Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Палеонтология антрополога. Книга 1. Докембрий и палеозой - Станислав Владимирович Дробышевский на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Фоссилизация может происходить быстро и медленно, но обычно – быстро, так как иначе бактерии успеют разложить органику на неорганические составляющие. Скорость зависит от специфики вмещающих пород и концентрации минеральных веществ в воде. С одной стороны, отдельные белки могут сохраняться миллионы лет, молекулы ДНК выделены из костей Homo heidelbergensis из Сима де лос Уэсос с древностью 427 тыс.л.н. С другой стороны, порой минерализация занимает считанные дни. Например, в московской канализации в XX веке находились окаменевшие тапочки и кошки того же XX века производства, причем окаменевала даже шерсть бедных животных.

Кроме отдельных фоссилий, тафономия изучает и целые захоронения, особенности их формирования и структуру. Для образования палеонтологического местонахождения необходимы четыре этапа. Во-первых, остатки организмов должны сконцентрироваться в каком-то месте; иногда это происходит во время массовой гибели, иногда остатки просто сносятся водой в какую-нибудь заводь или скапливаются в ямах, оврагах, пещерах, даже пнях. Во-вторых, аккумулированные остатки должны быть достаточно быстро захоронены в осадке. В-третьих, должна произойти фоссилизация – превращение в окаменелости. В-четвертых, уже в современности вышележащие отложения должны быть так или иначе разрушены, чтобы мы могли добраться до окаменелостей. Все эти этапы обязательны и должны сменять друг друга строго последовательно; выпадение хотя бы одного ведет к нарушению всего цикла. Например, если организмы не будут быстро захоронены в осадке, то они разрушатся; если они не фоссилизуются, то тоже исчезнут без следа; если разрушение отложений произойдет до фоссилизации, то мы ничего не найдем.

Ясно, что столь счастливое стечение обстоятельств – чтобы и организм попал куда надо, и никто его не съел, и концентрация минеральных веществ в воде была оптимальной, и все это пролежало до современности и не развалилось, и оказалось в доступном человеку месте, и мы еще это нашли, да еще чтоб нашел не кто-нибудь, а нормальный палеонтолог – все это крайне маловероятно. 99,99 % организмов без следа разрушаются, а их вещество возвращается в общий круговорот. Отсюда неизбежно вытекает неполнота палеонтологической летописи. Иначе и быть не может, а то бы мы ходили по скелетам, да и из какого такого вещества состоял бы у нас организм, если бы все предыдущие сохранялись?

Так что, как ни прискорбно, палеонтологам никогда не светит найти представителей всех ископаемых организмов. От большинства видов не сохранилось вовсе ничего, от многих – единичные и притом фрагментарные находки. Впрочем, есть и счастливые исключения, когда обнаруживаются просто грандиозные слои древесины, раковин, скелетов, отпечатков и прочих фоссилий. Некоторые даже добываются промышленным способом. Каждый год в печах сгорают миллионы отпечатков в каменном угле. Известняки, из которых построено огромное количество сооружений по всему миру, не что иное, как концентрат фоссилий. В стенах многих зданий и метро не так сложно найти членики морских лилий, а иногда и раковины аммонитов. Даже банальный писчий мел, изводимый в школах тоннами, – прессованные ископаемые, хотя бы и одноклеточные. Но и крупнокалиберные, вполне коллекционные фоссилии бывают бесчисленны: тысячами на продажу добываются мадагаскарские аммониты, марокканские трилобиты, китайские нотозавры и вайомингские рыбки.

Для обозначения разных фаз и вариантов местонахождения придуманы умные слова.

Танатоценоз – скопление мертвых организмов или их частей. Танатоценозы могут быть автохтонными – захороненными в месте их гибели, или аллохтонными – перемещенными к месту захоронения.

Тафоценоз – древний танатоценоз, претерпевший захоронение в породе.

Ориктоценоз – совокупность остатков организмов, изучаемая исследователями. Часто этим же словом обозначают просто список определенных таксонов из конкретного местонахождения. Тонкость в том, что часто какая-то часть тафоценоза до поры до времени ускользает от внимания ученых, в последующем же, с применением новых методик и подходов, ориктоценоз может неожиданно увеличиться, даже без дополнительных раскопок. А может и уменьшиться, если дополнительные исследования покажут, что множество ранее выделявшихся видов на самом деле представляют собой одно и то же. Такое происходит сплошь и рядом.

* * *

Геохронологическая, или стратиграфическая шкала – великое расписание времен, последовательность эпох от появления Земли до современности. Все время существования планеты для удобства делится на отрезки, внутри разделенные на более дробные подразделения.

Акротемы, или акроны – самые длинные отрезки, выделяющиеся далеко не всегда, актуальные лишь для дремучих докембрийских времен, где их обычно насчитывают два-три: катархей, архей и протерозой; иногда они не отличаются от эонов.

Эонотемы, или эоны – тоже грандиозные этапы. Иногда их выделяют всего два – докембрий и фанерозой. Впрочем, подразделения докембрия – гадей, архей и протерозой – тоже порой считаются эонами, а иногда за таковые идут внутренние подразделения архея и протерозоя (если их считать акронами) – ранне- и позднеархейский, а также ранне- и позднепротерозойский.

Маленькая тонкость

Почти любой отрезок делится на «нижний», «средний» и «верхний» или «ранний», «средний» и «поздний». Тонкость заключается в том, что «нижний – верхний» относится к стратиграфии, геологическому расположению в ненарушенных отложениях, а «ранний – поздний» – ко времени. Обычно слова «нижний – ранний» и «верхний – поздний» используются как синонимы, но разницу лучше в уме держать. Аналогично отличаются пары понятий «эратема – эра», «система – период», «отдел – эпоха» и «ярус – век»: первые термины в парах относятся к геологии, вторые – к хронологии. В ярусе окаменелости залегают, в веке существа жили.

Эратемы, или эры – гораздо более стабильное понятие. Правда, для докембрия по-прежнему есть разнобой в разных схемах, но внутри фанерозоя всеми выделяется три эры – палеозойская, мезозойская и кайнозойская.

Системы, или периоды – самые ходовые отрезки с наибольшей стабильностью в разных схемах. Иногда внутри них выделяются еще и подсистемы, но тут согласия меньше. Внутри палеозоя шесть периодов: кембрийский, ордовикский, силурийский, девонский, каменноугольный (карбоновый) и пермский. В мезозое три периода: триасовый, юрский и меловой. В кайнозое тоже три: палеогеновый, неогеновый и четвертичный (антропогеновый).

Отделы, или эпохи – еще более мелкие и на практике не всегда хорошо определимые отрезки. Большинство периодов разделяются на нижнюю, среднюю и верхнюю эпохи; у некоторых нет средней, у некоторых названия оригинальнее; кайнозойские иногда дополнительно делятся на подотделы.

Ярусы, или века – самое мелкое подразделение, длиной от двух – пяти до десяти миллионов лет, редко больше. К тому же они иногда подразделяются на подъярусы, значимые, правда, уже только для региональных шкал. Теоретически ярусы должны быть самыми актуальными измерителями времени, но в реальной работе далеко не всегда возможно установить, к какому ярусу относится конкретный слой или, подавно, отдельная окаменелость. Особенно обидно, что часто возникают сложности соотнесения ярусов, установленных в разных странах по разным критериям.

Всегда важно помнить, что все указанные подразделения в любом случае условны. Лучшее тому доказательство – сравнение хронологической протяженности разных отрезков: чем период древнее, тем он в среднем длиннее. Например, кембрийский и юрский периоды тянулись по 56 миллионов лет, девонский и карбоновый – по 60, меловой – 79, а эдиакарский и вовсе 94! В то же время вся кайнозойская эра заняла 66 миллионов лет, а четвертичный период длится каких-то несчастных 2,58 миллиона – меньше большинства ярусов. Такая несуразица выросла из двух корней.

Во-первых, границы этапов часто имеют скорее историческую ценность. Геологи XIX века исследовали конкретные местонахождения, описывали их фауну, сравнивали и пытались расположить слои в закономерном порядке. С тех времен сохранились много странных названий, например «четвертичный период». Дело в том, что в некоторый момент история Земли делилась на четыре периода: первичному более-менее соответствует палеозойская эра, вторичному – мезозойская, третичному – первая половина кайнозоя, а четвертичному – антропоген. Первые три названия поменялись, а последнее упорно держится в стратиграфических шкалах, хотя антропологам, понятно, больше нравится новое название. Ясно, что геологи прошлого имели крайне смутное представление о протяженности выделяемых этапов, считалось, что они укладываются в несколько тысяч или от силы сотен тысяч лет. Ни о какой эквидистантности – равной нарезке по времени – речи не шло.

Вторая причина – неодинаковая осведомленность ученых о разных эпохах. Очевидно, что про более отдаленные времена известно гораздо меньше, про близкие к нам – больше. Разрешающая способность методов сильно неодинаковая. Разобраться, к какому конкретно отрезку, например, девона или силура относятся отложения, бывает очень непросто, тогда как для неогена и антропогена у нас есть огромное количество надежных маркеров. Да и просто самих отложений более поздних времен несравнимо больше. Отсюда вырастает «логарифмическое мышление»: недавним событиям придается больше значения, а древние сливаются в неразборчивую серую массу. Другое следствие – представление об ускорении эволюции при приближении к современности. Детали событий старины глубокой ускользают, потребности тогдашней жизни могут быть совершенно нам непонятны, тогда как мельчайшие события вчерашнего дня приобретают глубокий смысл и вселенскую важность. Кажется, что в палеозое сотни миллионов лет вяло суетились одинаковые трилобиты и росли одинаковые кораллы, а вот в последние-то сто тысяч лет вон сколько видов млекопитающих поменялось! А то, что трилобиты внутри себя и кораллы друг от друга отличаются порой гораздо больше, чем самые несхожие млекопитающие, понятно только специалистам по трилобитам и кораллам.

Важно понимать и сам принцип проведения границ между эпохами. В подавляющем большинстве случаев это делается по руководящим ископаемым – характерным для разных периодов живым организмам. Чаще всего в качестве таких руководящих выступает какая-нибудь многочисленная и быстро эволюционирующая мелочь типа фораминифер, радиолярий, трилобитов, брахиопод, аммонитов, двустворок, граптолитов, конодонтов и спор растений. Например, в касимовском ярусе карбона обнаруживается комплекс аммонитов Dunbarites-Parashumardites, а в гжельском – Shumardites-Vidrioceras; роудский ярус перми содержит зубчики конодонтов Jinogondolella nankingensis, а последующий вордский – Jinogondolella aserrata. Смена родов и видов морских животных чутко отражает изменения температуры воды, иногда ее микроэлементного состава, освещенности и прочих показателей среды. Наземная флора и фауна обычно более стабильны, да и материалов по ним меньше, так что они гораздо реже выступают в роли руководящих ископаемых.

В идеале выбираются такие руководящие ископаемые, по которым есть богатые данные о промежуточных предшествующих формах, то есть те, время появления которых гарантировано (привет креационистам, вещающим об отсутствии переходных форм). Определяется только нижняя граница хронологического этапа, то есть время появления нового комплекса организмов (только начало олигоцена маркировано вымиранием фораминифер Hantkeninidae), так как в последующем отдельные виды могут вымереть и не дожить до конца эпохи, а другие, напротив, пережить ее и продолжиться в следующей. Это же значит, что важнее присутствие руководящего ископаемого, чем отсутствие: если уж кто-то возник в определенное время, его не найти в более древних слоях; кроме того, руководящие ископаемые просто могут не сохраниться в этом конкретном слое, или мы их пока не нашли. Впрочем, ясно, что нижняя граница одного отрезка автоматически означает верхнюю для следующего.

Поскольку границы проводятся по появлению фауны, то не стоит удивляться, что почти каждый период заканчивался вымиранием. Многим это представляется просто каким-то проклятием: «Да что ж такое?! Только кончится период, как все вымирают!» На самом деле, логика проста: возникновение новых групп обычно вызвано сменой условий, да к тому же новичкам необходимы свободные экологические ниши, а освобождение таковых обычно происходит из-за вымирания, которое, конечно, вызвано той самой сменой условий.

Понятно, что живых существ сонмы, эволюционировали они не слишком синхронно, на чьи проблемы надо обращать больше внимания – вопрос философский. Проводились даже эксперименты, когда одни и те же образцы, скажем, границы мезозоя и кайнозоя, предоставлялись разным исследователям для анализа. Результат был забавен: ученые, обращая внимание на разные окаменелости, проводили границу эр в разных местах стратиграфической колонки. Конечно, разница была не слишком принципиальная, но все же расхождение на сотни тысяч и даже миллионы лет не так уж мало. А речь, между прочим, про то самое знаменитое позднемеловое вымирание, когда на планете исчезли динозавры, якобы из-за падения астероида.

Ясно, что в разных частях планеты фауна могла меняться неодновременно, руководящее ископаемое могло возникнуть в одном месте, а спустя миллионы лет мигрировать в другое, ставя под сомнение наши представления о синхронности отложений. Поэтому в настоящее время все большее внимание уделяется физическим методам – палеомагнитным, хемостратиграфическим и палеоклиматическим.

Те же причины виной расхождению международной и региональных стратиграфических шкал. Планета велика, изменения климата сказывались в разных местах неодновременно и сильно неодинаково, флоры и фауны в разных местах не совпадают, так как в одних регионах могли вымирать, а в других – еще долго сохраняться. Например, нижняя граница касимовского яруса по международной шкале проводится в основном по смене фораминифер и конодонтов, а в российской еще и по аммонитам, отчего граница смещается в древность. Роудский ярус международной шкалы в российской называется казанским, а вордский – уржумским, причем в международном варианте выделяется по конодонтам, а в российском – по остракодам и конодонтам, но уже другим; дело еще и в том, что международная шкала основана на морских отложениях, а в России преобладают континентальные.

Иногда целые ярусы кочуют из эпохи в эпоху: такое происходило, например, с датским, который из позднего мела отправился в палеоцен, приабонским, который из олигоцена уехал в эоцен, гелазским, который из плиоцена перекочевал в плейстоцен.

Иногда сказываются и патриотические настроения геологов и палеонтологов. Так, кептенский ярус международной шкалы у нас зовется северодвинским, вучанский – вятским, гваделупская эпоха – биармийской, а лопинская – татарской. В США своя гордость: американские ученые упорно разделяют классический каменноугольный период на миссисипский и пенсильванский (обидно же, что почти все названия шкалы были даны в XIX веке по европейским областям с типовыми местонахождениями, и более того – о ужас! – российским, а Америка опоздала на раздачу красивых наименований). Долгое время во всем мире это игнорировалось, пока в 2000 году американские геологи не пропихнули миссисипий и пенсильваний в международную шкалу в качестве хотя бы подсистем. Совсем отдельная таксономия сложилась в Южной Америке – как в силу геологической и палеонтологической специфики, так и длительной изоляции местных ученых.

Особенно серьезны расхождения международной и региональных шкал в части подразделения докембрия. Его неустаканенность вызвана малым количеством хороших местонахождений, крайней редкостью и спорностью ископаемых, да и немногочисленностью заинтересованных исследователей. Даже на уровне выделения эонов и эр тут до сих пор, как уже упоминалось, царит полный бардак. Международная шкала докембрия имеет более удобную и унифицированную номенклатуру, чем российская, но границы проведены гораздо формальнее – время просто нарезано на более-менее равные отрезки. Российская выглядит несколько кособокой (рифейский эон является частью позднепротерозойского эона, что само по себе странно; он делится на три эры без периодов и эпох, тогда как остаток позднего протерозоя – вендский период – не относится ни к какой эре, но делится на две эпохи), зато границы в ней гораздо более обоснованы стратиграфически, так как в нашей огромной стране полно отличных и прекрасно изученных разрезов. Китайцам же, понятно, больше нравятся термины «синийский период» и «синийская эра», хотя их границы достаточно неопределенны.

Всё же ученые разных стран пытаются договориться между собой. Созываются международные геологические конгрессы и симпозиумы, собираются комиссии, издаются решения. Ясно, что «международность» – понятие относительное, решения принимают конкретные люди, имевшие опыт исследования конкретных разрезов и специализирующиеся на конкретных группах организмов, но главное – работа идет. Для взаимопонимания необходимо согласие и сотрудничество; важно, что палеонтологи стремятся к этому.

В нашей книге речь пойдет про всю планету, так что повествование будет построено на основе международной шкалы.

Немало сложностей вызывает датирование границ эпох. Для некоторых моментов эти цифры определены достаточно точно, а некоторые находятся под сомнением. Например, до сих пор нет внятной границы между юрой и мелом, хотя, казалось бы, как такое может быть – самые известные периоды и до сих пор не разграничены?! В любом случае важно отметить, что датировки расставляются от нашего времени. Классической ошибкой неспециалистов является автоматическое добавление к дате присказки «до нашей эры». «Наша эра» началась чуть больше двух тысяч лет назад (посмотрите на календарь), но в масштабах десятков и сотен миллионов эта пара тысяч – вообще ни о чем, гораздо меньше погрешности методики определения возраста.

* * *

Дрейф материков – мощнейший процесс, во все времена влиявший на эволюцию жизни на Земле. Сходство очертаний краев Африки и Южной Америки замечали давно – еще А. Гумбольдт и Е.В. Быханов, но эти мысли долго не получали развития. Лишь в начале XX века идею поднял А.Л. Вегенер, а чуть позже довел до ума А. Холмс. В доказательстве реальности материкового дрейфа палеонтология сыграла немалую роль. Древние животные Южной Америки, Африки и Индии оказались необычайно схожи, несмотря на современное разделение этих областей. Более того, такие же чуть позже нашлись и в Австралии и даже в Антарктиде. Да и современные фауны южного полушария имеют ряд явно неслучайных соответствий. В северном полушарии есть свои сходства. За географией и биологией подтянулась и геология, так что в настоящее время известны не только последовательность и направления схождений-расхождений, но даже скорость движения материков.

Кора планеты состоит из множества отдельных литосферных плит, которые вплотную притерты друг к другу, но скользят по расплавленной магме мантии, которая, нагреваясь в глубинах, поднимается, остывает и вновь опускается, приводя в движение исполинские массы породы. Иногда литосферные плиты подныривают под соседние или, напротив, наползают сверху, проваливаются в магму, расплавляясь, или вздымаются к небесам грандиозными горными хребтами. На линии стыков недра могут сотрясаться землетрясениями и прорываться линиями вулканов, а в центральных областях плит сотни миллионов лет царит мир и покой. Понятно, что процесс этот крайне медленный, но и Земля существует четыре с половиной миллиарда лет, так что времени на самые разные комбинации хватало.

География менялась не только из-за движения земной коры. Вслед за солнечными и планетарными пертурбациями температура планеты колебалась, а вслед за этим закономерно увеличивалось или уменьшалось количество воды, свободной и скованной льда-ми. Уровень мирового океана гулял, огромные площади прибрежных низин то затапливались, то высвобождались из-под волн. Перенаправлялись течения и ветры, влажность внутренних областей росла и падала, а живые организмы добавляли преобразований, формируя, разрушая и закрепляя геологические породы, что вело к усилению или ослаблению поступления микроэлементов в океан, отчего фито- и зоопланктон преображался и влиял на атмосферу.

И вот на этом грандиозном фоне жили и развивались наши предки, каждый раз отчаянно пытаясь не вымереть и обскакать конкурентов. И все это – наша история, все это изучает палеонтология.


Часть I. Докембрий: ночь, рассвет

Гадей, или Катархей

4,6 – 4,0 миллиарда лет назад: Появление жизни


Гадей – первые полмиллиарда лет существования планеты, от которых до нас дошли только эфемерные флюиды. Свежая Земля не была похожа на ту планету, к виду которой мы привыкли: сутки по 10 часов, огромная кривая Луна на небе, ядовитая атмосфера и совсем иные горные породы. Тем не менее, именно условия молодой Земли задали все наши особенности, химический состав наших тел, потребности и границы возможностей.

* * *

Первые этапы существования планеты покрыты непроглядным астрономическим мраком. В нашей Солнечной системе нет формирующихся планет, а про инозвездные мы пока знаем слишком мало. Общая космология гласит, что для нашего появления необходимо бытие первых звезд, образование в недрах красных гигантов тяжелых элементов, взрывы сверхновых и разлет элементов по Вселенной, собирание их в новые туманности, звезды и планетезимали, формирование протопланетных дисков и слипание разрозненных ошметков в планеты. Нашей Солнечной системе повезло: само Солнце не слишком холодное и не слишком горячее, а огромные планеты-гиганты на периферии защищают своей гравитацией внутренние области от астероидов и комет. Даже катастрофы были нам на пользу. Столкновение только что остывшей Протоземли с каким-то небесным телом размером с Марс оторвало огромный кусок, отлетевший в сторону и ставший Луной, которая с тех пор стала нашей дополнительной защитницей от астероидов. От удара ось Земли перекосилась, что стало залогом смены времен года. Вулканическая активность создала атмосферу, а вода из падающих комет и выделяющийся из мантии планеты водяной пар сконцентрировались в океанах.

Но это все широкие мазки. Детали картины ускользают, ведь горные породы, из которых была сложена Первоземля, давно успели погрузиться в магму, расплавиться и преобразиться, снова застыв. За колоссальный срок даже элементный состав разных слоев планеты ус-пел поменяться. Нам только кажется, что планета твердая: в масштабе миллиардов лет она вполне жидкая. Тяжелые элементы помаленьку погружаются в недра, а легкие, будучи вытеснены по закону Архимеда, всплывают наверх; самые легкие – свободный водород и инертные газы – не могут быть удержаны слабой гравитацией Земли и улетают в космос, в то же время космическая пыль притягивается и оседает на поверхность планеты. Древнейшие известные земные частицы – кристаллы циркона из Австралии с датировкой 4,404 миллиарда лет назад. Хитрые подсчеты возраста самых старых метеоритов показывают, что Земля сформировалась 4,567, 4,55 или 4,54 млрд л. н., то есть первые 150 миллионов лет напрочь выпадают из нашего знания. А ведь это – временной отрезок как от конца юрского периода до современности!

Тем не менее, что-то мы все-таки знаем.

Судя по нынешним планетам-гигантам, первичная атмосфера Земли содержала много метана и аммиака, поменьше сероводорода, углекислого газа, простейших углеводородов и водяных паров. Кислород, выделявшийся из мантии в процессе дегазации и из воды фотодиссоциацией под действием ультрафиолета, тоже не задерживался, но не улетучивался и не скапливался, а окислял все, что могло быть окислено.

В таких чудесных условиях и возникла жизнь.

Возникновение жизни из неорганических составляющих называется абиогенезом. В школе поныне проходят абиогенез на примере теории А.И. Опарина – Дж. Холдейна: согласно ей, жизнь самозародилась в «первобытном бульоне» в виде коацерватных капель, на которые воздействовали электрические разряды и ионизирующее излучение. Многочисленные эксперименты показали, что, действительно, в смеси, более-менее соответствующей первичной атмосфере и воде Земли, если стучать туда током или облучать ультрафиолетом, сами собой возникают аминокислоты и нуклеотиды, а если добавить немного серы (которая на Первоземле выкидывалась вулканами), то органика собирается в достаточно длинные цепочки.

Современные представления о происхождении жизни гораздо более сложны. Мы не полезем в эти дебри, тем более, что это уже сделано гораздо лучшими специалистами: все желающие могут прочитать чудесные книги Е.В. Кунина «Логика случая. О природе и происхождении биологической эволюции» (2014 г.) и М.А. Никитина «Происхождение жизни. От туманности до клетки» (2016 г.). Отметим только отрадный факт: все ключевые моменты возникновения живого из неживого уже расшифрованы и по частям воспроизведены в лабораториях. Правда с нуля до целой клетки пока никто из экспериментаторов не дошел, но и времени у исследователей было не так много, тогда как в оригинале на это ушли сотни миллионов лет.

Сейчас первые этапы преджизни называются «РНКовым миром», так как первыми действительно важными органическими молекулами были именно цепочки РНК. Аминокислоты тоже существенны, но астрономы обнаруживают их по спектрам даже в межзвездных облаках. Кстати, тут кроется вечная ошибка неспециалистов: многим кажется, что органические вещества обязательно должны быть результатом жизнедеятельности организмов. Нет! Органические вещества – это соединения углерода обычно с водородом и частым включением также кислорода, фосфора, серы и прочих элементов. Это просто сложная химия, которая вполне может существовать сама по себе вне всякой связи с жизнью. И вот один из пиков этой сложности – молекулы РНК – стал основой жизни.

Важное свойство РНК – способность катализировать ферменты. Это сейчас РНК известна больше как переносчик генетической информации, первоначально же не было никакой информации, были просто спонтанно образовывавшиеся молекулы, которые по-разному взаимодействовали. Вариантов РНК было множество, их и сейчас известны сотни. Неустойчивые комплексы разваливались, и мы про них ничего не знаем. Устойчивые же сохранялись, а в силу способности РНК слипаться с аминокислотами и катализировать друг друга увеличивались в числе и сложности. Это называется молекулярной эволюцией.

Замечательное свойство РНК – ее большой размер и сложность. К тому же это полимер, который может иметь неопределенно большую длину, складываясь из нескольких типов стандартных кирпичиков – нуклеотидов (аденин, урацил, гуанин и цитозин). С одной стороны, это некоторым образом гарантирует ее устойчивость и дает много биохимических возможностей взаимодействия с белками, с другой – приводит к почти бесконечной изменчивости. А изменчивость – принципиальное отличие жизни от нежизни. Например, минералы тоже имеют много признаков жизни: они обмениваются веществом с окружающей средой, поглощают что-то извне, растут, размножаются. Но у них слишком малая изменчивость: кристаллическая решетка, какая бы хитрая она ни была, всегда воспроизводится по единому стандарту. Конечно, если кристалл в процессе роста натыкается на препятствие или включает в себя что-то инородное, он может изогнуться и искривиться, но принципиально решетка остается прежней. Правда у минералов есть своя эволюция, связанная с упомянутой выше изменчивостью состава земной коры. В древности формировались одни минералы, потом возникали другие, сейчас такие уже не образуются, но появились иные, однако все это происходит чересчур медленно и пассивно, чтобы называться жизнью. Другое дело РНК: она имеет оптимальный баланс устойчивости и изменчивости, чтобы молекулярная эволюция поспевала за изменениями среды, в том числе вызванными реакциями, катализируемыми самой РНК.

РНК в итоге стала наследственным аппаратом, то есть хранителем информации, а белки – основой цитоплазмы, то есть главным веществом; а наследственный аппарат и цитоплазма – две из трех главных основных составляющих живой клетки. Отсюда вырастают два определения жизни: «способ воспроизведения нуклеиновых кислот» и «форма существования белковых тел».

Однако самое емкое и всеобъемлющее определение жизни: автокаталитическая система высокомолекулярных соединений углерода в неравновесных условиях.

Одно из важнейших условий среды, в которой появилась жизнь – нестабильность. Была бы среда постоянна, ничего бы там не возникало, все лежало бы, застывши навеки. Из состава современных организмов, их потребностей и сравнения существ разной степени продвинутости можно примерно прикинуть микроэлементный состав, температуру, кислотность и прочие показатели места, где возникла жизнь.

Вариантов не так уж мало. Это могла быть «маленькая теплая лужица» (о которой писал еще Ч. Дарвин в 1871 г.), глубоководная впадина около вулкана, «черный» (с железом) или «белый» (с сульфидом цинка) «курильщик», щелочной источник с микрополостями с полупроницаемыми стенками в минеральных постройках, алюмосиликатная глина, грязевой вулкан, гейзер, фумарола. Каждая из версий имеет слабые и сильные стороны, у каждой есть сторонники и противники. Например, версия с океаном хороша химически, но есть сомнения, существовали ли тогда уже океаны? Версии с грязевыми вулканами и гейзерами хорошо согласуются с данными о самых примитивных бактериях и археях, но возникает вопрос: как они могли противостоять мощнейшей радиации, которой тогда подвергалась планета без магнитного поля и озонового слоя? Вариант с глиной хорошо решает проблему закрепления неустойчивых комплексов, но откуда тогда такая зависимость жизни от воды? Впрочем, все эти проблемы принципиально решаемы. Самое смешное, что ученые придумали уже так много способов появления жизни, что становится совсем не странным, что она таки возникла каким-то одним из них.

Один из важнейших этапов появления клетки – обретение мембраны. Возможно, изначально комплексы РНК и белков ютились в микрополостях минералов и лишь потом обрели липидную оболочку. Не исключено, что мембраны были изобретены вообще вирусами – паразитами, неизбежно появившимися сразу после возникновения надежных репликаторов, то есть комплексов, способных самовоспроизводиться. С другой стороны, возможно, А.И. Опарин был не так уж далек от истины и органические молекулы с самого начала варились в коацерватных каплях.

Мембрана – последняя из трех принципиальных частей клетки, создающая градиент концентрации между внутренним содержимым и внешней средой. Она обеспечивает запас потенциальной энергии: сначала клетка с затратой энергии закачивает что-то внутрь или выкачивает наружу против градиента концентрации, тем самым создавая напряжение, а потом, когда нужно, в мембране открываются каналы, вещество со страшной силой устремляется по градиенту концентрации, высвобождая кинетическую энергию, которая может быть использована на мирные цели. Если же концентрация веществ по обе стороны мембраны полностью сравняется, движение прекратится, наступит термодинамическое равновесие, тишь да благодать – клетка умрет.

Вероятно, уже после возникновения клеточной структуры появилась ДНК. Впрочем, есть версия, что ДНК была изобретена вирусами, то есть неклеточными паразитами. Независимо от родословной, ДНК за счет своей двойной спирали оказалась гораздо более устойчивой и надежной, чем РНК, так что в качестве хранителя наследственной информации абсолютно преобладает среди современных живых существ (впрочем, существуют и чисто РНКовые бактерии и вирусы).

Как бы то ни было, где-то в темные катархейские времена на планете возник «Лука»[1]. Его существование вытекает из принципиального сходства всех современных живых существ и универсальности генетического кода (который, правда, не идеально универсальный, но исходно был все же единым), а особенности восстанавливаются путем сравнения разных организмов. Так, из отличий архей и бактерий можно понять, что у Луки уже была ДНК, но не было системы репликации ДНК, причем тимина тоже не было, а ДНК содержала урацил. Мембрана имелась, но не такая, как у современных организмов; возможно, Лука был больше похож на блин, а не на шарик. Вероятно, одного-единственного Луки, в общем-то, и не существовало, а было много изменчивых альтернативных версий, бурно эволюционировавших и щедро менявшихся обрывками генов путем горизонтального переноса. Планета велика, условий на ней много, потребности и сложности везде были разные, так что Лука мог быть не одной клеткой, а огромным сообществом.


РНК


ДНК

Маленькая тонкость

Отдельный вопрос, неизбежно встающий при обсуждении абиогенеза: может ли жизнь возникнуть снова? С одной стороны, условия на планете капитально поменялись, так что в том же варианте второе появление крайне маловероятно. С другой стороны, в новом исполнении – почему бы и нет? Главная проблема – жизнь уже существует. Так что, возникни некий новый вариант первожизни заново, уже имеющиеся существа с удовольствием слопают его, не поморщившись. Не исключено, что так уже не раз происходило, кто знает?

* * *

Гадей задал нам условия жизни. В это время возникли основы основ – РНК и ДНК, белки и воспроизведение первых биологических комплексов и, возможно, первые клетки. Наша углеродная основа, зависимость от воды, азота и фосфора, ключевые принципы обмена веществ и вопроизводства, распространения информации – все это наследие гадея, сплошное гадейство.

* * *Альтернативы

Ход истории подчинен множеству случайностей. Все могло пойти и не так. Небольшое изменение основных констант – и нашей Вселенной вообще не было бы. Или в ней были бы невозможны элементы тяжелее гелия. Чрезмерная гравитация могла бы не дать разлететься веществу, а слишком слабая не смогла бы собрать вещество в звезды и планеты. Без планет-гигантов Земля была бы беззащитна перед астероидными дождями, без достаточного разогрева не было бы тектоники, без обилия железа в последующем не сформировалось бы ядро и магнитное поле. Момент появления самореплицирующихся молекулярных комплексов аминокислот и нуклеотидов тоже не обошелся без великого везения, а без запасов первичного органического вещества, образовавшегося абиогенным путем, первым протоклеткам было бы нечем питаться. Миллионы подобных Земле планет могут оставаться навсегда безжизненными.

Свойства уже образовавшейся жизни тоже не предопределены. Генетический код мог оказаться иным, чисто химически он ничем не обусловлен, это результат случайности. Число нуклеотидов и аминокислот потенциально гораздо больше, чем есть в наших организмах. Жизнь могла возникнуть и не один раз на одной планете, и конкурирующие варианты с разными нуклеотидами, аминокислотными составами и генетическими кодами могли развиваться параллельно.

С другой стороны, при иных исходных условиях жизнь могла бы зародиться на основе совсем других химических элементов – кремния или азота. В недрах гигантских газовых планет типа Юпитера и Сатурна при огромном давлении и температуре азот потенциально может образовывать огромное количество соединений, вероятно, даже большее, чем углерод на Земле. Такая газовая жизнь принципиально отличалась бы от нашей; даже не факт, можно ли называть ее жизнью. Проблема в том, что чисто физико-химически жители газовых гигантов не могут существовать даже в верхних слоях своей планеты, они ограничены потолком своего мира. Они не могут подняться над облаками и увидеть звезды. Как им узнать, что они живут на планете, одной из миллиардов во Вселенной? И мы не можем опуститься в их обиталище – у нас нет материалов, способных выдержать такие условия и передать оттуда сигнал. Как нам узнать о существовании друг друга, как наладить контакт?

Архей

4,0 – 2,5 миллиарда лет назад: Заря жизни

МЕЖДУНАРОДНАЯ ШКАЛА

4 млрд л. н.: эоархей (3,6) – палеоархей (3,2) – мезоархей (2,8) – неоархей (2,5)

РОССИЙСКАЯ ШКАЛА

раннеархейский эон (3,2) – позднеархейский эон: нижнелопийская эра (3,0) – среднелопийская эра (2,8) – верхнелопийская эра (2,5)


Архей – огромные полтора миллиарда лет, про которые мы очень мало знаем. В это время уже однозначно была одноклеточная жизнь, но только на уровне безъядерных организмов – архей и бактерий. Они оставили немного следов. Наша задача – по микроскопическим пятнышкам и полоскам на камнях понять, что творилось в древних морях.

* * *

Планета продолжала меняться. Предполагают, что на границе катархея и архея Земля была бомбардирована массой астероидов; по крайней мере в лунных кратерах застывшие породы имеют возраст 4,1-3,8 млрд л. н., наиболее вероятно – 3,85 млрд л. н. Возможно, именно из-за этого катаклизма сейчас на планете почти не осталось образцов катархейской коры. Есть даже версия, что первая жизнь была уничтожена «поздней тяжелой бомбардировкой», а в архее зародилась новая; все же более вероятно, что Лука и его потомки просто пережили катастрофу в нетронутых убежищах.

Как выглядела планета в архее, трудно представить. Палеогеографы предполагают, что примерно 3,6 – 3,1 млрд л. н. существовал единый суперконтинент Археогея, или Ваальбара, который развалился и 3 – 2,8 млрд л. н. пересобрался в континент Ур. Впрочем, эти построения крайне гипотетичны; не исключено, что Ваальбара и Ур – одно и то же, а может, одновременно с ними существовали и другие земли.

Погружавшееся в недра Земли железо образовало жидкое ядро, и в силу вращения 3,2 – 3,6 млрд л. н. возникло магнитное поле, уберегающее нас от губительной космической радиации. Без сомнения, это стало неплохим гарантом развития жизни, так как слишком частые нарушения структуры РНК и ДНК не позволяют формироваться устойчивым биохимическим комплексам. До этого жизнь была возможна лишь в хорошо защищенных местах, теперь могла выходить ближе к поверхности, так что в качестве типа питания стал возможен фотосинтез.

Это, кстати, великая проблема: какой вариант потребления вещества и энергии был первичным?

С одной стороны, гетеротрофный тип питания – использование готовой органики – биохимически проще, но откуда тогда бралась бы органика в таких количествах? Впрочем, она могла синтезироваться в достаточных объемах сама собой из неорганики, как это происходило еще даже до появления планеты, например, абиогенным фотосинтезом на сульфиде цинка.

Во-вторых, первыми могли быть хемоавтотрофы, существа типа современных архей, которые из неорганических веществ могут создавать органику, причем первичного ресурса хватало бы, чтобы существовать в таком режиме почти неограниченное время в полной изоляции. Показательно, что одни из самых архаичных современных существ – именно хемоавтотрофы, хотя они все равно используют более сложные биохимические реакции, чем гетеротрофы.

В-третьих, изначальным типом питания мог быть и фотосинтез, подобный тому, что применяют современные цианобактерии. Этот вариант – самый сложный, непонятно, как бы он возник первым, однако древнейшие известные нам живые существа были, видимо, именно фотоавтотрофами.

А в архее мы знаем, собственно, первых живых существ. Древнейшие осадочные породы и древнейшие следы жизни найдены в разных местах: Нуввуагиттук (Канада, 3,77 – 4,3 млрд л. н.), Джек Хилл (Австралия, 4,1 – 4,4 млрд л. н.), Исуа (Гренландия, 3,7 – 3,8 млрд л. н.), Кунтеруна (Австралия, 3,515 – 3,52 млрд л. н.). В столь древних слоях обнаружены даже не отпечатки самих организмов, а следы их жизнедеятельности в виде изменения химии пород. Например, в Нуввуагиттуке это – легкий изотоп углерода в карбонатах, а также гематитовые микроволокна и трубочки, подобные тем, что образуются в результате жизни бактерий.



Поделиться книгой:

На главную
Назад