Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Превращения гиперболоида инженера Гарина - Ирина Львовна Радунская на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В своем опыте, произведенном в 1924 году, Штерн и Герлах пропускали пучок атомов серебра вдоль полюсов сильного магнита. Пучок получался испарением капельки серебра в вакууме. Испарившиеся атомы вылетали через небольшое отверстие в камеру, где помещался магнит. Там, конечно, тоже поддерживался вакуум, чтобы атомы летели, не испытывая никакой помехи. Если бы полюсы магнита были плоскими, а атомы действительно вели себя как магнитики, то они летели бы по прямым путям. Но Штерн и Герлах сделали полюсы своего магнита не плоскими, а придали им форму клиньев, направленных остриями один к другому. Силовые линии магнитного поля между такими полюсами очень искривляются, а само магнитное поле сильно изменяется по величине. Пролетая вдоль таких полюсов, атомы-магнитики летят не по прямым, а по криволинейным путям.

В конце своей установки Штерн и Герлах поместили стеклянную пластинку. Если магнит в камере отсутствовал, то на пластинке постепенно осаждалось небольшое пятнышко серебра. Но вот магнит установлен и опыт начался. Он должен определить, подчиняются ли атомы серебра законам классической физики или к ним применима теория Бора.

Классическая физика говорит, что отклонение атомов должно зависеть только от того, как направлена в пространстве их магнитная ось. С точки зрения классической физики ни одно направление не может быть предпочтительным. Значит, и отклонения у различных атомов могут быть любыми. Таким образом, руководствуясь законами классической физики, можно было ожидать, что атомы серебра, прилетев к пластинке, осядут на ней не пятнышком, а длинной полоской.

Основываясь же на квантовой теории Бора, Штерн и Герлах ожидали иного. По догадке Бора атомы-магнитики могут принимать в магнитном поле три положения. В этом случае ученые ожидали увидеть на пластинке не множество точек, образующих полоску, а только три точки.

Каково же было их удивление, когда они обнаружили на стеклянной пластинке вместо трех лишь две серебряные точки! Все оказалось гораздо сложнее. Опыт показал, что атомы серебра могут принимать в магнитном поле только два положения: вдоль поля и навстречу ему. Было ясно, что первоначальная квантовая механика Бора недостаточна для описания микромира. Нужно было построить более точную теорию. Впоследствии детали поведения микрочастиц во внешних полях были поняты и объяснены новой квантовой теорией, созданной Гейзенбергом, Шредингером и де Бройлем.

Этот опыт, впервые доказавший, что направление осей атомов в пространстве подчиняется законам квантовой механики, с первого взгляда не имеет отношения к нашей истории. Басов и Прохоров, изучив этот опыт и вооружившись новой теорией, вернулись к нему, чтобы использовать в своих целях. Они обратили внимание на то, что энергия атомов серебра в поле магнита в обоих пучках была различной. Штерн и Герлах просто об этом не думали. Цель у них была другой. Басов же и Прохоров обратили внимание на этот опыт именно потому, что он скрывал как раз то, что они искали. Разделив пучки при помощи простой диафрагмы, можно было получить готовый пучок активных атомов серебра!

Умение видеть скрытую суть явлений — одна из черт настоящего ученого. Басов и Прохоров рассмотрели в опыте Штерна — Герлаха то, о чем, несомненно, знали и другие. Знали, но оставляли без внимания. Ведь атомы, разделявшиеся на два пучка, отличались не только направлением своих осей, но и своей энергией в поле магнита. В одном летели атомы-передатчики, в другом — атомы-приемники.

Казалось, пути решения задачи ясны. Достаточно воспроизвести установку Штерна и Герлаха, дополнить ее диафрагмой, пропустить пучок атомов-передатчиков через подходящий резонатор, и атомы серебра начнут генерировать электромагнитные волны.

Но расчеты показали, что это не так. Таким простым путем невозможно получить настолько интенсивный пучок активных атомов, чтобы он не только компенсировал потери лучшего из резонаторов, но и излучил энергию в пространство.

К счастью, Басов и Прохоров были уже достаточно опытными исследователями, чтобы понимать, что простое повторение редко ведет к цели. Они знали, что избранное направление правильно, но надо искать дальше.

Теория подсказывала, что электрические поля в микромире действуют много сильнее, чем магнитные. Но, к сожалению, атомы не обладают электрическими свойствами, напоминающими свойства магнита. Значит, нужно было отказаться от применения атомов. Они перешли к молекулам. Почему? А потому, что многие молекулы оказываются электрическими двойниками магнитов. Молекулы в обычном состоянии электрически нейтральны, то есть у них положительные и отрицательные заряды равны. Но у многих из них центры, соответствующие расположению положительных и отрицательных зарядов, не совпадают. В результате в молекуле возникают «положительный конец» и «отрицательный конец», в какой-то мере похожие на северный и южный концы магнитной стрелки. Такие молекулы ведут себя в поле электрического конденсатора так же, как наэлектризованные палочки из бузины, которые обычно показывают в школе при опытах по электростатике. В электрическом поле плоского конденсатора они поворачиваются, как стрелка компаса в поле магнита. Неоднородные электрические поля отклоняют их так же, как неоднородные магнитные поля отклоняют атомы серебра.

Задолго до работ Басова и Прохорова ученики и последователи Штерна, к счастью, хорошо разработали установки для опытов с пучками различных молекул. В частности, были созданы конденсаторы специальной формы, которые способны фокусировать молекулы примерно так же, как стеклянные линзы фокусируют свет. Очень много в этой области сделали харьковские физики Корсунский и Фогель.

Осталось подобрать подходящую молекулу. Но и здесь им на помощь пришел коллективный опыт ученых.

Наиболее изученной радиоспектроскопистами в то время, а может быть и сейчас, была молекула аммиака. Именно у этой молекулы Клитон и Вильяме еще в 1934 году обнаружили спектральные линии в сантиметровом диапазоне радиоволн. Уже в сороковых годах ее структура и электрические свойства были хорошо изучены. Естественно было проверить, не подойдет ли аммиак для новой работы?

Расчеты показали, что, пролетая вдоль оси конденсатора. состоящего из четырех стержней, попеременно заряженных положительным и отрицательным зарядом, более энергичные молекулы аммиака соберутся к оси конденсатора, а слабенькие уйдут в стороны.

Когда впервые был поставлен этот опыт, зрители могли воочию наблюдать картину борьбы между молекулами и силовым полем конденсатора. Водоворот поля захлестывал их, как прибой пловцов. Сильные пловцы обычно выбираются на берег, а слабых втягивает в пучину. Так и стихия электрических сил по-своему расправлялась с молекулами. Более слабые из них втягивались в область сильного поля к стержням конденсатора, другие, более сильные, пролетали мимо этой области, приближаясь к его оси. Поле сортировало молекулы. Оно оказалось своеобразным стрелочником, направляющим по различным путям молекулы, отличающиеся запасом энергии.

А затем, поставив за конденсатором резонатор с отверстием, совпадающим с осью конденсатора, можно было заставить активные молекулы проходить сквозь резонатор, не пуская в него молекулы, стремящиеся к поглощению.

При взгляде на квадрупольный конденсатор невольно вспоминается знаменитый «печальный демон, дух изгнанья». Максвелл призвал его, чтобы убедить сомневающихся в том, что без затраты энергии невозможно отобрать из сосуда с газом молекулы, энергия которых превосходит среднюю. Максвелл выпустил на сцену своего демона, чтобы доказать, что подобная работа не может быть выполнена никаким механизмом. Это запрещено одним из наиболее общих законов природы — вторым началом термодинамики. И нарушить его может только «нечистая сила». Многие пытались сразиться с демоном Максвелла. Это были не только изобретатели вечного двигателя, особого теплового вечного двигателя, который соблазнял людей возможностью получать работу без передачи тепла от нагретого тела к холодильнику. То есть без затраты топлива или без затраты энергии на работу холодильника. С демоном Максвелла сражались и ученые, которым казалось, что второе начало термодинамики не имеет всеобщей силы и его можно обойти. Все такие попытки терпели поражение. Демон брал верх.

Но, применяя молекулярные пучки и электрические поля, ученым в полном согласии с коварным вторым началом термодинамики удалось найти способ отбирать молекулы, обладающие избыточной внутренней энергией, отсеивая те из них, которые имеют малую внутреннюю энергию. В полном согласии потому, что «платой» за отбор является энергия, затраченная на создание упорядоченного молекулярного пучка. Именно изолированность молекул в пучке, где они как бы выстраиваются в очередь перед конденсатором, чтобы он опознал, какие из них сильные, а какие слабые, позволила посрамить дьявола. Хоть затраты энергии на создание пучка и больше энергии радиоволн, которые Басов и Прохоров надеялись получить от пучка, но радиоволны эти должны были обладать недостижимой ранее стабильностью частоты.

Схема небывалого генератора приобретала конкретный вид. Нужно было взять большой сосуд. Откачать из него воздух. Впустить в него тонкий пучок молекул аммиака. Поставить на пути пучка конденсатор, а потом резонатор. Подать на конденсатор высокое напряжение. При этом в резонатор будут влетать только активные молекулы. И если таких молекул окажется достаточно много, генератор заработает.

Может быть, перед тем, как пойти дальше, следует попытаться ответить на вопрос, поставленный в начале этой главы. Почему же это сделали радисты?

Конечно, бесспорного ответа на этот вопрос не существует. Но, несомненно, важную роль сыграло то, что только радиофизики удачно сочетают знание квантовой теории и спектральных закономерностей с владением теорией колебаний и пониманием роли обратной связи. Важно и то, что радиофизики, как никто, понимали практическое и научное значение возможности получения сверхстабильных колебаний. Ученые, работающие в других областях физики, например оптики, хорошо знающие и квантовую теорию и спектры, равнодушны к проблеме стабильности; да и задача усиления света казалась им в то время интересной, но не очень важной для науки и техники.

Для радиофизика сверхстабильный генератор — это сверхточное измерение времени и расстояний, это новые навигационные системы, увеличение точности географических карт, новые возможности исследования космоса и многое другое.

Ради этого стоило потрудиться!

ШТУРМ

Итак, расчеты показали Басову и Прохорову, что прибор, в котором молекулы будут излучать радиоволны — молекулярный генератор, осуществим. Принципиальная схема генератора была им ясна. Можно приступать к работе. Но даже ученых, имеющих большой опыт в области радиоспектроскопии, здесь на каждом шагу встречали неприятные сюрпризы.

Схема задуманного ими прибора только в основных чертах напоминала схему обычного генератора. При ближайшем рассмотрении на первый план выступали различия.

Прежде всего источник энергии. Обычные радиосхемы питаются от батарей или аккумуляторов или же от электрической сети через специальные выпрямители. Здесь источником энергии будут служить молекулы. Миллиарды миллиардов молекул аммиака должны ежесекундно превращать часть своей внутренней энергии в энергию радиоволн. Эту массу молекул необходимо направить в генератор, и не как-нибудь, а в виде упорядоченного пучка, в котором они летели бы почти параллельно одна другой, не сталкиваясь ни между собой, ни с молекулами воздуха.

Создать такой пучок можно только в вакууме. Иными словами, все детали молекулярного генератора должны находиться в сосуде, из которого воздух откачан специальными насосами так сильно, что давление в нем составляет примерно миллиардную часть нормального атмосферного давления.

Достигнуть такого разрежения в замкнутом сосуде не очень сложно. Современные вакуумные установки способны обеспечить и много более сильное разрежение. Но ведь во время работы генератора в него необходимо непрерывно впускать полчища молекул аммиака. Для того чтобы и при этом поддерживать в нем необходимый вакуум, пришлось бы прибегнуть к слишком мощным насосам.

Басов и Прохоров предпочли отказаться от решения задачи в лоб. Они задумали воспользоваться тем, что при температуре в -77,7 градуса Цельсия аммиак уже затвердевает. Конечно, эта температура еще недостаточна для обеспечения нужного вакуума, но экспериментаторы решили применить для вымораживания аммиака жидкий азот, температура которого еще на 123 градуса ниже. Попав на поверхность, охлажденную жидким азотом, почти каждая молекула аммиака крепко-накрепко примерзнет к ней. Как прилипает муха к липкой бумаге, при помощи которой заботливый повар «откачивает» мух из своей кухни. По отношению к аммиаку холодная поверхность действует как хороший насос. Задумали, испробовали и убедились в том, что избранный способ «откачки» аммиака работал безупречно! При этом для удаления остатков воздуха потребовался совсем небольшой насос.

Далее. Пучок молекул аммиака направлялся из источника в сортирующую систему, в которой сильное электрическое поле отбрасывало в стороны ненужные, слабенькие молекулы, а молекулы, которые могли участвовать в генерации радиоволн, собирались к оси сортирующей системы и направлялись в резонатор. Казалось бы, что особенного? Резонатор — одна из привычных частей любого радиоприемника или передатчика. Но при работе на длинных или коротких волнах резонатор состоит из конденсатора и катушки индуктивности — это всем известный простейший резонансный контур. В диапазоне же сантиметровых волн обычные конденсаторы, и катушки неприменимы. Их место занимают металлические полости, которым обычно придается форма цилиндров или прямоугольника — объемные резонаторы. Корпуса скрипок и других струнных инструментов, специальные отсеки в радиоприемниках высшего качества, органные трубы — это ведь тоже не что иное как резонаторы, только акустические. Их задача — выделять и подчеркивать колебания тех частот, на которые они настроены. Металлические полости делают это по отношению к радиоволнам.

Басов и Прохоров должны были подобрать для своего генератора резонатор такой формы, чтобы он обеспечил как можно большую стабильность частоты колебаний. Электрическое поле в нем они решили направить так, чтобы пучок молекул летел вдоль электрических силовых линий. Соответствующим образом надо было проделать и отверстия в резонаторе. Только когда молекулы будут лететь вдоль гребней волн электрического напряжения, тогда наверняка влияние резонатора на частоту колебаний будет минимально. Вот какую трудную работу задали они механикам. И пока те изготавливали экспериментальный прибор, Басов и Прохоров еще и еще раз просчитывали и проверяли теорию его работы. Вот что говорили им формулы.

Если напряжение, подводимое к сортирующей системе, достигнет 25 тысяч вольт, то практически все молекулы-приемники будут отброшены к поверхности, охлаждаемой жидким азотом, и накрепко к ней примерзнут. В резонатор попадет «чистый» пучок молекул-передатчиков. Они будут пролетать сквозь резонатор вдоль его оси, излучая в нем кванты электромагнитной энергии.

Далее формулы предсказывали, что если резонатор удастся сделать достаточно хорошим, то электромагнитные волны, рожденные молекулами, будут неоднократно пробегать от оси резонатора к его стенкам и, отразившись от них, обратно к оси и снова к стенкам. Таким образом, волна, испущенная одними молекулами, будет заставлять излучать все остальные. И излучать не беспорядочно, а в такт с вынуждающей волной. Так резонатор осуществляет связь между молекулами, уже испустившими фотоны, и теми, которым еще только предстоит это сделать. Осуществляет то, что радисты называют обратной связью.

Наконец, предупреждали формулы, если молекулы достаточно активны и щедры, резонатор быстро, как ведро под весенним ливнем, начнет наполняться излученной ими энергией. И если снабдить резонатор антенной, энергия будет переливаться из «переполненного ведра» в окружающее пространство. Начнется трансляция своеобразной радиопередачи. Наполнение резонатора прекратится только тогда, когда электромагнитное поле внутри него станет столь сильным, что заставит молекулярный пучок излучать всю энергию, на которую он способен. Формулы даже определяли смысл этого расплывчатого выражения — «на которую он способен».

С первого взгляда может показаться, что лавинообразно возрастающее электромагнитное поле принудит к вынужденному испусканию каждую молекулу, пролетающую резонатор, и поэтому все они отдадут ему свою энергию. Но, увы… Это действительно было бы так, если бы не полная равноправность между процессами излучения и поглощения. Она приводит к тому, что, излучив полагающуюся им порцию энергии, часть молекул-передатчиков превращается в приемники. И переходит на иждивение к тем товаркам, которые не успели еще излучить. И начинает отбирать у них эту неизлученную энергию. И те, вместо того чтобы отдать энергию резонатору, отдают ее ослабевшим молекулам. В результате пучок активных молекул отдает резонатору не больше чем половину запасенной ими энергии.

Но это не было неожиданностью. Это, конечно, снижает кпд прибора, но с этим можно было мириться. Главное, чтобы прибор задышал. А формулы, сколь они ни верны, сколь оптимистические прогнозы из них ни вытекают, не могут обеспечить работы прибора. На пути к успеху нужны помощь механиков и радиотехников и филигранный эксперимент физиков.

В научной работе, как на любом фронте, действительность редко совпадает с планами. Многие стратеги убеждались в том, что планирование на бумаге по методу «первая колонна марширует, вторая колонна марширует» в действительности зачастую оборачивается пробками на дорогах.

Так случилось и с нашими друзьями. Через положенное время, которое казалось им непомерно долгим, в лабораторию принесли блистающий новизной металлический корпус генератора. К нему присоединили вакуумный насос. Теперь началась длительная и кропотливая работа, которую во всех лабораториях мира называют вакуумной тренировкой. Корпус оказался безупречным. Нужный вакуум получался неожиданно быстро. Можно было приступать к опробованию системы подачи аммиака.

И тут началось. Оказалось, что дозаторы, при помощи которых регулировалась подача исследуемых веществ в радиоспектроскопы, для аммиака не подходят. Они становятся жертвой коррозии. Пришлось срочно придумывать замену. В это же время принесли сортирующую систему. Электроды, отполированные до зеркального блеска, были промыты по всем правилам вакуумной гигиены. При испытании система выдержала заданное напряжение с большим запасом. Но через короткое время после пуска пучка молекул аммиака начались пробои. До этого никто не совмещал в условиях вакуума химическое действие аммиака с высоким напряжением. По-видимому, при этом из ничтожных загрязнений, оставшихся на поверхности электродов, начинали выделяться какие-то газы, что приводило к пробою. Пришлось подбирать новую технологию очистки электродов.

Много хлопот доставили и объемный резонатор с его системой точной настройки и приемник радиоволн. Этот приемник, рассчитанный на волну около 1,26 сантиметра, должен был работать и в режиме радиоспектроскопа, что необходимо в период наладки, и в режиме обычного приема. Причем в режиме приема нужно было обеспечить чувствительность намного большую, чем необходимо для приема расчетной мощности молекулярного генератора. Ведь никто не ждал, что расчетная мощность будет достигнута сразу. Для наладки нужны были и точная система измерения частоты и много других вспомогательных систем и устройств.

Нужно ли говорить, что в такие периоды ученые, которые и без того не знают, что такое нормированный рабочий день, засиживались в лаборатории до поздней ночи?

И вот наступил Этот День.

СВЕРШЕНИЕ

ПОБЕДА

Два молодых человека не отрываясь смотрели на экран осциллографа. Они видели светящуюся линию, середина которой плавно уходила вниз и вновь вздымалась к прежнему уровню. Кривая больше всего напоминала парящую птицу. Так изображают птиц дети. Так рисовали их на своих картинах и старые японские мастера.

Один из физиков медленно вращал ручку прибора, и изгиб кривой постепенно уменьшался, пока она не превращалась в прямую линию. Затем на месте провала возникал плавный подъем. Действуя очень осторожно, можно было заставить кривую вознестись вверх так же, как она только что изгибалась вниз. Потом кривая опять выпрямлялась, и, наконец, на ней снова возникал провал.

Еще несколько дней назад это казалось очень интересным и важным. Но теперь изящная кривая вызывала досаду и отвращение. Ведь не для этого же, в самом деле, разбирали они прибор, полировали его детали, вновь и вновь откачивали из него воздух!

— Рискнем? — спросил Прохоров. Басов только кивнул. Движение руки. Стрелка вольтметра подскочила еще на несколько тысяч вольт. Вчера при этом неизбежно возникал пробой. Но теперь все было спокойно.

В который раз медленно вращается ручка прибора. И опять кривая превращается в прямую и начинает изгибаться вверх. Вдруг на ее вершине возникает узкая полоска.

Они переглянулись. Неужели?!

Все так же методично движется рука, вращающая рукоять прибора. Медленно увеличивается и расширяется полоска. И вот в ее середине отчетливо виден поясок.

— Типичный бантик, — сказал один.

— Работает, — отозвался второй.

Так в лаборатории колебаний Физического института Академии наук СССР родился молекулярный генератор, поразительный прибор, сердцем которого был не мотор, не шестерни, не какие-нибудь другие детали. Главную роль в нем играли невидимые глазу молекулы аммиака. Они делали здесь то, чего никто никогда от них не ждал. Они излучали радиоволны.

Именно бантик на капризной кривой и возвестил ученым о долгожданной минуте.

Американскому ученому Франклину приписывают такие слова: «К чему новорожденный ребенок?»

Действительно, кто знает, что из него получится, что внесет он в жизнь.

Молекулярный генератор, как всякий новорожденный ребенок, обещал многое или ничего: все зависело от того, как пойдет дело дальше, чему его научат родители.

Никто не знает, как распространяются слухи. Физики убеждены, что они летят быстрее, чем свет. А это значит, что они не материальны. И на сей раз слух непостижимо проник через стены, полы и потолки. И распахнулась дверь, и в комнату начали входить научные работники, лаборанты, механики. Каждый хотел взглянуть на бантик, поздравить, а если позволят, и покрутить ручку. Конечно, такой чести удостаиваются далеко не все. Для этого нужно пользоваться большим уважением или принять хоть малое участие в работе, когда она еще безнадежно далека от завершения. И первым по праву положил руку на рукоять прибора В. В. Никитин, монтировавший и налаживавший радиосхемы, — в ФИАН он пришел радиотехником, потом стал студентом-заочником, а затем инженером, а позже научным сотрудником и кандидатом наук. Никитина сменил Д. К. Бардин, талантливый механик, сделавший, как говорят физики, «все железо». А «все железо» — это и точнейший резонатор из специального сплава — суперинвара, и корпус из нержавеющей стали, и конденсатор, и многое другое. И только потом к прибору прорвался маститый теоретик и неожиданно для всех закрыл вентиль баллона, из которого поступал аммиак. Бантик исчез и, к всеобщему восторгу, возник вновь, как только был открыт вентиль.

— Наука торжествует, — изрек теоретик и отошел в сторону.

Так физики празднуют победу. И при этом говорят только о том, что надо проверить, и измерить, и переделать. И праздник переходит в трудовые будни. И по-прежнему по утрам уборщица, выметая обрезки проводов и капли олова, вздыхает: «Кванты, кванты…» — и толкует своим подругам, работающим на других этажах:

— А мы запустили молекулярный генератор… Генератор. Что такое генератор? Генератор — это источник. Генераторы электрического тока достигли в наши дни огромных мощностей — в 300 и даже 500 тысяч киловатт.

Какова же мощность молекулярного генератора? Около одной миллиардной доли ватта. Жужжание комара куда мощнее.

Так что же привлекло к этому немощному прибору помыслы молодых ученых? Они стремились не к мощности, — а к точности. В их детище не было радиоламп, привычных конденсаторов и сопротивлений, всех этих деталей, порча которых терзает нервы владельцев радиоприемников и телевизоров. Нерукотворные молекулы, дружно-излучавшие радиоволны в новом приборе, сообщали ему свои качества — неизменность, постоянство, свойственное творениям природы. Расчеты показывали, что при помощи нового прибора можно измерять время так точно, как это никогда не удавалось людям. Часы, в которых функции маятника исполняет молекулярный генератор, и за 1000 лет не ошибутся ни на секунду. Конечно, в обыденной жизни такие часы ни к чему. Они необходимы для управления космическими ракетами, штурманам кораблей и самолетов, для решения многих технических задач.

Научные открытия зачастую рождаются близнецами. В это же время в США заработал прибор, которому его создатель Таунс и его сотрудники Гордон и Цайгер дали странное имя «мазер», составленное из первых букв фразы, описывающей на английском языке принцип действия прибора. После первых сообщений всем стало ясно, что в Физическом институте в Москве и в Колумбийском университете в Нью-Йорке независимо проводилась работа с одинаковым результатом.

Вскоре молекулярный генератор появился и в Институте радиотехники и электроники Академии наук, и в Метрологическом институте в Харькове, и во многих других местах. А затем в работу включилась и промышленность. Басов и Прохоров были вдохновителями всех основных работ в новой области науки, развившейся из их исследований.

…Приходилось ли вам следить за эстафетным бегом? Спортсмены, сменяя друг друга, несут палочку от старта до заветного финиша. И плох тот бегун, который, переминаясь с ноги на ногу, дожидается в начале своего участка, пока товарищ протянет ему эстафету. Такого никто не возьмет в команду. По его вине будут потеряны драгоценные мгновения. Хороший спортсмен начинает бег рядом с товарищем заранее, до того как тот окончит свою дистанцию, и палочка передается на полной скорости. Нелегко овладеть этим искусством.

Еще сложнее научная эстафета. Ее участники зачастую не видят друг друга и передают свою эстафету через редакции различных журналов. Реже им представляется возможность кинуть палочку в зал конференции или симпозиума. Поднимай, кто хочет, и неси дальше. И так, помогая друг другу и соревнуясь между собой, ученые несут светоч науки вперед и выше, к сияющим вершинам знания.

Вскоре после того, как приборы-близнецы заработали в Москве и НьюЙорке, Прохоров и Таунс встретились на заседании Фарадеевского общества в Лондоне. Английские коллеги пригласили их, чтобы услышать о приборах, которые ознаменовали собой рождение новой области науки.

Прохоров прочитал подготовленный вместе с Басовым доклад, в котором излагалась созданная ими теория работы молекулярного генератора. В ней квантовая механика впервые объединялась с теорией колебаний. Этот союз позволил предвычислить условия, при которых генератор начинает работать, рассчитать даваемую им энергию, частоту его колебаний и определить влияние на эту частоту различных внешних воздействий. Такая теория очень напоминала теорию работы радиопередатчика, но молекулярный пучок заменял в ней и колебательный контур и источник питания обычного генератора.

Измерения, проведенные Басовым и Прохоровым в течение первых месяцев работы молекулярного генератора, подтвердили правильность их теории.

Таунс тоже рассказал о своих работах, но его теория оказалась более примитивной, а некоторые элементы конструкции делали американский прибор менее надежным. Дело в том, что, понимая необходимость вымораживания аммиака, Таунс и его сотрудники решили охлаждать жидким азотом непосредственно электроды сортирующей системы. В результате на электроды постепенно намораживался в виде белого инея твердый аммиак. Через некоторое время в сортирующей системе возникали пробои, и прибор приходилось выключать для размораживания и откачки аммиака. С этим, конечно, можно было бы примириться, но нарастание слоя аммиака еще задолго до наступления пробоев влияло на эффективность сортирующей системы. В результате постепенно менялась интенсивность пучка активных молекул, а это сильно воздействовало на частоту генерации. Не очень удачен был и выбор резонатора.

Но каковы бы ни были отдельные особенности обоих молекулярных генераторов, это, по существу, приборы-близнецы, сходства между ними много больше, чем различий.

Различия касались деталей. Общность охватывала основные принципы — получение энергичных молекул методом сортировки в электрическом поле и введение обратной связи при помощи резонатора.

Главную трудность в каждом деле представляет правильное определение цели работы и первый шаг в новом неизведанном направлении. Какие бы трудности ни возникали дальше, сколько остроумия и труда ни потребуется для их преодоления, они будут преодолены, если генеральный курс проложен верно. Весь прогресс человечества обеспечивается сочетанием бесстрашных прорывов в неизвестное, совершаемых одиночками, и титанического труда по освоению целины и уборке урожая, остающегося на долю большинства.

К чести Басова, Прохорова и Таунса, они не застыли на постаменте, подняв в будущее указующие персты, они не отошли от дальнейшей работы. Более, того, как мы увидим дальше, они не ограничились и разработкой найденной ими жилы. Все трое, как истинные новаторы, и в дальнейшем с успехом прокладывали новые тропы в незнаемое, с неутомимостью истинных тружеников прорубали широкие просеки в неведомую страну квантовой электроники.

Басов и Прохоров заботились и о расширении фронта исследований. Они размножили чертежи своего первого молекулярного генератора и щедро раздавали их всем желающим идти их путем.

Лаборатория колебания ФИАНа стала местом паломничества, в которое непрерывным потоком шли посетители, унося с собой не только чертежи, но и советы и, пусть небольшой, опыт обращения с новорожденным прибором. Теперь каждый желающий работать в области квантовой электроники мог погрузиться в ее истоки, покрутить ручки молекулярного генератора, наблюдая при этом за кривыми на экране осциллографа.

ЗА ПЕРВОЙ ЛАСТОЧКОЙ

Первый младший брат молекулярного генератора заработал в Институте радиотехники и электроники АН СССР, или попросту ИРЭ, если следовать принципу бытующих у нас сокращений.

И это произошло совсем не случайно. При организации ИРЭ в 1954 году в него из лаборатории колебаний ФИАНа перешла группа под руководством М. Е. Жаботинского. Он принадлежал к младшему поколению школы Мандельштама — Папалекси. Еще студентом он посещал семинары Л. И. Мандельштама, а дипломную работу выполнил под руководством М. А. Леонтовича. В ней развивалась теория рамочной антенны, работающей под землей, и теория распространения электромагнитных волн в трубах (в то время, в 1940 году, еще не было придумано слово «волновод»). В армии он, как и Прохоров, попал в разведку, но бес изобретательства не оставил его и на фронте. Войну он кончал в лаборатории, прерывая научную и конструкторскую работу для участия во фронтовых испытаниях. После войны под руководством С. М. Рытова прошел аспирантуру ФИАНа, защитив диссертацию через год после Прохорова. Помогал Прохорову в работе с синхротроном, а затем занялся применением спектральных линий для стабилизации частоты.

Еще в старом ФИАНе на Миусах Жаботинский вместе с аспиранткой Наташей Ирисовой и дипломником Виктором Веселаго создал систему, позволяющую управлять частотой клистрона (генератора сантиметровых волн) с помощью спектральной линии аммиака. Они научились сверять убегающую частоту клистрона с неизменно точной частотой молекул аммиака, как сверяем мы время от времени свои наручные часы по часам Спасской башни Кремля. Это была хитрая задача. Чтобы поставить наручные часы на точное время, нам нужно просто подвинуть стрелки. И все. Чтобы сверить частоту излучения радиогенератора с «позывными» такой крошечной радиостанции, как молекула, нужны особая изобретательность, своеобразная ловкость и обширные знания. Системы сравнения — это сплав физики и радио. Это узел, в котором завязаны фотоны и молекулы, волноводы и провода. Наука о квантовых стандартах частоты — это особая наука, без которой двадцатый век в электронике, возможно, не стал бы двадцатым.

На первых порах молодых ученых постигла неудача. Спектральная линия аммиака, получавшаяся в радиоспектроскопе и игравшая роль своеобразной стрелки, была слишком широкой и не позволяла добиться нужной им точности. Разве можно было бы прочесть точное время на циферблате, если бы часовая стрелка была толщиной в час или даже в минуту?

Тогда они обратились к другим «часам» — атомы цезия в установке, разработанной американским физиком Рэмси, обещали более узкие линии. Такие спектральные линии могли блестяще сыграть роль частотомера. С их помощью можно было очень точно мерить частоту колебаний генератора радиоволн и управлять его частотой.

Однако, узнав о рождении молекулярного генератора, они, естественно, решили применить его в своих работах. Не удивительно, что, опираясь на дружескую помощь Басова и Прохорова, они смогли сделать это сравнительно быстро.

Главное внимание в ИРЭ было обращено на создание специальных радиосхем, позволяющих использовать выдающуюся стабильность молекулярного генератора для проверки других приборов, работающих в радиодиапазоне. Без этого он оставался бы в какой-то мере «вещью в себе». Прежде всего они создали установку, позволяющую за несколько секунд калибровать кварцевые генераторы по сигналу молекулярного генератора. И делали это с фантастической точностью. Ошибка при этом не превышала двадцатой части от миллиардной доли измеряемой величины. Такая точность была достигнута впервые.

Работая в тесном контакте с Басовым и Прохоровым, они занялись усовершенствованием молекулярного генератора. Прежде всего они подумали о том, что не везде есть жидкий азот и не всегда под рукой' мощные вакуумные установки.

Как обойтись без них, не снижая выдающихся качеств молекулярного генератора?

Начались эксперименты. Ученые отыскивали наилучшие режимы работы генератора, видоизменяли его детали, подбирали более удачные источники, мудрли с откачкой.

Наконец, изменив устройство источника пучка молекул аммиака, им удалось сделать пучок гораздо более узким. Теперь большинство молекул попадало в отверстие резонатора. Для нормальной работы генератора в него достаточно было впускать в сотни раз меньше молекул аммиака, чем в старых малонаправленных источниках.

Это, казалось незначительное, достижение не замедлило дать плоды. Теперь можно было обойтись без вымораживания аммиака. С откачкой могли справиться сравнительно небольшие вакуумные насосы. Так ученым удалось создать молекулярные генераторы, способные работать в условиях, при которых обеспечение жидким азотом связано с большими трудностями.

Но жизнь многообразна. Встречаются и такие случаи, когда жидкий азот имеется в изобилии, но применению молекулярного генератора мешают вакуумные насосы. Они громоздки, требуют большого расхода энергии. Некоторые из них вызывают вибрацию и шум.

Новый экономичный источник молекулярного пучка помог решить и эту задачу. На его основе был создан молекулярный генератор, работающий без обычных вакуумных насосов. Их ролы с успехом выполнял древесный уголь, охлаждаемый жидким азотом. Еще замечательный химик Зелинский, изобретатель противогаза, использовал в нем способность древесного угля жадно поглощать различные газы. 'При охлаждении эта жадность чрезвычайно возрастала. Древесный уголь превращался в своеобразный вакуумный насос. Конечно, он не был ненасытным. Но в сочетании с новым экономичным источником молекулярного пучка очень небольшое количество угля не насыщалось в течение нескольких суток. А во многих случаях это вполне достаточный срок.

Наряду с такими чисто техническими усовершенствованиями в ИРЭ велись настойчивые поиски путей повышения точности генерации.

В некоторых случаях радистам недостаточно иметь одну стабильную частоту. Недаром говорят, что требования практики — одна из сил, движущих науку. Пока не возник этот заказ, никто не догадался спросить уравнения — не слишком ли много хотят от первенца новой науки? Но когда вопрос был поставлен, уравнения ответили — это возможно, и даже подсказали, как зажечь свечу с двух концов.

В этой работе принимала активное участие молодая сотрудница ИРЭ Галя Васнёва, окончившая тот же МИФИ, в котором в свое время учился Басов. Еще дипломницей она пришла в ФИАН и, включившись в работы по стабилизации частоты, продолжила эти исследования в новом институте. Когда я с ней познакомилась, это была тоненькая застенчивая девушка; защитного цвета блуза с погончиками, какие были модны в послевоенные годы, особенно подчеркивала ее женственность и юность. Как-то не верилось, что Галя может стать серьезным и деловым ученым. Однако уже через пару лет я увидела ее портрет в одной из московских газет. То, над чем она работала, привлекло внимание. Это была важная и серьезная работа даже для зрелого физика.

Она начала с того, что позади резонатора, в котором молекулы генерировали радиоволны, поставила второй резонатор, настроенный на другую частоту. На что она рассчитывала? Зачем пошла на усложненне?

Проследим за нитью ее рассуждений. Она обратила внимание на то, что не все молекулы, отбираемые сортирующей системой, обладают одинаковой энергией. Оказывается, пучок содержит несколько «сортов» активных молекул. Каждый из этих сортов немного отличается от других и поэтому способен излучать радиоволны, чуть-чуть различающиеся по частоте.



Поделиться книгой:

На главную
Назад