангу ворот возникнет тепловая энергия. Чем сильнее был удар, тем больше нагреется место, где мяч соприкоснулся со штангой.

№ 79. Как стать невидимым? Плащ-невидимка из метаматерии

В русских народных сказках фигурирует шапка-невидимка, в современных фантастических историях – плащ или мантия. Эти волшебные предметы позволяют их счастливым обладателям стать невидимыми для окружающих и делать то, на что они бы не решились, если бы были у всех на виду. Ученые давно грезят о материале, который мог бы скрывать предметы от человеческого глаза и приборов, и в этой области есть определенные успехи.

Один из способов стать невидимым для зрителей был разработан физиками-энтузиастами. Они сконструировали плащ, в который спереди вмонтированы сотни маленьких экранов, а сзади – видеокамеры. Камеры передают изображение того, что находится за спиной человека, одетого в плащ, и его самого не видно. Правда, невидимость сохраняется, только если смотреть с определенного ракурса. Стоит «невидимке» повернуться, как он будет замечен.

Более перспективные разработки связаны с метаматериалом, который не отражает видимый свет, а уводит его в сторону. Как мы видим предметы? Наш глаз воспринимает отраженный от них свет, являющийся электромагнитной волной.

Процессом отражения можно управлять, создав материал с отрицательным коэффициентом преломления. Свет не будет от него отражаться, предмет, накрытый этим материалом, станет невидимым.

Теоретически создание метаматериала возможно, но на практике ученых подстерегает множество трудностей, над которыми еще работать и работать. Одна из проблем заключается в том, что для каждого спектра цвета (красного, зеленого, синего) нужно создавать особые настройки метаматериала. Совместить множество настроек в одной ткани возможно, если уменьшить составляющие ее частицы до нескольких микрон.

Именно этим и заняты физики, занимающиеся данным направлением. Так что вполне возможно, что в ближайшие годы появится плащ, которому позавидует сам Гарри Поттер.

№ 80. Шаг назад, два шага вперед. Сила трения покоя на примере поезда

Что мешает нам сдвинуть с места предмет? Сила трения покоя. Именно она давит на наш палец, если мы толкаем им книгу, лежащую на столе. На гладком столе сдвинуть книгу пальцем легче, чем на шершавом, – сила трения покоя зависит в том числе и от соприкасающихся материалов.


Первые изобретатели железной дороги очень беспокоились, что колеса будут проскальзывать по гладким рельсам и паровоз начнет буксовать. Один инженер даже создал зубчатые колеса, двигающиеся по зубчатым рельсам. Но они не понадобились. Скольжению колес поезда по рельсам препятствует сила трения покоя, направленная в сторону, противоположную возможному скольжению. Эта же сила мешает паровозу тронуться, поэтому перед началом движения он сдает назад, меняя направление движения и ослабляя действие силы трения покоя.

№ 81. При сверхнизких температурах. Третий закон термодинамики

Энергия так же переходит из одного состояния в другое, как вода: если ее нагреть, она превратится в пар, если заморозить, она станет твердой и не сможет течь. С водой все довольно просто, с энергией – гораздо сложнее. Существуют три закона термодинамики, описывающие основные свойства энергии.

Первый закон сообщает нам, что энергия постоянно переходит из одного состояния в другое. Второй доказывает, что любая система, оставленная в покое, придет в хаос. Третий имеет дело с такой величиной, как абсолютный нуль температур. Так называют самую низкую температуру, которая возможна в нашей Вселенной. Ученые ее вычислили, она равна –273,15 °C. Они же установили, что чем ниже температура, тем медленнее движение молекул. А при абсолютном нуле движение прекращается вовсе, и энтропия вместе с ним.

№ 82. Снежинки-близнецы: миф или реальность? Ажурные кристаллы льда

Иногда ученые занимаются полезными для человечества проблемами, а иногда просто развлекаются. Например, изучают форму снежинок, сравнивают и гадают: возможно ли в природе существование двух одинаковых ажурных кристаллов льда? На самом деле такое времяпровождение только кажется праздным: чем больше известно о природе снега и о кристаллических структурах, тем лучше для науки.

Снежинки прекрасны и удивительны. Они на 95 % состоят из воздуха, в них совсем немного твердого льда, и поэтому они такие легкие и пушистые. Снежинки падают гораздо медленнее дождевых капель, их скорость просто черепашья – меньше одного километра в час! Размер обычной снежинки невелик, около половины сантиметра. Чем крупнее снежинка, тем медленнее она опускается на землю и тем фантастичнее выглядит снегопад. Самые крупные снежинки, зафиксированные метеорологами, были размером с тарелку, их диаметр составлял больше 30 см! Вероятно, это было потрясающее зрелище.

Вернемся к вопросу об одинаковости снежинок. Сто лет назад считалось, что одинаковых снежинок не бывает. Любители охотились за их разными формами, фотографировали, зарисовывали, изучали и были уверены, что каждый снежный кристалл уникален. В конце ХХ века мнение изменилось: ученым удалось в лабораторных условиях создать одинаковые снежинки. А раз это получилось в лаборатории, значит, возможно и в природе. Вероятность того, что кристалл льда, на который влияет множество разных факторов, два раза сформируется абсолютно одинаковым, очень мала, но она существует.


Но совсем недавно и эта теория была опровергнута. Оказывается, даже если снежинки одинаковы внешне, они имеют разную внутреннюю кристаллическую структуру. Так что одинаковых снежинок все-таки не бывает. Во всяком случае, так считается на сегодняшний день.

№ 83. Звук превращается… в свет! Сонолюминесценция

Изучая свойства ультразвука, физики экспериментировали с разными средами. Создавая мощную ультразвуковую волну в емкости с водой, они наблюдали странное явление: в центре водяного резервуара появлялось голубое свечение. Много лет никто не мог понять, что это такое, ведь не может же звуковая волна создавать свет. Оказывается, может!

Звуковая волна – это чередование двух видов давления, высокого и низкого. Когда давление максимально понижается, оно может стать отрицательным, «разорвать» воду и создать пузырек газа. При повышении давления этот пузырек мгновенно схлопывается, из-за этого происходит резкое нагревание до очень высоких температур, что вызывает короткую вспышку света. В определенных условиях пузырек воздуха остается на месте, сжимается-расширяется, и свечение кажется стабильным.

№ 84. Ходить по воде? Легко. Неньютоновская жидкость

Вы когда-нибудь катались в лодке по озеру? Если катались, то, возможно, заметили, что грести веслами труднее, если делать это быстро. Заметил это и Исаак Ньютон еще в конце XVII века. Дотошный ученый не мог пройти мимо данного примечательного факта, он занялся исследованием свойств воды и других жидких субстанций и вывел закон: вязкость жидкости возрастает пропорционально силе воздействия на нее. Этот закон относится к обычным жидкостям, с которыми мы постоянно сталкиваемся в быту. Такие жидкости назвали ньютоновскими.

Но в природе существуют и неньютоновские жидкости, обладающие совершенно поразительными свойствами: их вязкость и плотность становятся больше, если воздействовать на них быстро и с определенной силой. Такая жидкость при достаточно сильном воздействии может даже затвердеть!


Самый простой пример неньютоновской жидкости – вода с крахмалом. Если смешать две эти субстанции, получится нечто похожее на сметану. Мы можем налить эту «сметану» в миску и медленно перелить ее в другой сосуд. Она оправдает наши ожидания и спокойно перельется. Но если мы начнем с силой сжимать ее в руке, то в нашей ладони окажется твердый комок. Как только мы прекратим сжатие, он медленно растает. Если наполнить крахмальной «сметаной» бассейн, то по ней можно даже бегать – но только быстро, при медленном перемещении она будет вести себя как жидкость.


Загадка нетипичного поведения неньютоновских жидкостей кроется в их структуре – она неоднородна и состоит из крупных молекул, соединенных хаотичными связями, которые можно представить в виде пружинок. Если воздействовать на субстанцию быстро, пружины сжимаются, вещество становится твердым. При медленном плавном воздействии пружинки растягиваются, ослабевают, вещество реагирует как жидкость.

№ 85. Вода в воде не тонет. Плотность льда

Некоторые вещества могут быть то твердыми, то жидкими, в зависимости от обстоятельств, в первую очередь от температуры. Прежде всего, на ум приходит вода – в мороз она превращается в лед. Парафин или воск плавятся, если становится достаточно жарко. Для того чтобы расплавились свинец или олово, понадобится довольно высокая температура, но это вполне возможно.

Вода отличается от других подобных веществ. Если в чашку с расплавленным парафином бросить кусочек твердого парафина, он утонет. То же самое произойдет с воском, свинцом и другими веществами. Но только не с водой. Все мы видели, как льдинки плавают по поверхности лужи, а огромные глыбы льда перемещаются по северным морям.

В чем же секрет самой распространенной на планете жидкости? Почему твердая вода не тонет в жидкой, как это происходит в других случаях? Все дело в том, что при замерзании объем воды увеличивается и, соответственно, уменьшается плотность. Менее плотные субстанции не тонут в более плотных. Например, пенопласт не тонет в воде, пробка – в масле, а железная гайка – в ртути.

То, что объем воды увеличивается, когда она становится льдом, легко заметить. Если заморозить воду в бутылке, бутылка лопнет. Это свойство воды нужно учитывать в бытовых ситуациях: нельзя зимой оставлять воду в радиаторе автомобиля и прекращать подачу теплой воды в трубах отопления. Если вода замерзнет, их просто разорвет.

Есть у воды еще одно интересное свойство: при увеличении давления температура замерзания понижается. Вода на дне океанов может быть ниже нуля градусов, но она не замерзает, потому что на нее давят миллионы тонн жидкости. Это же свойство воды мы используем во время катания на коньках: лезвия давят на лед, он подтаивает, получается плавное скольжение, которого очень трудно достичь на гладких искусственных покрытиях.

№ 86. Эйфелева башня растет летом. Тепловое расширение

Измерив Эйфелеву башню два раза в год, холодной зимой и жарким летом, можно обнаружить, что во втором случае она выросла на несколько десятков сантиметров. В чем тут дело? Неужели сооружение из стали ведет себя подобно зеленому растению и тянется вверх, к солнцу, в теплое время года? Конечно, нет. Секрет этого явления кроется в тепловом расширении.

Очень многие вещества при нагревании расширяются, так как при повышении температуры молекулы начинают двигаться быстрее, атомы колеблются на своих орбитах и занимают больше места. Физики даже вывели формулу, по которой, зная размеры тела и температуру окружающей среды, можно рассчитать величину расширения.

Эта формула очень помогает инженерам при проектировании архитектурных сооружений. Например, если построить стальной мост через реку в месте, где бывают перепады температуры от +40 до –40 °C, без учета эффекта теплового расширения, это может привести к очень неприятным последствиям. Летом мост будет вздыбливаться, как спина разъяренной кошки, а зимой, пережив летнее растяжение, может просто разрушиться. То же относится к знаменитой достопримечательности Парижа – Эйфелевой башне. Металлическая конструкция не выдержала бы перепадов температур, если бы при ее постройке не учитывался эффект теплового расширения.

Подобные сооружения строятся с использованием температурных компенсаторов, которые представляют собой конструкцию с рядами зубьев. Зубья соединены не жестко, они находятся в зацеплении, которое может либо растягиваться, либо сжиматься, в зависимости от температуры. Поэтому Эйфелева башня, так же как и другие постройки из материалов, подверженных тепловому расширению, остается устойчивой и может простоять еще века. Так что у тех, кто еще не видел Париж с немного большей высоты, по-прежнему есть все шансы.

№ 87. Мир под микроскопом. Атом

Вся материя нашего мира состоит из очень маленьких частиц. Раньше считалось, что мельчайший компонент материи – атом, но уже в начале ХХ века стало понятно, что это не предел. Каждый атом содержит в себе нейтроны, протоны и электроны. Протоны и электроны обладают электрическим зарядом, первые – положительным, вторые – отрицательным. У нейтрона заряда нет.

У атома есть ядро, в нем собираются нейтроны и протоны, то есть оно заряжено положительно. Вокруг ядра движутся электроны, создавая оболочку, орбиты их движения хаотичны и непредсказуемы.


Чем же отличаются атомы одного вещества от атомов другого? Прежде всего, количеством протонов. Именно это число указано в таблице Менделеева, классифицирующей все вещества. С квантовой точки зрения атомы веществ различаются строением электронной оболочки.

№ 88. Полторы средних лошади. Лошадиная сила

Изобретатель Джеймс Ватт, в честь которого назвали единицу мощности, был увлечен паровыми механизмами. Одну из первых машин он сконструировал для знакомого пивовара. Договоренность была такая: машина должна заменить лошадь, которая ходила по кругу и тянула ремень, тем самым приводя в действие водяной насос. Пивовар, чтобы получить более продуктивный механизм, сжульничал: демонстрируя работу насоса, он взял самую сильную лошадь и нещадно ее загнал.

Ватт сделал машину с такой мощностью, какую показала лошадь, и эта цифра стала называться лошадиной силой. Она равна 735,5 ватта, или 75 кгс·м/с, что означает мощность, достаточную для поднятия на высоту одного метра 75 килограммов. Если взять обычную лошадь, то она не дотянет до этого уровня, лошадиная сила включает в себя приблизительно полторы средних лошади.

№ 89. Если звук приближается, он становится выше. Эффект Доплера

Всем нам попадались на пути машины пожарных, скорые и другой транспорт с сиренами и мигалками. Если мы стоим на месте, а они проезжают мимо, то можно заметить, как меняется звук спецсигнала. Тон приближающейся сирены высокий; когда она оказывается прямо напротив нас, тон понижается, а когда машина вместе с сиреной уносится вдаль, тон становится еще ниже. Так, стоя на обочине, сами того не желая, мы наблюдаем важнейшее свойство всех волн, которое описал австрийский физик Кристиан Доплер.

Для описания волн используют две основные характеристики: частоту – число пиков волн в секунду и длину – расстояние между верхними точками волн. В формуле они связаны через скорость: если мы знаем две из этих трех величин, то можем вычислить оставшуюся.

Вернемся к эффекту Доплера. Предположим, машина с сиреной не едет, а стоит в паре сотен метров от нас. В этом случае мы слышим звук сирены на одной частоте, он не меняется. Пики звуковых волн достигают наших ушей через равные промежутки времени. Если же эта машина тронется в нашу сторону, то к движению звуковых волн добавится движение машины. Источник волн теперь не неподвижен, он приближается к нам. Поэтому пики волн будут достигать наших ушей чаще: скорость движения волн сложится со скоростью движения машины. Звук станет выше – высота звука зависит от частоты звуковых колебаний. Когда машина будет удаляться, наступит обратный эффект – пики волн будут достигать наших ушей реже, звук станет низким.

Эффект Доплера распространяется на все виды волн, в том числе и световые. Именно он помог понять, что наша Вселенная расширяется: потому что свет от галактик доходит до нас с низкой частотой, то есть находится в красной части спектра. Когда источник света приближается, волны укорачиваются, спектр смещается в фиолетовую сторону.

№ 90. Какого цвета этот шум? Спектр шумовых сигналов

Все, что мы слышим, является звуковыми волнами. Свет – это тоже волна, которая может распадаться на разные цвета спектра. Звук на цвета не распадается, цветные названия для шумов придумали исследователи, имеющие дело со звуками, для своего удобства. Например, белым шумом физики называют равномерный, ровный гул.


Какие еще бывают шумы? Розовый – его еще называют мерцательным, потому что он равномерно убывает. Обнаружить розовый шум можно в звуке сердечного ритма, в излучении космических тел и в работе самых разных устройств. Красный шум более энергичен на низких частотах, чем на высоких. Он кажется приглушенным и хаотичным, за это его называют «шумом пьяной ходьбы». Синий шум более резкий, чем белый, зеленым называют шум природы, черный шум воспринимается человеческим ухом как тишина.

№ 91. Шаг вправо, шаг влево… ничего не меняют. Безразличное равновесие

Канатоходец может стоять на натянутом над пропастью канате и, несмотря на всю опасность своего положения, находиться в равновесии. Сидя на стуле, мы тоже вполне уравновешены. Равновесие или его отсутствие можно наблюдать в самых разных областях жизни и сферах науки, это универсальное понятие, применимое к различным системам.

Равновесие бывает трех видов: устойчивое, неустойчивое и безразличное. В случае устойчивого равновесия ничто не может вывести объект из этого состояния. (Или это можно сделать, но нужно приложить серьезные усилия.) Яркий пример такого равновесия – шар на дне воронки. Он будет там покоиться вечно, если его никто не вытащит. Если же сместить его немного в сторону, он снова вернется туда, где был, – стенки воронки вынудят его это сделать.

Можно привести примеры устойчивого равновесия не из физики, а из совершенно других областей – оно бывает и в природе, в экономике, в обществе. В природе в устойчивом равновесии находится система «хищник – жертва». Численность тех и других уравновешена. Если вдруг поголовье зайцев резко увеличится, то и волков станет больше – еды хватит на всех. Когда большая часть зайцев будет съедена, постепенно начнут вымирать и волки.

Неустойчивое равновесие – это то, что можно увидеть в цирке, в номерах эквилибристов. Они могут поставить на шар доску, на доску цилиндр, на цилиндр мяч, а сверху встать сами. И какое-то время продержаться, пока неустойчивое равновесие не нарушится.

Нечто среднее между устойчивым и неустойчивым равновесием – равновесие безразличное. Пример – шар, который лежит на абсолютно гладкой и ровной поверхности. Если сместить его вправо, влево или в любую другую сторону – ничего не изменится. Любая точка данной системы является точкой равновесия.

№ 92. Порядок проигрывает, беспорядок побеждает. Второй закон термодинамики

Второй закон термодинамики описывает необратимость жизненных процессов. Он звучит так: энтропия изолированной системы неминуемо возрастает. Для неспециалиста эта фраза звучит непонятно, но на самом деле все мы сталкиваемся с необратимостью каждый день. Если вы разобьете яйца и приготовите из них яичницу, вы никогда не сможете возвратить яйца в первоначальное состояние. Зубная паста, выдавленная из тюбика, обратно не вернется. Подобных примеров можно найти тысячи.

Невозможна такая ситуация, при которой кубик льда при комнатной температуре будет становиться все холоднее, забирая холод из воздуха и нагревая его. Второй закон термодинамики как раз говорит о направленности физических процессов. Тепло направляется в более холодные области, энтропия (или хаос) в замкнутых системах нарастает.

№ 93. Либо движется, либо нет. Первый закон Ньютона

Исаак Ньютон прославился не только тем, что на его голову упало яблоко и в результате озарения он открыл закон всемирного тяготения. Ученый был настоящим гигантом мысли, и в его гениальном мозгу постоянно рождались революционные для того времени идеи. Причем это были не просто измышления, как у многих других исследователей XVII века, а обоснованные и доказанные теории.

Мыслители и ученые, начиная с древнегреческих философов, пытались обнаружить законы движения, которым бы подчинялось все в нашей Вселенной: и песчинки, и звезды, и планеты. Но до Ньютона это никому не удавалось. Он же сумел увидеть мир как нечто цельное и единое, устроенное одинаково на всех уровнях и состоящее из одинаковых мельчайших частиц – атомов. Все тела взаимодействуют друг с другом – провозгласил Ньютон. Все изменения, происходящие в них, обусловлены их взаимодействием друг с другом.

Первый закон движения Ньютона был весьма революционным. Ученый утверждал, что тело, на которое не действуют никакие силы, будет оставаться либо в состоянии покоя, либо в состоянии равномерного прямолинейного движения. По поводу покоя никаких вопросов не было, из личного опыта все знают, что если положить книгу на стол, она там и останется. Но пункт, касающийся движения, потребовал разъяснений.



Поделиться книгой:

На главную
Назад