Эти свойства растений были известны уже на протяжении сотни лет и подробно исследовались. Однако цель этих исследований заключалась вовсе не в изучении чувствительности растений, ведь даже сегодня в рамках нашей культурной традиции растения воспринимаются не как чувствующие (способные к восприятию) существа, а как пассивные бесчувственные организмы, не имеющие почти никаких атрибутов представителей царства животных. Но, несмотря на нашу низкую оценку, благодаря своим удивительным возможностям растительный мир продолжает оказывать нам неоценимую помощь.
Мы знаем, что растения синтезируют десятки тысяч молекул, многие из которых используются в фармацевтике; они выделяют кислород и снабжают нас важнейшим строительным материалом (древесиной), а также являются источником энергетических ресурсов (ископаемого топлива), которые на протяжении столетий поддерживали наше технологическое развитие. Это бесценная помощь, не говоря уже о том, что растения – единственная реальная сила, способная избавить планету от антропогенных загрязнений.
Например, такие вещества, как трихлорэтилен (ТХЭ), используются в качестве органических растворителей в производстве пластмасс и в большом количестве попадают в воду, делая ее непригодной для использования. ТХЭ практически не разлагается и может сохраняться в неизменном виде на протяжении десятков тысяч лет – настоящий монстр среди ядов. Однако это вещество всасывается растениями и превращается в газообразный хлор, углекислый газ и воду. Короче говоря, разлагается.
Удивительная способность растений обезвреживать некоторые опасные для человека (и обычно производимые человеком) загрязняющие вещества и удалять их из воды и почвы используется в некоторых технологиях в рамках программы так называемой фиторемедиации. Подобные биотехнологические методы имеют высочайший экономический и технологический потенциал для регенерации почвы, но пока еще находятся в стадии разработки.
К сожалению, при той скорости, с которой мы позволяем исчезать различным видам растений, мы, возможно, теряем множество потенциальных решений для эффективной, недорогой и безопасной очистки планеты от загрязнений.
Глава 4
Способы коммуникации растений
Представьте себе планету, на которой растения научились общаться между собой. В этом вымышленном мире они обмениваются информацией и даже объясняются с животными, в том числе с самым сложным видом – с человеком. На этой планете растения научились «говорить» с животными на их языке и могут попросить о помощи.
Они включают в информационные сети другие растения и некоторых животных, что позволяет им оценивать ситуацию вне собственного организма. Они знают, как попросить о небольшой услуге, а при необходимости и о вмешательстве других видов, особенно когда должны защищаться от растительноядных животных, не имея возможности передвигаться. Они также могут получить помощь в размножении и в распространении в окружающей среде.
Можете ли вы вообразить такой мир, где самые молчаливые, пассивные и беззащитные организмы, растения, влияют на жизнь животных – от маленького червя до человека – и даже в некотором смысле управляют ею? Так вот, такой мир уже существует – это наша с вами Земля.
Передача информации внутри растения
Происходит ли передача информации внутри самого растения? Прежде чем ответить на этот вопрос, давайте ответим на другой: нужна ли растению данная способность? Попробуем ответить и, возможно, поймем, как корни сообщаются с листьями и наоборот.
Обладая множеством возможностей восприятия, растения собирают информацию об окружающем мире и ориентируются в нем. Они умеют определять десятки различных параметров и обрабатывают множество данных. Однако для живого организма, в отличие от компьютерной программы, гораздо важнее использовать полученную информацию на практике, нежели собрать гигантское количество данных.
Например, что делает растение, если его корни обнаруживают нехватку воды в почве или его листья атакованы растительноядными животными? В такой ситуации чрезвычайно важно послать сигнал остальным частям растения, ведь отсрочка в передаче подобной информации угрожает жизни всего организма. Передача этой информации жизненно важна, но можно ли назвать это коммуникацией?
Давайте определимся с понятиями: что мы подразумеваем под словом «коммуникация»? Это слово всем знакомо, однако иногда полезно заново дать определение того или иного понятия, даже широко используемого, чтобы быть уверенным, что мы говорим об одном и том же. В самом общем смысле под
Коммуникация жизненно важна для любого живого существа: она помогает избежать опасности, накопить опыт, познать собственное тело и окружающий мир. По какой причине мы будем отрицать существование этого простого механизма у растений? Потому что у них нет мозга? На самом деле, организм без мозга вполне может передавать информацию внутри себя, и, как мы вскоре убедимся, растения прекрасно это делают. Конечно же, может показаться, что на этом пути существуют некоторые технические трудности. У растений нет биологических структур, которые в нашем представлении необходимы для передачи электрических сигналов. У животных такие сигналы передают информацию от периферии к центру. Другими словами, у растений нет нервов. Но при этом мы только что сказали, что передача информации жизненно важна для растения – не в меньшей степени, чем для животного.
Информация, идущая от корней или от листьев, чрезвычайно важна для организма в целом и должна быстро распространяться – это вопрос жизни и смерти.
Информация, идущая от корней или от листьев, чрезвычайно важна для организма в целом и должна быстро распространяться – это вопрос жизни и смерти.
Для передачи информации из одной части тела в другую растения используют электрические, гидравлические и химические сигналы. Таким образом, они имеют три независимые и взаимодополняющие системы, соединяющие разные части растения и действующие на большие и малые расстояния – от нескольких миллиметров до десятков метров. Давайте вкратце обсудим, как работают эти системы.
Первая система, основанная на проведении электрических сигналов, используется весьма активно и в практическом смысле аналогична системе передачи электрических сигналов в организме животных и человека, но имеет некоторые специфические особенности. Например, мы уже сказали, что у растений нет нервов, т. е. клеток, предназначенных для проведения электрических сигналов (нервных импульсов в организме животных). Это может показаться серьезной проблемой: как передать сигнал, не имея специфической ткани? Растения нашли очень функциональное решение. На короткие расстояния такие сигналы передаются из клетки в клетку просто через канальцы в клеточной стенке, называемые плазмодесмами (от греч.
Вы удивлены? У растений нет сердца, но есть сосуды? Да, это так: подобно животным, растения снабжены гидравлической системой, которая в основном служит для переноса веществ из одной части растения в другую и действует как истинная сосудистая система, похожая на нашу, но только не имеет центрального насоса (т. е. сердца, поскольку растения не могут иметь специализированных органов, о чем мы уже говорили). Таким образом, растения имеют систему циркуляции для транспортировки жидкостей снизу вверх и сверху вниз – своеобразную систему артерий и вен, называемую
Функция этой системы циркуляции становится очевидной, если учесть, что поглощаемая корнями вода активно испаряется листьями, так что ее запасы должны постоянно пополняться. А синтезируемые в процессе фотосинтеза сахара, основной источник энергии для растений, должны постоянно перемещаться от места производства (от листьев) к другим частям организма.
С помощью этой сложной системы циркуляции электрические сигналы передаются гладко и достаточно быстро, как в трубке с проводящим раствором. Если бы эти сигналы передавались между корнями и листьями с помощью химических молекул, на это уходило бы гораздо больше времени, а так срочные сообщения, например о концентрации воды в почве, доставляются за короткое время. Много или мало воды в почве? Получив соответствующее сообщение, листья быстро подстраиваются к ситуации.
Прежде чем перейти к рассмотрению конкретного примера, давайте поговорим о функционировании устьиц – специфических структур на поверхности (обычно нижней) листьев. Эти небольшие поры осуществляют связь между организмом растения и внешней средой, как поры нашей кожи. Состояние каждого устьица контролируют две замыкающие клетки, которые заставляют его открываться или закрываться в зависимости от уровня влажности и интенсивности света.
Рис. 4–1. Структура устьица (вверху). С помощью этих небольших поверхностных пор листья захватывают углекислый газ, необходимый для фотосинтеза, и выделяют пары воды. В нормальных условиях цикл открытия и закрытия устьиц (внизу) контролируется в зависимости от интенсивности света
Но роль устьица значительно сложнее, чем может показаться на первый взгляд. На самом деле поддержание равновесия в организме растения – совсем не легкая задача. С одной стороны, через устьица проникает углекислый газ (диоксид углерода CO2, необходимый для фотосинтеза), так что растению выгодно держать их открытыми, по крайней мере в дневное время. С другой стороны, при открытых устьицах растение теряет много воды.
Так что каждому растению приходится искать компромисс: держать ли устьица открытыми и синтезировать необходимые для жизни сахара, но при этом терять воду, или закрыть устьица, чтобы сохранить воду, но забыть о фотосинтезе. Это настолько сложная проблема, что для понимания того, как растения ее решают, применяются модели «коллективной динамики» или «распределенных вычислений», хотя может показаться, что они не совсем уместны для описания поведения растений.
Тем не менее растения справляются с этой задачей, умудряясь поддерживать равновесие между синтезом сахаров и сохранением воды – двумя жизненно важными функциями. Вот пример. Мощные лучи летнего солнца являются ценнейшим источником энергии для фотосинтеза (и для солнечных батарей). Однако в отличие от солнечных батарей, которые производят тем больше энергии, чем больше получают солнечного света, растениям приходится учитывать еще и фактор влажности. Вот почему в самые жаркие дневные часы устьица закрываются, лишая растение возможности активно проводить фотосинтез. Так растения предотвращают риск обезвоживания.
Представьте себе дерево (например, дуб или высоченную секвойю), корни которого внезапно обнаруживают, что в почве недостаточно воды. Возникает срочная задача сообщить об этом листьям: если устьица останутся открытыми, вода испарится и растение очень быстро засохнет. Это реальная опасность. Так что от немедленной передачи этого сообщения зависит жизнь растения.
Для передачи сообщения растение в первую очередь посылает электрический сигнал, который быстро достигает листьев и заставляетустьица закрыться. Но одновременно с электрическим сигналом происходит отправка химических или гормональных сигналов, передаваемых по сосудистой системе, которые достигают листьев несколько позже. Данные сигналы передаются точно так же, как химические или гормональные сигналы в нашей сосудистой системе, но в растениях они переносятся не кровью, а питательным раствором. Если дерево очень высокое, это путешествие может длиться несколько дней! Однако получение химических или гормональных сигналов гарантирует наличие более полной информации.
Гидравлическая (сосудистая) система также очень полезна для передачи информации другого рода. Представьте себе организм растения в виде замкнутой системы. Вам ведь наверняка приходилось обламывать ветки, обрывать листья, цветы или побеги растений, и вы не могли не заметить вытекающий из раны сок. Внезапная потеря ткани приводит к нарушению гидравлического равновесия, что служит простым, но важным сигналом: внимание, где-то протечка! Предупрежденное таким образом растение немедленно локализует повреждение и начинает заращивать рану.
Таким образом, три системы внутренней передачи сигнала действуют сообща. Они работают на малых и больших расстояниях и переносят информацию разного рода, и каждая вносит вклад в поддержание нормальной жизнедеятельности организма. В этом аспекте растения тоже не очень сильно отличаются от нас.
Но, несмотря на сходство, внутренние пути передачи информации у растений имеют совсем иное строение, чем у нас.
Животные снабжены центральным мозгом, куда направляются все сигналы, а растения – в силу модульного строения – используют множество «центров обработки данных», что подразумевает иной тип регистрации сигналов.
Человек не может передать сигнал напрямую от ноги к руке: все сигналы, с редкими исключениями, сначала должны обрабатываться мозгом. А вот растения могут передавать информацию напрямую не только от корней к листьям и наоборот, но и от одного корня к другому корню или от одного листа к другому листу. Их интеллект распределен по всему организму! Отсутствие единого регистрирующего центра означает, что информация не всегда передается каким-то общим путем, а может быть быстро и эффективно передана напрямую.
Общение между растениями
Обсуждая способность растений к чувственному восприятию, мы обратили внимание на то, что они общаются друг с другом с помощью настоящего языка, сформированного из тысяч химических молекул, выделяемых в воздух и несущих информацию разного рода (глава 3). Выделение этих молекул – излюбленный способ коммуникации растений, как произнесение звуков человеком. Но, кроме того, люди могут объясняться друг с другом с помощью жестов, мимики, манеры держаться и положения тела. Такая система общения, хотя и различается в деталях, существует у многих видов животных, особенно высших.
Еще один пример «коммуникации жестами» – явление «застенчивости кроны», описанное французским ботаником Франсисом Алле (род. в 1938 г.).
А растения? Они тоже могут общаться друг с другом путем прикосновений (обычно посредством корней, но иногда и надземных частей) или путем изменения своего положения относительно соседей. Именно это происходит при реализации программы «выхода из тени», когда растения принимают разные положения по отношению друг к другу, пытаясь выиграть в погоне за светом (глава 3).
Еще один пример «коммуникации жестами» – явление «застенчивости кроны», описанное французским ботаником Франсисом Алле (род. в 1938 г.). Однако такое поведение, при котором даже очень близко растущие деревья стараются не касаться друг друга кронами, демонстрируют не все виды растений. Обычно деревья совсем друг друга не стесняются, но некоторые представители семейств хвойных, миртовых и буковых, а также другие, менее распространенные растения, не приветствуют тесного контакта. Зайдите в сосновый лес, и вы в этом убедитесь. Деревья растут так, чтобы их кроны не соприкасались, а были разделены свободным пространством. Такое нежелание контактировать с соседями мы бы расценили как недоброжелательность. Мы не знаем, какой механизм отвечает за такое поведение, но понятно, что кроны соседних деревьев посылают друг другу сигналы и договариваются о разделе территории (в данном случае речь идет о доступности не только света, но и воздуха), чтобы не мешать друг другу.
Растения общаются между собой на разном уровне и проявляют в этом общении разный характер. Можно ли сказать, что одни растения более или менее активны в соперничестве или союзничестве, более или менее агрессивны или стыдливы? Безусловно. Но это не все. Хотя на уровне анатомического строения между растениями и животными мало общего, в поведенческом отношении можно обнаружить множество общих черт. И это не удивительно: все живые существа имеют одни и те же базовые задачи и решают их похожими методами. Однако, несмотря на определенное сходство в поведении растений и животных, существует важное исключение – семейные отношения. У растений нет родственников. Нет ничего, что напоминало бы связь между родственными особями одного и того же вида. Или не совсем так?
Мы не рассчитываем обнаружить семейные или клановые отношения в мире растений. Подобный тип отношений в нашем представлении связан с гораздо более развитыми видами, таким как человек или некоторые другие высшие животные, но никак не с растениями. Но на самом деле растения, совершенно определенно, умеют распознавать себе подобных и относятся к ним гораздо более доброжелательно, чем к чужакам. Чтобы понять это свойство растений, нужно задуматься, для чего это может быть полезно. Данный вопрос вполне оправдан, поскольку в природе никакое свойство не возникает без причины, включая и сферу родственных отношений. Способность распознавать особей с близким генетическим строением важна для всех видов организмов и обеспечивает большие возможности в эволюционном, поведенческом и экологическом плане. Например, эта способность позволяет организмам лучше распоряжаться своей территорией, защищая себя от врагов и не тратя силы на борьбу с родственниками. Она также позволяет избегать близкородственного скрещивания и, прежде всего, извлекать выгоду из успехов близких по генетическому строению особей.
Чтобы оценить эти преимущества, следует вспомнить о том, что главная задача любого живого существа в природе заключается в защите своего генетического материала (и, следовательно, генетического материала близких родственников – родителей, детей, братьев и сестер). Соперничество с одним из них означает бессмысленную трату энергии. Гораздо полезнее объединить усилия и одолеть противника, передав свои гены следующему поколению. С этой точки зрения способность распознавать родственников – большое преимущество, но уверены ли мы, что растения ведут себя по-разному по отношению к другим растениям в зависимости от степени родства?
В царстве животных такое распознавание осуществляется с помощью чувств – зрения, слуха, обоняния и иногда вкуса. Растения делают это путем обмена химическими сигналами, исходящими от корней и, возможно, от листьев (на этот счет у нас еще нет строгих доказательств).
Растения неподвижны, как мы уже многократно повторяли и будем повторять, поскольку в этом состоит их главное отличие от животных. Растения не могут покинуть место своего рождения, и поэтому их способность защищать свою территорию должна быть выражена сильнее, чем у любых животных. Растения готовы вести отчаянную борьбу, и понятно почему. Животное, попадающее в невыгодное положение по отношению к другому животному, всегда может отступить и перебраться жить в другое место. Растение не имеет такой возможности и вынуждено делить ресурсы с другими растениями, обитающими на той же территории, иногда на расстоянии всего нескольких сантиметров. Но это не означает, что одно растение просто соглашается с присутствием другого: напротив, это подразумевает бесконечную борьбу за пространство, которое необходимо защищать от всех незваных гостей. Растение защищает территорию, затрачивая энергетические ресурсы на развитие подземной части. Выпуская все больше и больше корней, оно оккупирует почву, как вооруженное войско, и заявляет соседям о своих правах. Но так происходит не всегда: если соседями являются представители той же семьи, нет нужды в конкуренции и можно не выпускать дополнительные корни, а развивать надземную часть.
Растения сначала оценивают противника, прежде чем вступать в борьбу, и если обнаруживают генетическое родство, выбирают не соревнование, а сотрудничество.
В 2007 г. было проведено простое, но показательное исследование, которое позволило пролить свет на данный тип семейных отношений. В одном горшке проращивали 30 семян одного и того же растения, а в другом горшке такого же размера – 30 семян растений разных видов. Наблюдение за поведением растений в двух горшках позволило обнаружить несколько эволюционных механизмов, которые ранее были зарегистрированы только у животных. Растения разных видов вели себя ожидаемым образом – выпускали множество корней, пытаясь завоевать территорию и обеспечить себе достаточно воды и пищи за счет соседей. Однако 30 родственных растений в другом горшке, хотя и росли в таком же ограниченном пространстве, выпускали намного меньше корней и активнее развивали надземную часть. Отсутствие конкуренции в данном случае было связано с генетическим сходством растений. Это очень важное открытие, которое поколебало традиционную точку зрения о том, что растения избирают стереотипную и повторяющуюся стратегию (есть сосед – значит, нужно с ним бороться и отвоевывать территорию), и привело ученых к гораздо более сложной оценке поведения растений, учитывающей различные факторы, в том числе родственные связи. Выходит, что растения сначала оценивают противника, прежде чем вступать в борьбу и, если обнаруживают генетическое родство, выбирают не соревнование, а сотрудничество.
Если рассуждать в рамках эволюционного процесса, что оказывается выгоднее – «эгоизм» или «альтруизм»? В отношении растений этот вопрос до сих пор не рассматривался. Было создано множество моделей, но ни одну из них даже не пытались применить для анализа поведения растений. Открытие альтруистического поведения растений в отношении родственников играет чрезвычайно важную роль, поскольку открывает две возможности, обе революционные. Либо растения являются гораздо более развитыми в эволюционном плане существами, чем мы привыкли думать, и склонны к альтруизму, либо альтруизм и кооперация – примитивные формы жизни, хотя важнейшую роль в природе мы всегда отводили борьбе, в которой выигрывает сильнейший. В любом случае общение между растениями посредством корней должно иметь строго определенное эволюционное назначение – оно позволяет распознавать своих и чужих, друзей и врагов.
Обсуждая поведение корней (их удивительные способности мы подробнее проанализируем в следующей главе), следует заметить, что они умеют общаться не только с корнями других растений, но также со всеми существами, населяющими ризосферу (от греч.
Распространенный пример – грибокорень, или микориза (от греч.
Однако в этом, казалось бы, взаимовыгодном сотрудничестве бывают неприятные сюрпризы. Проблема в том, что не все грибы имеют добрые намерения; некоторые являются патогенами, прикрепляются к корням, чтобы получить пищу, и разрушают их. Поэтому растения должны уметь различать типы грибов, которые пытаются вступить с ними в контакт, и действовать соответствующим образом. Как же они различают дружественно и враждебно настроенные грибы? Распознавание основано на настоящем диалоге между грибами и корнями, заключающемся в обмене химическими сигналами. Если растение понимает, что гриб настроен враждебно, он отвечает тем же. Напротив, если после предварительного «собеседования» растение распознает доброжелательно настроенный гриб, стремящийся к содружеству, оно вступает в ним в полезный для обоих симбиоз.
Еще один пример – основанный на обмене информацией взаимовыгодный симбиоз между бобовыми культурами и азотфиксирующими бактериями. Наряду с некоторыми другими бактериями эти микроорганизмы обладают чрезвычайно полезной способностью – они связывают атмосферный азот и превращают его в аммиак (NH3) путем разрыва связи между двумя атомами азота в газообразной молекуле N2.
Азот – важнейший элемент, обеспечивающий плодородность почвы (вот почему многие удобрения основаны на соединениях азота). Хотя воздух, которым мы дышим, на 80 % состоит из азота, этот газ инертен и напрямую не может быть использован растениями или другими живыми существами, за исключением некоторых микроорганизмов, таких как азотфиксирующие бактерии. Эти бактерии умеют превращать газообразный азот в различные соединения, такие как аммиак, которые легко поглощаются растениями. Так что эти бактерии – настоящие природные удобрения. Взамен внутри корней они получают идеальную среду для роста и обилие сахаров – еще один пример взаимовыгодного сотрудничества, основанный на коммуникации и распознавании. Однако растения рады далеко не всем бактериям; многие бактерии являются патогенами, против которых растения выстраивают непреодолимый барьер. До начала сотрудничества азотфиксирующие бактерии вступают с корнями в долгий и сложный химический диалог. Эти «переговоры» всегда начинаются с выделения бактериями сигнала, называемого NOD-фактором (от англ,
Описанные выше примеры симбиоза основаны на обмене информацией между симбионтами – участниками симбиотических отношений (бактериями и бобовыми растениями в последнем примере) – и не могут происходить при отсутствии долгосрочной и отработанной практики. На самом деле подобные отношения возникают не только между растениями и низшими организмами. Некоторые симбиотические связи оказались столь важными, что составляют основу и нашей жизни.
Вот один пример. Митохондрии – энергетические станции наших клеток (точнее, всех растительных и животных клеток). Без этих внутриклеточных органелл невозможно существование высших форм жизни. Так вот, исследования показали, что митохондрии возникли в результате симбиоза – в данном случае между клетками[7] и примитивными бактериями с активным окислительным метаболизмом (другими словами, способными производить энергию). Бактерии и эти клетки вступили в симбиотические отношения, выгодные для обеих сторон (клетки получили энергию, а бактерии – все, что им требовалось для жизни), и в какой-то момент бактерии оказались включенными внутрь клеток. Симбиотическое происхождение митохондрий подтверждается многочисленными данными. Прежде всего, митохондрии сохранили многие типичные признаки бактерий, такие как бактериальные мембраны. Кроме того, как и бактерии, они содержат замкнутую кольцевую ДНК. Наконец, и это, пожалуй, является самым важным доказательством, митохондрии реплицируются независимо от хозяйских клеток. В нескольких исследованиях была доказана основополагающая роль этих ранних симбионтов в эволюции сложных форм жизни.
Таким образом, симбиотические отношения имеют чрезвычайно большое значение для всех форм жизни на нашей планете, включая человека. Если бы мы научились воспроизводить некоторые из них, мы достигли бы невероятных результатов. Например, если бы нам удалось перенести симбиотические отношения между азотфиксирующими бактериям и бобовыми растениями (к которым относятся, среди прочих, соя, нут, чечевица, зеленый горошек и бобы) на другие продовольственные культуры, мы бы в корне изменили возможности сельского хозяйства.
Представьте себе: больше нет азотных удобрений, не загрязняются почва, грунтовые воды, реки и океаны, Адриатика не зарастает водорослями, а урожай растет, и население планеты удается прокормить, не заражая атмосферу: в реализацию этой мечты стоит вложить средства, ради этого стоит интенсифицировать исследования, причем сделать это нужно быстро, чтобы избежать необратимых последствий.
С момента окончания Второй мировой войны и до сегодняшнего дня урожайность продовольственных культур и плодородие почв постоянно росли, главным образом благодаря так называемой зеленой революции 1960-х гг. При помощи химических удобрений и создании новых, более урожайных и устойчивых к заболеваниям сортов растений эта модернизация привела к расширению площади культивируемых земель и повышению урожайности ранее использованных земель.
Но сегодня тенденция роста урожайности остановилась. Впервые за 60 лет площадь обрабатываемых земель не только не растет, но сокращается из-за климатических изменений, в то время как население планеты продолжает расти.
Как нам прокормить самих себя? Задача ближайших десятилетий – найти способы осуществления новой зеленой революции, которая вновь позволит повысить урожайность, но без ущерба для окружающей среды. Вот почему перенос симбиотических отношений между азотфиксирующими бактериями и бобовыми культурами на другие продовольственные культуры был бы истинным прорывом в сельском хозяйстве. Способность растений передавать информацию поможет нам прокормить человечество!
Общение между растениями и животными
Внутренние коммуникации в мире растений, как их назвали бы в деловом мире, действуют весьма эффективно. Но как растения общаются с другими существами?
Поскольку растения не могут покинуть место своего рождения, им нужна помощь в приеме внешней информации и отправлении сообщений, а также мелких частиц, таких как пыльца, обратно во внешний мир. Поэтому они разработали своеобразную систему почтовых отправлений. Иногда почтальоном служит ветер, иногда вода, но чаще всего в этой роли выступают животные, особенно это касается таких деликатных функций, как защита или размножение. Решился бы кто-нибудь из нас отправить важное сообщение в закупоренной бутылке или на бумажном самолетике? Гораздо надежнее поручить это дело животному (вспомните о почтовых голубях, которые служили людям для этой цели на протяжении многих столетий). Но как растениям удается убедить насекомых и других животных выступить в роли «Пони-экспресс»?
Ниже в разделе «Честные и нечестные растения» мы подробно обсудим способы спаривания растений и те средства, с помощью которых они убеждают растения помочь им в опылении и размножении. Однако сначала давайте рассмотрим другие ситуации, когда растения прибегают к помощи животных. Начнем с самой распространенной задачи – с защиты.
(Система защиты растений, основанная на коммуникации)
Представьте себе насекомое, которое усаживается на лист растения с намерением его съесть. Растение замечает это и немедленно выстраивает систему защиты. Сначала оно идентифицирует агрессора, и лишь потом, поняв, кто на него нападает, может успешно себя защитить.
Чаще всего растения применяют химическое оружие – вырабатывают специфические вещества, которые делают его невкусным, несъедобным или даже ядовитым для насекомого. Чтобы избежать лишних энергетических затрат, производство этих средств устрашения осуществляется только в листьях, подвергшихся нападению, и в соседних листьях, в расчете на то, что это отпугнет агрессора. Зачем тратить много энергии, если можно обойтись местными средствами?
Каждое принимаемое растениями решение основано на таком расчете: какой минимальный расход ресурсов позволит решить конкретную проблему? Чаще всего этот расчет и эта стратегия оправдываются. В нашем примере насекомое попробует один или два листа, а затем улетит, привлеченное запахом другого растения. Победа!
Выпуская новые листья, растение легко восстановит небольшие потери. Как мы знаем, удаление даже значительных фрагментов не обязательно вызывает нарушение функции или гибель растения. В нашем примере реакция растения на нападение умеренная, можно сказать, благоприятная.
Но если, несмотря на неприятный вкус, насекомое продолжает поедать листья или если к столу прибывают новые гости, растения бывают вынуждены применять более суровый подход. В одних случаях они синтезируют «устрашающие» химические вещества во всех листьях и выделяют в воздух летучие молекулы, чтобы предупредить соседей о необходимости обороны. В других они могут… послать за подкреплением!
Каждый новый день является свидетельством продолжающейся 400 миллионов лет битвы за существование между растениями и растительноядными организмами. Безусловно, самая многочисленная группа растительноядных организмов – это насекомые, для которых растения являются прекрасным источником пищи и средой обитания с самыми разнообразными экологическими условиями. Бесконечные конфликты оказывают сильнейшее селективное давление, определяющее эволюцию и растений, и насекомых, и контролирующее их распространение во времени и в пространстве.
Для защиты от насекомых растения изобрели несколько специфических механизмов, а насекомые, со своей стороны, тоже не ленились и разрабатывали все новые и новые стратегии нападения. Это бесконечная гонка вооружений, вызванная параллельной эволюцией растений и растительноядных животных – двух групп враждующих существ, которые в результате постоянных столкновений очень хорошо друг друга изучили.
Вам никогда не приходилось видеть на упаковке салата надпись «Произведено в условиях интегрального подхода к уничтожению вредителей»? Эта фраза означает, что производитель решил сократить использование пестицидов и завез на свои поля естественных врагов растительноядных насекомых, уничтожающих салат. Такие поля не опрыскивают пестицидами, а предоставляют во владение врагам вредителей салата, которые либо уничтожают вредителей, либо как минимум вызывают их на борьбу, отвлекая от растений. Это весьма разумный подход, хотя осуществить его достаточно сложно, поскольку требуется поддерживать равновесие между популяциями насекомых. Суть этого подхода можно выразить фразой «враг моего врага – мой друг».
В естественных условиях многие растения защищаются с помощью этой стратегии: они просят подкрепления у врагов свих врагов, привлекая их с помощью летучих химических веществ, и платят им за помощь. Эта стратегия дает отличные результаты без значительных энергетических затрат.
Вот конкретный пример: лимская (луновидная) фасоль. При заражении прожорливым клещом
Часто ли животные ведут себя подобным образом? А вот среди растений на это способны многие, включая кукурузу, томаты и табак.
Мы видели, как ведет себя растение, когда его листья подвергаются нападению со стороны растительноядных животных. Но что происходит, если агрессор нападает не на листья, а на корни? Характерный пример – поведение кукурузы. На протяжении многих лет поля кукурузы в США уничтожались жуком
Самые старые европейские сорта кукурузы и дикие виды (каждый – продукт очень длительного отбора) чрезвычайно сильно отличаются от современных сортов и прекрасно защищаются от диабротики. Это мы – ненамеренно и по незнанию – в результате селекции новых высокоурожайных сортов с более крупными початками вывели растения, не способные себя защитить. Когда жук откладывает личинки на корни кукурузы старых сортов или диких видов, растения выделяют вещество под названием кариофиллен, единственная функция которого заключается в привлечении мелких червей (нематод), любящих полакомиться личинками диабротики. Поедая личинок, нематоды спасают растения.
Наша непреднамеренная ошибка, приведшая к выведению беззащитных сортов кукурузы, стоила нам дорого. Ежегодные потери урожая кукурузы от этого вредителя во всем мире оцениваются в миллиард долларов США. На протяжении десятилетий диабротика была страшным бичом растениеводов, и на борьбу с этим насекомым направлялись гигантские средства, а в атмосферу попали тонны инсектицидов. Природная способность кукурузы была восстановлена только с помощью генно-инженерных манипуляций: в современные сорта был введен ген, регулирующий выработку кариофиллена, позаимствованный у майорана. Короче говоря, чтобы восстановить утраченные свойства кукурузы, пришлось создать генетически модифицированные (трансгенные) растения.
Один из моментов в жизни, когда растения в наибольшей степени нуждаются в общении, особенно с животными, наступает при опылении. Этот период, который можно назвать периодом спаривания растений, является важнейшей фазой их жизненного цикла, поскольку от него зависит вероятность их воспроизведения. Очевидно, все виды растений различаются между собой, однако большинство видов – от герани до дуба – придерживаются нескольких общих правил. Например, часто для оплодотворения необходимо, чтобы пыльца (растительный эквивалент мужского семени) была перенесена с одного цветка на другой. Но прежде чем обратиться к рассмотрению удивительного общения между растениями и животными, давайте поговорим о том, как размножаются растения.
Для начала введем определение самоопыляющихся, или аутогамных (от греч.
Еще одно различие между растениями заключается в локализации половых органов. В данном отношении растения можно разделить на три основные категории: гермафродиты, двудомные и однодомные растения.