Тысячелетиями алмазы ассоциировались с достатком и богатством — блеск ограненных камней украшал перстни вельмож, короны монархов и тиары понтификов. К сожалению, у алмазов есть и своя темная сторона — почти у каждого крупного камня есть своя кровавая история, известные случаи, когда алмазами небольшого размера финансировались локальные конфликты и небольшие гражданские войны.
Твёрдость алмазов и блеск граней бриллиантов многие века заставлял алхимиков и химиков пытаться получать эти камни искусственным путём. Первый удачный синтез алмаза был осуществлен в почти одновременно в США и Швеции. Для синтеза исследователи воспользовались тем способом, с помощью которого алмазы формируются в земной коре — первая технология получения искусственных алмазов основывалась на превращении графита в алмаз при высоких температурах (более 3000 °C) и высоких давлениях (более 130 атмосфер). Демонстрация возможностей получения алмазов впечатляла, но, увы, затраты энергии на создание температуры и давления, необходимых для такого получения алмазов, не позволяли рассматривать новую технологию как способ промышленного производства — по расходам на их получение первые синтетические алмазы стоили гораздо дороже, чем алмазы природного происхождения. С той поры способ получения алмазов сжатием при высокой температуре был модернизирован, использование катализаторов позволяет снизить и давление, и температуру синтеза. Конечно, этот способ не идеален — если кристалл алмаза в пару микрон диаметром можно вырастить за пару минут, то алмаз в один карат нужно растить несколько недель.
Тем не менее, разработанная технология означает, что в настоящее время появилась возможность синтезировать алмазы, практически неотличимые от природных, из любого углеродсодержащего материала. Конечно, отличить природные алмазы, сформировавшиеся в кимберлитовых трубках, от алмазов, синтезированных, скажем, из наших волос, можно с помощью специального оборудования (например, определив их изотопный состав), но принципиальное значение такая возможность представляет только для алмазов, поступающих на рынок ювелирных изделий (природные алмазы дороже синтетических) — химические и физические свойства синтетических алмазов полностью идентичны свойствам природных камней.
С точки зрения химика или физика, описывая физические, химические и электронные свойства алмазов, мы рискуем слишком часто использовать превосходную форму сравнения. До настоящего времени алмаз является самым твёрдым материалом, известным человеку и одним из самых химически устойчивых веществ — он выдерживает воздействие самых сильных кислот. У алмаза также наиболее высокая теплопроводность из известных материалов, он легко рассеивает тепло, поэтому алмаз всегда прохладен на ощупь. Благодаря распределению электронов алмаз можно считать хрестоматийным примером диэлектрика, и опять же благодаря своему электронному строению алмаз — твердый материал с идеальной пропускаемостью электромагнитного излучения в широкой области спектра. Все эти свойства делают алмазы лучшими друзьями не только девушек, но и учёных. Твердость и химическая стойкость алмаза позволяет применять его для изготовления защитных покрытий, устойчивых к истиранию, химической коррозии и радиационному повреждению. Высокая теплопроводность и диэлектрические свойства идеально подходят для изготовления электроники. Прозрачность алмаза позволяет делать из него оптические устройства, а биологическую совместимость алмаза можно использовать, изготавливая покрытия для имплантов. Эти свойства алмазов известны несколько веков, почему же случаи практического применения алмазов достаточно редки? Причина этому в том, что как размеры природных алмазов, равно как и алмазов синтетических, тех, которые получают при высоких давлениях и высоких температурах, ограничены и обычно не превышают нескольких миллиметров, и их можно резать и формовать только вдоль определённых граней. Сложности с обработкой алмазов не дают применять их в большинстве областей, в которых их можно было бы применить.
Около десятилетия назад появилось решение, позволяющее расширить возможности применения алмазов — был разработан новый способ их синтеза при низком давлении с помощью метода химического осаждения из газовой фазы. Для этого газовую смесь, состоящую из 99 % водорода и 1 % метана пропускают над нитью накала, в результате чего происходит термическая активация компонентов газовой смеси, и в ней образуются реакционноспособные радикалы водорода и метильные радикалы, реакции которых приводят к тому, что газ, осаждаясь на твердой охлажденной подложке, формирует на ней тонкую плёнку из алмаза. Первоначально образуется углеродная плёнка, состоящая из и графита, и алмаза, но в условиях реакции отложения графита разрушаются, и остается только алмаз. Формирующиеся алмазные плёнки поликристаллические, они состоят из кристаллитов алмаза микронного размера. Несмотря на непривлекательный внешний вид, такие пленки можно осадить на поверхности, которые отличаются друг от друга и размером, и материалом, и формой, что, очевидно, увеличивает шансы практического применения алмазов.
Конечно, для полноценного применения алмазных плёнок, полученных с помощью химического осаждения паров, ещё необходимо выяснить, какие химические процессы протекают (и протекают ли) там, где алмазная плёнка контактирует с поверхностью, на которую её нанесли, а также уточнить наиболее оптимальный способ применения плёнок — алмазные плёнки предоставят химикам, физикам, специалистам по материаловедению и инженерам многие годы работы. Однако эти перспективы уже сейчас позволяют говорить, что алмазы собираются завести гораздо более широкий круг друзей, чем у них был до недавнего времени.
7. Азот
Достаточно часто в блогах, статьях и даже школьных планах поурочного планирования со ссылкой на Большую Советскую энциклопедию 1952 года приводится цитата, сравнивающая «социалистический» и «капиталистический» азот. Действительно, в соответствующей словарной статье такое противопоставление есть, но, справедливости ради, её авторы не придумали это сравнение сами, а процитировали лозунг, появившийся лет за двадцать до издания энциклопедии.
Полностью этот энциклопедический пассаж, конечно, не лишен идеологизированности, но звучит немного более мягко: «
Несмотря на то, что воздух вокруг нас примерно на 80 % состоит из азота, и открывать азот человечеству пришлось долго — до азота алхимики и химики не только узнали о всех его «соседях» по Периодической системе — фосфоре, мышьяке, сурьме и висмуте, но и начали активно использовать их соединения. С другой стороны, все элементы из группы азота, кроме самого азота, твердые, а то, что твердые вещества, «земли» не были единым элементам, стало известно уже даже во времена алхимии. А вот осознания того, что воздух не является единым элементом пришлось подождать до эпохи «пневматической химии» — этапа развития химии, на котором был определен и состав воздуха, и получены, и изучены другие газы.
У истоков открытия азота стоял Генри Кавендиш, который изучал «связанный» или «мефитический воздух», впервые полученный шотландским химиком Джозефом Блэком в 1750-х годах — углекислый газ. «Связанным» его называли благодаря получению — обработке кислотой некоторых минералов, например, известняка, из которого он высвобождался. «Мефитическим», то есть ядовитым воздухом углекислый газ был назван по той причине, что он не поддерживал дыхание лабораторных животных, быстро убивая их. После ряда экспериментов Кавендиш посчитал, что получил другую форму ядовитого воздуха — он обнаружил, что газ, остающийся после горения свечи в закрытом объёме тоже смертелен для животных (ни азот, ни появившийся в результате горения углекислый газ дыхание не поддерживают). Однако после серии экспериментов Кавендиш понял, что его «мефитический воздух» — смесь. При пропускании газовой смеси, получившейся в ходе экспериментов Кавендиша, через раствор щелочи или негашёную известь часть газа поглощалась, причем из твердых продуктов реакции действием кислоты можно было выделить тот же «мефитический воздух», который описывал Блэк (об этом можно было судить по плотности газа). Часть же газа щелочью не поглощалась, образуя весьма инертный и не поддерживающий дыхание «воздух», плотность которого была чуть-чуть меньше, чем атмосферного воздуха — это и был азот (молекулярная масса азота N2 равна 28, молекулярная масса атмосферного воздуха равна 29). Кавендиш не опубликовал свои результаты, а сообщил о них в письме коллеге Джозефу Пристли, одному из первооткрывателей кислорода. В конечном итоге, первооткрывателем азота можно считать шотландского химика Даниэля Резерфорда (дяди Сэра Вальтера Скотта, автора рыцарских и исторических романов). В 1772 году Резерфорд защитил магистерскую диссертацию «О связанном или мефитическом воздухе», в которой расписал основные свойства азота (инертное вещество, не реагирует со щелочами, не поддерживает горения, непригоден для дыхания).
Название «азот», происходящее от древнегреческого «безжизненный» этому элементу в 1787 году дал, занимавшийся в то время упорядочением химической номенклатуры Антуан Лавуазье, опираясь все на те же свойства, что, азот, дескать, воздух испорченный, дыхание не поддерживающий и быстро убивающий любого, кто его вдохнёт. Спустя некоторое время оказалось, что такие свойства можно приписать любому газу, кроме разве что кислорода, длительное вдыхание которого, впрочем, тоже не безопасно для организма. Ну а вскоре после того, как стало ясно, что азот не такой уж и «безжизненный» и входит в состав молекул жизни — белков, нуклеиновых кислот, номенклатурное латинское название азота и название азота на ряде языков сменилось на «
Приручить азот, точнее использовать в качестве сырья для производства азотсодержащий удобрений и азотной кислоты, удалось только в XX веке. «На бумаге» задача решалось легко — заставляем азот воздуха реагировать с кислородом воздуха же, получаем оксиды азота, которые превращаем в кислоту или нитраты, но на практике ходить приходилось по огромным и крутым «оврагам» — заставить азот реагировать с кислородом удавалось только в лаборатории и только при температуре не менее 3000 °C, что, естественно не могло стать основой для промышленного производства. Причина столь большой инертности азота в чрезвычайно прочной тройной связи между атомами в двухатомной молекуле N2 (до сих пор в лабораторной практике для создания инертной атмосферы можно использовать не только инертный газ аргон, но и азот).
В начале 1900-х годов химические технологи первоначально пошли путём Кавендиша и заменили нагрев электрическим разрядом. В 1903 году норвежские ученые Кристиан Олаф Бернхард Биркеланд и Самуэль Эйде сконструировали в электрическую печь для промышленного получения азотной кислоты и нитрата кальция (который с тех пор стал называться «норвежской селитрой») из воздуха. Метод, получивший название «Метода Биркеланда-Эйде» требует больших затрат и может применяться только при условии наличия дешёвой электроэнергии (например, приливной, геотермальной и т. д.) и в настоящее время практически не имеет промышленного значения.
Разработать же применяющийся сейчас способ связывания атмосферного азота удалось немецким ученым Фрицу Габеру и Карлу Бошу, которые вместо того, чтобы и дальше штурмовать идущую с поглощением реакцию горения азота в кислороде, нашли обходный манёвр. Этим маневром стала протекающая с выделением теплоты равновесная реакция азота с водородом, приводящая к образованию аммиака, который затем и сжигают с образованием оксидов азота. Процесс связывания азота по Габеру-Бошу дешевле, чем метод Биркеланда-Эйде, но и в этом случае расходы энергии колоссальны — на связывание азота в аммиак ежегодно тратится около 1 % всей энергии, вырабатываемой человечеством. Большей частью все эти кило- и мегаватты тратятся на сжатие и нагрев азото-водородной смеси, необходимых для того, чтобы направить равновесие туда, куда надо. В 1918 году Фриц Габер получил Нобелевскую премию по химии, что тут же вызвало негодование многих учёных, особенно являющихся гражданами стран, воевавших с Германией во время Великой войны. Причина этого в том, что Габер не только создал условия для ведения современного сельского хозяйства с химическими удобрениями, но стал автором концепции химической войны — первая газобалонная атака кайзеровской армии на франко-бельгийские позиции 22 апреля 1915 году проходила под непосредственным руководством будущего Нобелевского лауреата.
Полученный по методу Габера аммиак может стать аммиачной селитрой, которую можно применять и как удобрение, и как материал для бомб-самоделок — связывание азота действительно может использоваться двояко. А вот процесс, в результате которого молекулярный азот выделяется, используется для спасения жизней. В системе, управляющей подушками безопасности в автомобиле имеются емкости с азидом натрия (NaN3 — восстановитель) с нитратом калия (KNO3 — окислитель). При аварии эти вещества смешиваются и вступают в химическую реакцию, в результате которой образуется большой объем азота, надувающего подушку безопасности, тем самым сохраняя жизнь и здоровье тем, кто находится в автомобиле.
8. Кислород
Первая революция на нашей планете началась очень давно, а её плодами мы пользуемся до сих пор, точнее — она создала нас с вами.
На рубеже архея и протерозоя 2.2–2.6 миллиардов лет назад произошло глобальное изменение состава атмосферы Земли, которое называют «Великим кислородным событием» или «Кислородной революцией». 2.8 миллиардов лет назад появились цианобактерии, которые освоили новый способ преобразования солнечной энергии в химическую — активируемая солнечным светом комбинация углекислого газа и воды, побочным продуктом которой был кислород (фотосинтез, то есть превращение солнечной энергии в химическую, существовал и ранее, но в фотосинтетических процессах, свойственных более эволюционно древним организмам, кислород не выделялся). Выделяющийся при фотосинтезе цианобактерий кислород, токсичный для многих организмов той эпохи, стал менять ландшафт нашей планеты — окислять восстанавливающие компоненты атмосферы и земной коры. В какой-то момент содержание кислорода в атмосфере резко возросло, газовая оболочка Земли превратилась из восстанавливающей в окисляющую, простейшие организмы, для которых кислород был ядом, вымерли или оказались в бескислородных «резервациях» биосферы — анаэробных карманах. Существование больших количеств молекулярного кислорода в атмосфере Земли привело к образованию озонового слоя, позволившего живым организмам расширить области своего обитания существенно расширившего границы биосферы, и привело к распространению дающего большее количества энергии кислородного дыхания. Началась эра кислорододышащих или аэробных форм жизни, эволюция которых, привела к появлению в том числе и человека.
Сейчас наша атмосфера содержит около 21 % кислорода (по объёму) или 23 % (по массе), но кислород не только в воздухе, которым мы дышим. Если говорить о кислороде как о химическом элементе, а не о молекуле О2, он третий по распространённости элемент во Вселенной (после водорода и гелия) — он является основным продуктом термоядерного синтеза в массивных звёздах-гигантах. В земной коре кислород — самый распространённый элемент, земные скальные породы содержит до 46 % по массе, главным образом, в форме диоксида кремния. Большая часть металлов, которые мы добываем, содержится в земной коре в форме оксидов — бокситные руды алюминия, железняки и т. д. Одно из самых важных соединений кислорода — вода, колыбель жизни, любая биологически активная молекула в нашем организме — белки, нуклеиновые кислоты, сахара и жиры содержат кислород.
Благодаря кислороду работают не только живые системы. Кислород (и воздух его содержащий) — самые распространённый и доступный окислитель в химической промышленности. Его применяют для окисления углеводородов в спирты, альдегиды и органические кислоты. В металлургии кислород применяется для обжига сульфидных руд и для удаления углерода из чугуна и переплавки чугуна в сталь. Кислород-ацетиленовая горелка может достигать температуры до 2000 °C и применяться как для резки, так и для сварки металлов. Использовавший в качестве топлива водород, а качестве окислителя кислород жидкостный ракетный двигатель РД-0120 применялся в качестве двигателя второй ступени ракеты-носителя «Энергия», доставившей на орбиту советский космический корабль многоразового использования «Буран».
С пальмой первенства за открытие кислорода вопрос не менее запутанный, чем с первооткрывателем азота. Название «кислород — oxygenium» этому элементу дал позволивший химии перейти на новый уровень Антуан Лоран Лавуазье, который, собственно и ввёл уже близкое для нас, но не окончательное понятие «химический элемент» для обозначения веществ, которые нельзя было разрушить с помощью каких-либо методов химического анализа (сейчас такие вещества называют «простыми»). До Лавуазье и появления понятия «элемент» образование кислорода наблюдали и описывали Джозеф Пристли — при разложении оксида ртути, и Карл Шееле — при разложении селитры. И Пристли, и Шееле считали, что они получили «дефлогистированный воздух» — воздух, лишённый некоей первичной материи, наполняющей все горючие вещества и выделяющейся при горении. Лавуазье, конечно, известен нам тем, что отказался от флогистонной теории и разработал современную теорию горения и кислорода как газа, необходимого для горения, однако эти рассуждения можно считать просто другой (хотя и более строгой) интерпретацией открытий, сделанных ранее Кавендишем и Шееле.
И ещё одна форма молекулярного кислорода, важная для сохранения жизни на Земле — трикислород или озон, О3. Озон ядовит, более того токсичность озона выше токсичности хлора, и его вдыхание (а образуется он в результате горения автомобильного топлива или при длительной работе лазерных принтеров и множительной техники), может приводить к болезням органов дыхания. Но озон, опасный для нас в тропосфере, нижней области атмосферы, защищает нас и все живое, располагаясь в стратосфере от ультрафиолетового излучения. В последнее время многие технологии, в которых используется хлор (отбелка бумаги, дезинфекция водопроводной воды) заменяются на озоновые технологии. Да, сам по себе хлор менее опасен, чем озон, но при его применении образуются опасные и зачастую канцерогенные хлорсодержащие органические и неорганические вещества, а «химический след» озона менее опасен — это, как правило, перекись водорода, быстро разрушающаяся до воды и кислорода О2 или кислородсодержащих органических соединений, которые хотя и тоже нельзя назвать полностью безопасными, но все же представляют не такую прямую и явную угрозу, как обладающая канцерогенностью хлорорганика.
9. Фтор
Одними из первых с соединениями фтора познакомились металлурги Европы. Уже в 15–16 веках сначала алхимики, а потом и отец минералогии Георг Бауэр, более известный как Георгий Агрикола, описали свойства минерала, способного снижать температуру плавления руды и шлака. Они называли этот минерал «флюор» или «флюорит» (от латинского
В России этот минерал, основной компонент которого фторид кальция (CaF2), стал известен под названием «плавиковый шпат». Интерес к этому веществу был вполне обоснован — технология извлечения металлов из руд и получения стекла развивалась, но печи, применявшиеся в химической промышленности того времени, не могли давать температуру, достаточную для плавления многих материалов, которые хотелось использовать в качестве сырья. Естественно, можно себе представить, какое значение для металлургов того времени имел минерал, ускоряющий процесс выплавки металлов и делающий металлургический шлак более текучим (текучесть шлака нужна была для эффективности отделения металлов от отходов производства). В 1670 году флюорит раскрыл себя с новой, неожиданной стороны — художник из Нюрнберга Ганс Шванхард обнаружил, что смесь флюорита и серной кислоты, нанесённая на стекло, позволяет матировать стекло и наносить на его поверхность рисунки. В 1725 году рецептура для травления стекла изменилась — твердый флюорит и серную кислоту заменили на жидкость, образующуюся в результате реакции CaF2 с концентрированной азотной кислотой. Так, вероятно, был впервые получен грязный раствор плавиковой кислоты. Чистую плавиковую кислоту (раствор, в котором содержалась только вода и HF) в 1768 году получил Андреас Сигизмунд Маргграф — один из последних ярких химиков, придерживавшихся флогистонной теории горения, а чистый фтороводород тридцать лет спустя смогли выделить Жозеф-Луи Гей-Люссак и Луи Тенар.
С момента открытия (а может и до открытия) плавиковая кислота разъедала не только стекло, но и здоровье, и жизни людей. Вот далеко не первая и увы не последняя жертва плавиковой кислоты — во время обработки окаменелостей 37-летний палеонтолог пролил себе на колени около сотни миллилитров плавиковой кислоты. Тут же он принял все меры предосторожности — промыл ноги водой из раковины в лаборатории и, ожидая приезда скорой помощи даже погрузился в институтский бассейн, чтобы увеличить эффективность промывания. Однако, через неделю после инцидента ему ампутировали ногу, а еще через неделю он скончался в больнице.
Чем же объясняется такая токсичность плавиковой кислоты при попадании на кожу? В отличие от своих других галогеноводородных кислот — соляной и бромоводородной (водные растворы HCl и HBr соответственно), плавиковую кислоту можно отнести к слабым кислотам — в водном растворе она распадается на ионы крайне неохотно. Слабая диссоциация на ионы и крайне небольшой размер молекулы HF позволяет ей легко проникать через кожу и быстро мигрировать вглубь организма, где, наконец, и происходит её диссоциация с образованием фторид-иона. Фторид-ион F— прочно связываются с катионами кальция и магния, превращая их в нерастворимые в воде соли, которые отлагаются в окружающих биологических тканях. Ионы кальция и магния — кофакторы многих ферментов (низкомолекулярные вещества, способствующие правильной работе белков-катализаторов). Без кофакторов ферменты, критически важные для обмена веществ, прекращают работать, клетки начинают умирать, вышечная ткань разжижаться, а костная — разрушаться. Быстрая потеря организмом ионов кальция может привести к тому, что сердечная мышца прекращает свою работу. Смертельно опасным может оказаться ожог концентрированной плавиковой кислотой, поражающий всего 2.5 % поверхности тела.
Токсичность и опасность плавиковой кислоты унесли жизни немалого числа химиков девятнадцатого века, среди которых были пытавшиеся выделить элементарный фтор бельгиец Полен Луйе и француз Жером Никле. В конечном итоге в 1886 году F2 удалось получить Анри Муассану, использовавшему платиновый реактор для электролиза сжиженной при низких температурах HF (судьбе Анри Муассана в «Жизни замечательных устройств» я посвятил отдельную главу). В промышленных масштабах фтор до сих пор получают с помощью метода Муассана.
Иронично, что, хотя элементный фтор и фтороводород смертельно опасны для человека, атомы фтора входят в состав 20 % фармацевтических препаратов, выведенных на рынок к настоящему времени. И антидепрессант прозак®, и понижающий уровень холестерина препарат липитор, и антибактериальное средство ципрофлоксацин своим успехам обязаны именно фтору и, если и демонстрируют какие-либо побочные эффекты, то явно не те, которые связаны с фторидными отравлениями. Реакционная способность фтора помимо прочего объясняется тем, что он образует очень прочные химические связи с другими элементами, в первую очередь — с углеродом. Благодаря этим прочным связям фторорганические соединения являются одними из самых устойчивых и инертных. Фактор фторирования, известный фармацевтам, позволяет изменить химические свойства всей молекулы. Так, введение фтора в фармакологически активную молекулу позволяет защитить её от разрушения ферментами, увеличив тем самым время, в течение которого такое вещество будет находиться в организме, не разрушаясь, а это в свою очередь, может снизить дозировку препарата. Другой эффект от введения фтора — форма молекулы-лекарства может быть слегка изменена, чтобы обеспечить ей более прочное связывание со своей мишенью — белком или нуклеиновой кислотой. Для этих манипуляций не нужен молекулярный фтор или плавиковая кислота, поэтому их можно осуществить в обычной химической лаборатории, снабжённой стандартными мерами безопасности.
Многие из нас могут поблагодарить фтор за белоснежную улыбку — в состав зубных паст, предотвращающих развитие кариеса, входят фторид натрия и фторфосфат натрия. Фторид-ион не столько сокращает содержание в ротовой полости вырабатываемых микроорганизмами кислот, разрушающих эмаль (нейтрализовать эту кислоту мог бы и обычный карбамид-мочевина), сколько участвует в процессе восстановления зубов, образуя фторапатиты (фторфосфаты кальция), более устойчивые к действию кислот, чем образующие зубную эмаль апатиты (фосфаты кальция). Впрочем, лекарствами и зубными пастами роль фтора в заботе о нашем здоровье не оканчивается — фторированные анестетики изофлуран и десфлуран заменили огнеопасный эфирный наркоз; фторированные углеводороды рассматриваются как материалы для получения «искусственной крови» — кислород растворяется во фторуглеводородах гораздо лучше, чем в любых других безопасных для организма жидкостях. Радиоактивный же нуклид фтора 18F применяется в позитрон-эмиссионной томографии, позволяющей, например, обнаружить злокачественные образования на ранних стадиях.
Фторсодержащими соединениями занимается не только тонкий органический синтез, отвечающий за получение новых лекарств, но и крупнотоннажная химия. Самый известный представитель этой крупнотоннажной химии — фторсодержащий полимер тефлон, не дающий продуктам пригореть на сковородке и защищающий спирали электрического чайника от накипи (истории и свойствам тефлона посвящена отдельная глава в «Жизни замечательных веществ). Нагрев и растяжение позволяет получить из тефлона материал Gore-Tex, применяющийся для изготовления мембранной одежды для занятий спортом и активного отдыха.
Долгое время фтор считали «диким зверем химии». И, хотя «тёмная сторона фтора» никуда не делась, мы вполне обоснованно можем сказать, что приручили его. Более того, известно очень немного фторсодержащих органических веществ природного происхождения, так что мы точно можем заявлять, что нашли этому элементу лучшее применение, даже чем сама Природа.
10. Неон
Название этого элемента давно стало именем нарицательным, обозначающим способность просто светиться: «
Будем откровенны — во многих «неоновых лампах» неона вообще нет. Неоном заполнена только газоразрядная лампа, дающая красный цвет. Остальные 150 цветов, которыми могут светить «неоновые» лампы получают, заполняя их аргоном или ксеноном, парами ртути и люминофором в различных соотношениях и при разном давлении. Но именно то красное свечение и объявило миру об открытии нового элемента.
Первым инертным газом, который был открыт на Земле, был аргон — он был выделен в 1894 году, в 1895 был получен первый «земной» образец гелия, и оказалось, что «солнечный металл» — совсем не металл (см. главу 2). В какой-то момент Сэр Уильям Рамзай осознал, что, если взглянуть на его находки через призму Периодического закона коллеги Менделеева, получается, что он нашел первый и третий химический элементы новой группы. Чтобы доказать обнаружение нового класса химических элементов, попутно подтвердив всесильность и верность Периодического закона Рамзаю нужно было заполнить пустоту между гелием и аргоном.
В 1898 году Рамзай с Моррисом Траверсом поставили удачный эксперимент — они позволили твёрдому аргону, окружённому сжиженным воздухом, медленно испаряться при пониженном давлении, отбирая фракцию, первой переходящую в газообразное состояние. Отобранную фракцию поместили в атомный спектрометр, и, как записал в дневнике Траверс: «
Популярный русскоязычный анекдот говорит, что Рамзай тут же телефонировал своему коллеге, лорду Рэлею, и между ними произошёл следующий диалог:
Естественно, такого не было, но реальная история получения элементом № 10 имени не менее анекдотично. Тринадцатилетний сын Рамзая предложил назвать новый газ «новумом» (от латинского — новый). Рамзай-папа одобрил идею Рамзая-сына, но решил, что греческое слово «неон» будет благозвучнее. Так, новый элемент занял свое временное положение в Периодической системе (первоначально инертные газы, как элементы, проявляющие «нулевую» валентность, были поставлены в нулевую группу таблицы Менделеева), а Рамзай в 1904 году получил Нобелевскую премию по химии.
Первоначально неон и другие инертные газы казались «неведомыми зверушками» Периодической системы — их инертность не давала возможности учёным представить, где же их можно применять. Потребовалось воображение французского химика, инженера и изобретателя Жоржа Клода, который первым догадался посмотреть, что произойдет, если пропускать электрический разряд через неон, находящийся в запаянной стеклянной трубке. Появлявшееся при пропускании тока красное свечение натолкнуло Клода на мысль создать источник света, альтернативный лампам накаливания. Он изготовил несколько таких лама (сейчас мы называем их газоразрядными) и впервые продемонстрировал их на Технической выставке в Париже 11 декабря 1910 года. Демонстрация поразила зрителей, но ни один из них не приобрел ни одной лампы — освещать свои дома красным светом люди не были готовы. Однако неудача с быстрой коммерциализацией новых ламп не обескуражила Клода — в 1915 году он запатентовал изобретение, а позже, пытаясь все же заработать на нём, понял, что с помощью стеклодува можно превратить трубки в буквы, которые будут светиться. Это предопределило применение неона — в 1923 году была организована компания Клод Неон, начавшая продажи неоновой рекламы в Соединённых штатах Первоначально неоновые лампы называли «жидкими огнями», а изготовленные из них вывески горели круглосуточно, завлекая любопытствующих прохожих. Неон получали фракционным сжижением воздуха, и нескольких тонн, ежегодно добываемых в 1920-е годы вполне хватало на нужды рекламы.
Неон не только заставил рекламу светить, он помог раскрыть секреты самого важного из источников света для нашей планеты — Солнца. В солнечном ветре (частицах, вырывающихся из Солнца и разлетающихся по Вселенной) содержится два изотопа неона — неон-20 и неон-22. Эти же изотопы находятся в лунных скальных породах, что, впрочем, неудивительно — миллиарды лет солнечный ветер «обдувал» наш естественный спутник, не имеющий защитной атмосферы, и частицы солнечного ветра попадали на Луну. Удивительно было другое — в глубине лунных пород соотношение 22Ne/20Ne было выше, чем у поверхности. Первоначально эти результаты интерпретировались тем, что когда-то Солнце было более активно, чем сейчас, выбрасывая частицы с большей энергией, которым удавалось «глубже зарыться» в породу. Однако изучение пробывшего в космосе два года металлического стекла — фрагмента потерпевшего в 2004 году крушение космического
11. Натрий
Когда я был студентом, у нас была доставшаяся от предшественников традиция — в майские праздники нагружаться рюкзаками, палатками и спальниками, садится в поезд Казань-Йошкар-Ола и отправляться на 100 километров от Казани праздновать День Химика у марийской реки Юшута в месте, известном как «Большая химическая поляна».
Однажды, на рубеже восьмидесятых и девяностых годов прошлого века, когда старые запреты уходили в прошлое, а новые ещё не появлялись, к поляне, где уже разбили свой лагерь студенты, аспиранты и молодые преподаватели химфака Казанского университета, в сумерки пришвартовалось несколько байдарок, и высадившиеся из них в стиле викингов из современных сериалов бывалые туристы (тм) заявили, что это поляна их, и нам, туристам-салагам, стоит сняться с бивака и найти себе новое место. Нас было больше раза в три, уступать поляну мы не хотели, и в результате переговоров стороны решили, что «места всем хватит», и бывалые туристы уже начали разгружать свои суда. Именно тут у берега оказался наш профорг, который в момент переговоров ходил за валежником, и с криком: «Ну что, начинаем праздновать», — бросил что-то в воду. Сумерки марийской лесной реки озарились вспышками, вниз по течению поплыли ярко-жёлтые огоньки, которые не тушила вода, и в свете этих огней байдарки с туристами довольно резво поплыли вверх по течению — трюк, для исполнения которого на быстрых реках марийской тайги требуется хорошая физическая подготовка вкупе с резким выбросом адреналина. Так бывалые туристы (тм) познакомились с реакцией между натрием и водой. Дело в том, что традиционным ритуалом Дней химика в те времена было стравливание в речной воде кусочков натрия, оставшихся в лабораториях химфака после очистки растворителей и синтезов. Студенты и аспиранты начинали готовиться к этому «фейерверку» с сентября месяца, и чем выше было пламя, тем более удавшимся считался очередной День химика. От той же традиции и пошла кричалка: «
Как это часто бывает в химии, металлический натрий опасен, если работать с ним без предосторожности, а его соединения есть на каждой кухне — ионы натрия являются важными для жизнедеятельности всех живых организмов. Высокая химическая активность натрия, в частности та самая его способность активно реагировать с водой и другими веществами приводит к тому, что в земной коре натрий встречается только в виде соединений и никогда — в свободном виде. Натрий достаточно распространён в Земной коре — он составляет 2.6 % от её массы. Наиболее распространёнными соединениями натрия в природе являются хлорид натрия (каменная или поваренная соль) и цеолиты.
Человечество давно применяет соединения натрия — во времена палеолита наши предки начали использовать каменную соль, не ставшую ещё поваренной (поваренное искусство еще не появилось), в качестве консерванта охотничьи трофеев. В Древнем Египте появляется первое письменное упоминание о производных натрия — появляется иероглиф, который читается как «натар» и обозначает смесь поваренной соли и кристаллической соды (десятиводного карбоната натрия Na2CO3×10H2O). В Египте натар применялся как мыло, а также был обязательной частью составов для бальзамирования и мумификации — натар хорошо поглощает воду, а его щелочная среда позволяла истреблять бактерии. Нетрудно заметить, что международное латинское название натрия, равно как и современное его название в русском и ряде других языков восходит к древнеегипетскому термину. Английское название натрия —
Металлический натрий, как и большинство металлов, серебристо-белый, его легко можно разрезать ножом или столь популярным в наших лабораториях скальпелем. Однако блестящим и серебристым натрий остается недолго — он быстро окисляется на воздухе и загорается при контакте с водой, ну а выделяющийся при этом водород, взрываясь, добавляет зрелищу красочности и звуковых эффектов. Способность натрия реагировать с водой применяется в лабораториях для очистки от воды некоторых органических растворителей, просто кипятя растворитель над кусочками натрия (главное, чтобы сам органический растворитель не реагировал с натрием, и воды в нём было не так уже много). Если мы очищаем от воды, например, бензол нам приходится нарезать кусочек натрия на тонкие-тонкие пластинки, а если толуол, такой необходимости нет. В чем причина? Металлический натрий «ловит» воду только поверхностью, а его шинковка увеличивает площадь поверхности, следовательно, увеличивая эффективность реакции. Однако, натрий очень легкоплавкий, его температура плавления равна +98 °C, то есть в растворителях с более высокой температурой кипения (у толуола температура кипения +110.6 °C) кусочки натрия все равно расплавятся и сольются в почти идеально шарообразную каплю натрия, рабочая поверхность которой постоянно будет очищаться. Как и другие свои родственники — щелочные металлы, натрий и его соединения можно определить по цвету пламени — при внесении соли натрия в бесцветное пламя газовой горелки пламя окрашивается в интенсивный жёлто-оранжевый цвет — в интернете можно найти немало красочных роликов-демонстраций на эту тему.
Натрий и его соединения применяются в столь разнообразных областях, что вряд ли можно перечислить их все даже в отдельной книге. Из наиболее интересных можно привести в пример применение натрия для охлаждения ядерных реакторов — он достаточно легко плавится, как и все металлы отличается хорошей теплопроводностью и, если вода закипает через два градуса после того, как натрий переходит в жидкое состояние, натрий начинает кипеть при температуре 883 °C, оставаясь жидким теплоносителем в широком интервале температур. Наш домашний реактор-лаборатория тоже не обходится без натрия — при готовке мы применяем пищевую соду или гидрокарбонат натрия. Очень часто мы используем это вещество для бездрожжевой выпечки — при 70 °C пищевая сода разлагается с выделением углекислого газа, который и заставляет бездрожжевое тесто подниматься.
Ион натрия важен для организма — совместно с калием натрий создает условия для мышечных сокращений, нормализует водный баланс организма и активирует некоторые ферменты. В среднем человеку необходимо не более двух граммов натрия в день, который он, в основном потребляет с поваренной солью. Если посчитать, за год нормальной дозой поваренной соли для человека будет 1.85 килограмм, то есть, чтобы съесть пресловутый пуд соли на двоих нужно потратить 4–5 лет (именно поэтому, вероятно и появляется кризис пятилетки отношений — за пять лет партнёры узнают друг друга во всех подробностях, что не всегда вяжется с их ожиданиями).
12. Магний
Лето 1618 года выдалось очень засушливым для Европы — и люди, и животные были готовы удалить жажду из любого мутного ручейка, в который превратились многие полноводные реки. Однако, в разгар засухи фермер из английского графства Суррей Генри Викер заметил водоём, заполненный прозрачной и чистой водой, из которого, отказывались пить даже очень страдающие от жажды овцы.
Викер обнаружил, что вода из водоёма горька на вкус, а при её испарении образуется белая соль, обладающая слабительным действием. Так была обнаружена горькая, она же эпсомская, она же английская соль (сульфат магния, MgSO4), которая три с половиной века применялась для лечения запоров.
О том, что магний является элементом, первым в 1755 году предположил шотландский химик Джозеф Блек. Загрязнённый большим количеством примесей металлический магний, нагревая смесь древесного угля и порошка магнезии (оксида магния MgO) впервые выделил в 1792 австриец Антон Руппрехт. Руппрехт назвал элемент «аустурием» в честь Австрии. Название «магний» дал элементу Хэмфри Дэви, в 1808 году получивший образец этого элемента в чистом виде. В качестве исходного вещества для своего эксперимента Дэви взял минерал магнезит (MgCO3), названный в свою очередь в честь греческого города Магнесия, в окрестностях которого его издревле добывали.
Магний играет ключевую роль для всех аэробных организмов на Земле — он находится в активном центре хлорофиллов, позволяющих растениям запасать солнечную энергию в химическую, превращая молекулы углекислого газа и воды в глюкозу, которая затем превращается в целлюлозу или крахмал, равно как и многих других критически важных для обмена веществ молекул. С пищей человек в среднем потребляет 300–400 миллиграмм магния в сутки, что обычно покрывает суточную потребность организма в этом элементе. Дефицит магния может приводить к развитию таких состояний, как бессонница, хроническая усталость, остеопороз, артрит мышечные спазмы, аритмия или запоры. Незначительный недостаток магния в организме можно пополнить, поедая миндаль, кешью, сою, мозги или шоколад — все они богаты магнием. Магния много в некоторых марках британского пива, вероятно из-за того, что при его варке применяют воду с высоким содержанием сульфата магния (остается надеяться, что слабительный эффект от такого пива проявляется позже освежающего).
Магний седьмой по распространенности элемент в земной коре и третий — в расплавленной мантии Земли, состоящей преимущественно из силикатов магния — оливина и пироксена. Магния много в морской и океанской воде, так что фотографам конца XIX — начала XX века было из чего добывать магний, чтобы размалывать его в порошок и применять в первых фотовспышках. В наши дни металлический магний получают электролизом расплава его хлорида.
Магний горит, выделяя огромное количество тепла, и, если он загорается, потушить его практически невозможно — горение магния поддерживает не только кислород и азот атмосферы, но и самое распространённое средство пожаротушения — вода. Во время второй мировой войны американские оружейники разработали зажигательную авиационную бомбу М69, большая часть от 2.7 килограмм которой приходилась на магний. При активации боеприпаса загоралась термитная смесь (смесь порошков оксида железа и металлического алюминия), термит поджигал магний, который содержался как внутри корпуса бомбы, так и представлял большую часть её корпуса, ну а горящий магний поджигал на поверхности земли все, что могло гореть, попутно понижая содержание кислорода. Как свидетельствуют отчеты американских ВВС, особенно эффективными такие зажигательные боеприпасы оказались при бомбежках Японии, в городах которой было очень мало каменных строений.
В земной коре содержится немало минералов, в состав которых входит магний, но наиболее распространённые — уже упоминавшийся магнезит и доломит (карбонат кальция-магния, CaMg(CO3)2), добыча которых составляет десятки миллионов тонн ежегодно. Чаще всего из обоих руд выделяют магнезию (оксид магния), которая затем применяется как пищевая добавка для скота, средство для понижения кислотности почвы, армирующий агент для получения полимерных композитных материалов и для изготовления огнеупорного кирпича.
13. Алюминий
Давным-давно, в эпоху исторического материализма, когда на литературе проходили роман Н. Г. Чернышевского «Что делать?», учителя пытались объяснить нам, что «Четвертый сон Веры Павловны» — гениальное пророчество, и автору романа, или его лирической героине с приснившимися зданиями из алюминия удалось увидеть не только самый настоящий развитой социализм, но и предсказать появление архитектурного стиля индустриального конструктивизма.
Сейчас я склонен думать, что это не так, и через Веру Павловну Николай Гаврилович описал примерно такой же утопический Город Солнца, как и Кампанелла, только с молочными реками, кисельными берегами и невиданной роскошью — во времена Чернышевского стоимость алюминия не меньше, чем у серебра, и не только в России. Лондонское химическое общество, желая произвести впечатление дороговизной подарка, в 1889 году подарило Дмитрию Ивановичу Менделееву весы из золота и алюминия. Сомнительно, что Чернышевский мог предвидеть то, что придёт время и, благодаря химикам, алюминий станет самым дешёвым металлом на Земле.
Алюминий — третий по распространённости после кислорода и кремния элемент в Земной коре и самый распространённый металл. Несмотря на то, что алюминий можно найти в огромном количестве минералов и в глиняной почве, до 1808 года об этом металле никто не знал. Первооткрывателем алюминия и учёным, давшим ему имя, был тот же самый Хэмфри Дэви, давший название магнию (судя по всему, 1808 год у Дэви складывался весьма удачно). Учёный назвал алюминий в честь сырья, из которого выделил — квасцов (по латыни —