Описанная классификация точек поверхности (О. А. Платонова, Е. Е. Ландис) следующим образом связана с классификацией особенностей волновых фронтов.
Математики называют точками объекты любой природы. Рассмотрим, например, множество всех невертикальных прямых на плоскости (х, у).
Такие прямые задаются уравнениями вида у = ах + b. Следовательно, одна прямая определяется парой чисел (а, b) и может рассматриваться как точка плоскости с координатами (а, b). Эта плоскость называется
Если на исходной плоскости дана гладкая кривая, то в каждой ее точке имеется касательная прямая. При движении точки вдоль кривой касательная меняется, следовательно, движется точка двойственной плоскости. Таким образом, на двойственной плоскости возникает кривая — множество всех касательных исходной кривой. Эта кривая называется
Если исходная кривая гладкая и выпуклая, то двойственная кривая тоже гладкая, если же исходная кривая имеет точку перегиба, то на двойственной кривой ей соответствует
Рис. 65. Двойственность точек перегиба и возврата
Кривые, двойственные к гладким кривым общего положения, имеют такие же особенности, как волновые фронты общего положения на плоскости, и так же перестраиваются при общей гладкой деформации исходной кривой, как перестраивается распространяющийся общим образом по плоскости общий фронт.
Точно так же плоскости в трехмерном пространстве образуют
Линии параболических точек исходной поверхности соответствует на двойственной поверхности ребро возврата. Особые точки на этой линии (где она касается линии перегиба асимптотических) соответствуют ласточкиным хвостам. Линия самопересечения ласточкиного хвоста состоит из двойных касательных плоскостей исходной поверхности. Следовательно, в точке 7) сливаются две точки касания плоскости с исходной поверхностью, чем и заканчивается однопараметрическое семейство двойных касательных плоскостей.
Классы точек на поверхности общего положения проявляются также в виде различных особенностей видимого контура. Если направление проектирования — общего положения, то особенности — лишь складки и сборки, по теореме Уитни. Однако, выбрав направление проектирования специальным образом, можно получить и некоторые не общие проекции поверхности общего положения. Оказывается, все такие проектирования локально приводятся к проектированиям перечисленных ниже 9 поверхностей z = f (х, у) вдоль оси х: (поверхности проектируются на плоскость, (у, z), приведение осуществляется заменой X (х, у, z), Y (у, z), Z (y, z)).
1 / х2
2 / х3 + ху
3 /, 4 х3 ± ху2
5 / х3 + ху3
6 / х4 + ху
7 / х4 + х2у + ху2
8, 9 / х5 + х3у ± ху
Видимые контуры, соответствующие этим проекциям, изображены на рис. 66.
Рис. 66. Видимые контуры и порядки их особенностей для типичных проектирований
Соответствие между классификацией проектирований и точек на поверхности состоит в следующем. 1 — это проектирование по неасимптотическому направлению (складка Уитни).
Проектирование по асимптотическому направлению в общей точке гиперболической области принадлежит типу 2. Это проектирование имеет особенностью сборку Уитни. При малом шевелении направления проектирования особая точка лишь немного перемещается по поверхности: новое направление оказывается асимптотическим в близкой точке. Таким образом,
При движении поверхности или наблюдателя в отдельные моменты появятся особенности 3, 4 и 6.
Рис. 67. Бифуркации проектирований при деформации центра проекции: случаи 10 — 11, z = х3 ± ху4
Проектирования 6 (и 8 или 9) соответствуют гиперболической области (а именно асимптотическим касательным третьего и четвертого порядков соответственно).
По спине двугорбого верблюда (см. рис. 43) проходит линия перегиба асимптотических. Касательные третьего порядка, приложенные в ее точках, образуют поверхность. Проходя мимо верблюда, мы дважды пересекаем эту поверхность. В момент пересечения видимый контур спины имеет особенность тина у3 = х4, а проектирование — тип 6.
Рис. 68. Бифуркации проектирований: случай 12, z = х4 + х2у + ху3
Остальные особенности возникают при проектировании по направлению, асимптотическому в параболической точке. Простейшие из них — особенности 3 и 4. Проектирование 3 реализуется в момент, когда мы, спускаясь с бугра, начинаем видеть его контур (см. рис. 41). Первая появляющаяся точка контура — параболическая.
При прохождении особенности 4 происходит слияние или разделение двух компонент видимого контура.
Рис. 69. Бифуркации проектирований: случай 13, z = х5 + ху
Особенности 5, 7, 8 и 9 реализуются лишь при изолированных направлениях проектирования, и их нужно специально искать. (8 и 9 — проектирование вдоль касательной четвертого порядка, 7 — вдоль параболической касательной третьего порядка, 5 — точка "параллельности асимптотических в бесконечно близких параболических точках"). При проектированиях из отдельных точек реализуются еще 4 особенности 10 — 13: z = х3 ± ху4, z = х4 + х2у + ху3, z = х5 + ху (рис. 66 — 69).
13. Задача об обходе препятствия
Рассмотрим в трехмерном евклидовом пространстве препятствие, ограниченное гладкой поверхностью (рис. 70). Ясно, что кратчайший путь из х в у в обход препятствия состоит из отрезков прямых и отрезков геодезических (кратчайших линий) на поверхности препятствия. На геометрию кратчайших путей сильно влияют х различные перегибы поверхности препятствия.
Рис. 70. Кратчайший путь в обход препятствия
Предположим, что начальная точка пути, х, зафиксирована, и рассмотрим кратчайшие пути, ведущие из х во всевозможные точки у. Пути в загороженные препятствием точки начинаются с отрезков касающихся препятствия прямых. Продолжения этих путей образуют пучок (однопараметрическое семейство) геодезических на поверхности препятствия. Следующие участки путей представляют собой новые отрезки прямых, касательных к геодезическим; они могут заканчиваться в концевой точке у или снова касаться поверхности препятствия и т. д.
Рассмотрим простейший случай пути, состоящего из начального и конечного отрезков прямой с отрезком геодезической между ними. Близкие геодезические пучка заполняют на поверхности препятствия некоторую область. В каждой точке этой области геодезическая пучка имеет определенное направление. В точках общего положения это направление не асимптотическое. Условие касания геодезической пучка с асимптотическим направлением — это одно условие па точку поверхности. Для поверхности и пучка общего положения это условие выполняется на некоторой кривой на поверхности (зависящей от пучка). На рис. 71 асимптотические направления изображены горизонтальными отрезками, а кривая касания обозначена буквой К; геодезические — жирные линии.
В отдельных точках (0 на рис. 71) эта кривая К сама будет иметь асимптотическое направление — это точки пересечения К с кривой ^ перегиба асимптотических (см. п. 12).
Рис. 71. Асимпототические направления и типичный пучок геодезических на поверхности
Таким образом возникает
Расположим за препятствием еще одну поверхность (стенку) общего положения. и рассмотрим
Когда стенка удаляется на бесконечность, отображение срыва переходит в
Многозначная функция времени также имеет особенность в точках, соответствующих асимптотическому срыву. При подходящем выборе системы гладких координат функция времени приводится к виду Т = х — у5/2 в окрестности общей точки особой поверхности у = 0. Иными словами если отметить на каждом срывающемся луче точку, отвечающую пути длины Т, то эти точки образуют поверхность фронта с ребром возврата, локально задающуюся уравнением х2 = у5 (рис. 72).
Рис. 72. Типичная особенность фронта в задаче об обходе препятствия: ребро возврата вой — клюв степени 5/2
Аналогичный результат получается в плоской задаче (в этом случае фронты называются эвольвентами и имеют особенность типа х2 = у5 в точках касательной перегиба (рис. 73)).
Рис. 73. Типичная особенность эвольвенты плоской кривой — клюв степени 5/2 на касательной перегиба кривой
Фронт пространственной задачи в особой точке (точке сборки гауссова отображения пучка) локально задается уравнениями
х = u, y = υ3 + uυ, z = (135υ4 +189uυ2 + 70u2)υ3,
где (u, υ) — параметры, (х, у, z) — криволинейные координаты в пространстве с началом в не лежащей на поверхности препятствия точке особого асимптотического луча.
14. Симплектическая и контактная геометрии
Многие вопросы теории особенностей (например, классификация особенностей каустик и волновых фронтов, а также исследование всевозможных особенностей в задачах оптимизации и вариационного исчисления) становятся понятными только в рамках геометрии симплектических и контактных многообразий, освежающе непохожей на обычные геометрии Евклида, Лобачевского и Римана.
Начнем с трех примеров особенностей специального вида.
1.
Особенности градиентных отображений общего положения отличны от общих особенностей отображений пространств одинаковых размерностей: их "меньше" потому, что не всякое отображение можно реализовать как градиентное, но "больше" потому, что явление, не типичное для общих отображений, может быть типичным для градиентных.
2.
Это отображение называется
3.
Гауссовы отображения составляют еще один специальный класс отображений многообразий одинаковой размерности (n — 1, если начинать с гиперповерхности в n-мерном пространстве).
И вот оказывается, что
Симплектическая геометрия — это геометрия фазового пространства (пространства координат и импульсов классической механики). Она явилась итогом длительного развития механики, вариационного исчисления и т. д.
В прошлом веке эту область геометрии называли аналитической динамикой, и Лагранж гордился, что изгнал из нее чертежи. Чтобы проникнуть в симплектическую геометрию, минуя длинный исторический путь, проще всего воспользоваться аксиоматическим методом, имеющим, как заметил Б. Рассел, много преимуществ, подобных преимуществам воровства перед честным трудом.
Сущность этого метода состоит в том, чтобы превращать теоремы в определения. Содержательная часть теоремы становится тогда
Определение
В трехмерном пространстве (и вообще в нечетномерном пространстве) симплектических структур нет. Симплектическую структуру в четырехмерном (и вообще в четномерном) пространстве легко построить, представив пространство в виде суммы двухмерных плоскостей: кососкалярное произведение распадается в сумму площадей проекций на эти плоскости.
Все симплектические пространства фиксированной размерности изоморфны (как и все евклидовы). Мы будем называть кососкалярное произведение двух векторов "площадью" натянутого на них параллелограмма.
Каждое линейное пространство в евклидовом пространстве имеет
В симплектическом пространстве определено
Линейное подпространство, являющееся своим собственным косоортогональным дополнением, называется
Точно так же
Риманова структура на многообразии позволяет измерять длины кривых на нем, суммируя длины малых векторов, составляющих кривую. Точно так же симплектическая структура позволяет измерять "площади" ориентированных двухмерных поверхностей, лежащих в симплектическом многообразии (суммируя "площади" составляющих поверхность малых параллелограммов). Дополнительное условие, связывающее симплектические структуры в разных касательных пространствах, таково: "площадь" всей границы любой трехмерной фигуры равна 0.
В линейном симплектическом пространстве можно ввести структуру симплектического многообразия, определив кососкалярное произведение приложенных в любой точке векторов как кососкалярное произведение векторов, полученных из них параллельным переносом в начало. Легко проверить, что условие согласования здесь выполнено.
Существует много неизоморфных друг другу римановых структур в окрестности точки плоскости или пространства большего числа измерений (для различения их Риман и ввел свою кривизну).
В отличие от римановых многообразий
Подмногообразие симплектического пространства называется
Расслоение симплектического пространства на подмногообразия называется
Всякое лагранжево расслоение локально изоморфно стандартному расслоению фазового пространства над конфигурационным, (р, q) → q (слои — пространства импульсов, q = const). Конфигурационное q-пространство называется базой этого расслоения.
Предположим теперь, что в пространстве лагранжева расслоения дано еще одно лагранжево многообразие. Тогда возникает гладкое отображение этого лагранжева многообразия на базу лагранжева расслоения (т. е. на конфигурационное пространство с координатами qi): каждой точке (р, q) лагранжева многообразия сопоставляется точка q конфигурационного пространства.
Полученное отображение многообразий одинаковой размерности n называется
Это — специальный класс особенностей гладких отображений многообразий одинаковой размерности. Для этого класса построена классификационная теория, аналогичная общей теории особенностей.
При n = 2 лагранжевы особенности общего положения исчерпываются складками и сборками, как и общие особенности (впрочем, лагранжева сборка имеет два лагранжево неэквивалентных[7] варианта).
Особенности лагранжевых отображений трехмерных лагранжевых многообразий общего положения уже не все встречаются среди обычных особенностей общего положения.
Теперь мы покажем, что
1. Пусть F — гладкая функция от р. Тогда многообразие q = ∂F/∂p лагранжево. Поэтому особенности градиентного отображения лагранжевы.
2. Рассмотрим гладкое подмногообразие в евклидовом пространстве. Рассмотрим множество всех перпендикулярных ему векторов (во всех его точках q). Многообразие, образованное векторами р, приложенными в точках р + q, лагранжево. Нормальное отображение можно рассматривать как лагранжево отображение этого многообразия на базу, (р, р + q) → (р + q).
3. Рассмотрим многообразие всех ориентированных прямых в евклидовом пространстве. Это многообразие симплектическое, так как его можно рассматривать как фазовое пространство движения точки по сфере (направление прямой определяет точку на сфере, а точка пересечения прямой с перпендикулярной ей касательной плоскостью сферы — величину импульса).
Рассмотрим многообразие ориентированных нормалей к поверхности в нашем пространстве. Это подмногообразие в симплектическом многообразии прямых лагранжево. Гауссово отображение можно рассматривать как лагранжево отображение (отображение проектирования построенного подмногообразия на сферу, являющуюся базой лагранжева расслоения фазового пространства).