Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Слайдовая фотография. Секреты мастера ("Сделай сам" №02 ∙1990) - Николай Васильевич Одноралов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Баканов Анатолий Иванович

«СЛАЙДОВАЯ ФОТОГРАФИЯ»

Одноралов Николай Васильевич

«СЕКРЕТЫ МАСТЕРА»

---

Журнал «СДЕЛАЙ САМ»

(02)∙1991

Подписная научно-популярная серия

СЛАЙДОВАЯ ФОТОГРАФИЯ

Введение

Идея получения цветных фотографических изображений, воспроизводящих объект съемки в натуральных цветах, появилась очень давно, почти сразу же после изобретения черно-белой фотографии. Однако прошло очень много времени, прежде чем эта идея осуществилась на практике. Известно, что глаз человека способен различать до 250 чистых цветовых тонов и более 13 тысяч смешанных цветовых оттенков. Невольно возникает вопрос: как можно воспроизвести такую обширную цветовую гамму?

Все способы цветной фотографии, включая современные, основаны на трехкомпонентной теории цветного зрения, согласно которой все многообразие цветов и цветовых оттенков может быть получено смешиванием в определенных пропорциях всего-навсего трех цветов: синего, зеленого и красного. Эти цвета носят название первичных (основных). Возможность получения фотографического изображения в натуральных цветах впервые сформулировал, а затем и продемонстрировал в 1861 г. английский ученый Джеймс К. Максвелл. Он сделал три отдельных черно-белых снимка многокрасочного объекта через синий, зеленый и красный светофильтры, получил с них диапозитивы и спроецировал их на белом экране с помощью трех проекторов через соответствующие светофильтры. Синее, зеленое и красное изображения, совмещенные на экране, дали естественное цветное изображение объекта съемки. Впоследствии было предложено множество различных способов получения цветных фотоизображений, но все они не получили распространения либо из-за технической сложности процесса, либо из-за низкого качества воспроизведения цвета.

Первый пригодный для практического использования способ получения цветных фотоснимков был разработан в 1907 г. французской фирмой «Люмьер», которая выпустила в продажу цветные фотопластинки «Автохром». Фирмой использовался растровый метод цветоделения. На одну сторону стеклянной пластинки наносились мельчайшие зерна крахмала, окрашенные в основные цвета, которые служили мозаичным светофильтром. Другая сторона пластинки покрывалась панхроматической (чувствительной ко всем цветам видимого спектра) фотоэмульсией. После съемки и обработки такой пластинки методом обращения получался цветной диапозитив в натуральных цветах. Однако поскольку зерна крахмала были недостаточно прозрачными, изображение получалось мутным и не очень резким. Экспозиция при съемке на пластинки «Автохром» даже при хорошем дневном освещении составляла 1–2 с. Изображение можно было получать только в одном экземпляре, и оно не могло копироваться вследствие бессистемного, хаотичного распределения цветных зерен на каждой пластинке.

Несмотря на это, автохромный способ цветной фотографии просуществовал более 30 лет.

Задача получения качественных цветных фотоизображений относительно простым способом была решена только в конце 30-х гг. нашего столетия благодаря открытию цветного химического проявления и изобретению трехслойных цветных фотоматериалов. Впервые такие материалы были выпущены американской фирмой «Кодак» в 1935 г. В Советском Союзе трехслойные цветные фотографии стали широко выпускаться уже в послевоенные годы.

В настоящее время цветная фотография стала обычным делом, вполне доступным не только профессиональным фотографам, но и не очень подготовленным фотолюбителям. Одним из видов цветной фотографии, который завоевывает все больше и больше сторонников, является слайдовая фотография, то есть съемка на цветную обращаемую пленку, после соответствующей обработки которой получается цветное позитивное изображение на прозрачной основе — слайд. Слайдовая фотография имеет целый ряд достоинств, которые особенно существенны для фотолюбителей. Главным достоинством можно считать относительную простоту и общедоступность получения цветных фотоснимков, поскольку в слайдовой фотографии отсутствует самый сложный и трудоемкий процесс фотопечати с цветных негативов, требующий большого опыта, хорошо оборудованной фотолаборатории и значительных затрат времени. Изготовление слайдов намного проще и доступно любому фотолюбителю. Способствует этому и очень высокое качество получаемых в этом случае цветных изображений, практически недостижимое в негативно-позитивном цветном фотопроцессе. Существенной причиной популярности слайдов является и их невысокая стоимость по сравнению с цветными отпечатками на фотобумаге, их компактность и в результате этого — удобство хранения.

Однако надо отметить, что слайдовая фотография имеет и недостатки, главным из которых можно считать получение снимка в одном экземпляре.

Дублирование слайдов хотя и возможно, но на практике осуществляется редко вследствие сложности процесса. Вместе с тем со слайдов можно получать в любом количестве весьма качественные цветные отпечатки на специальной обращаемой цветной фотобумаге. Такая фотобумага широко применяется за рубежом.

Еще один серьезный недостаток слайдов — невозможность коррекции цвета полученных изображений, хотя при выполнении всех требований к съемке и обработке пленки такой коррекции, как правило, не требуется. В какой-то мере к недостаткам слайдов относится необходимость в проекционной или просмотровой аппаратуре, поскольку изображение на слайде получается мелким, но этот недостаток относителен, так как яркое, сияющее цветное изображение на экране и по размерам, и по качеству превосходит намного изображение, получаемое на фотобумаге. Поэтому можно сказать, что некоторые недостатки и неудобства использования слайдов с лихвой окупаются их достоинствами, чем, собственно, и определяется огромная популярность слайдовой фотографии во всем мире.

В последнее время широкое распространение получила обработка цветных фотопленок в специальных лабораториях и центрах по обработке, но они имеются только в крупных городах, и пользоваться их услугами могут далеко не все. Да и истинным фотолюбителем считается лишь тот, кто все от начала до конца делает своими руками.

Обычно у фотолюбителей, занимающихся слайдами, возникает множество вопросов. В большинстве руководств по цветной фотографии слайдам обычно уделяется мало места, и этот вид фотографии освещается в них недостаточно полно. Данное издание можно рассматривать как единое практическое пособие по всем наиболее существенным вопросам этого вида фотографии, которое поможет фотолюбителю освоить процесс получения слайдов самостоятельным путем. Материал рассчитан на читателей, уже

знакомых с черно-белым фотографическим процессом. Вместе с тем он будет полезен и более подготовленным фотолюбителям.

Цвет в фотографии

Для того чтобы получать хорошие цветные фотографии, необходимо представлять себе, что такое цвет и от чего зависит окраска предметов окружающего нас мира

Цвет является одним из признаков света — лучистой энергии, которая, попадая в наши органы зрения, вызывает зрительные ощущения в виде различных яркостей и цветов. Видимый нами свет составляет всего лишь небольшую часть огромного спектра электромагнитных излучений от радиоволн до гамма излучений (рис. 1).


Рис. 1. Полный спектр электромагнитных излучений

Природа цвета

Все электромагнитные излучения характеризуются длиной волны. Установлено, что лучистая энергия с разной длиной волны воспринимается нами как излучения различной окраски.

Если же на наши органы зрения одновременно воздействует сумма всех цветных излучений, у нас возникает ощущение белого цвета. То, что белый солнечный свет — сложное излучение, состоящее из бесконечного множества цветных излучений, подтверждается опытом разложения солнечного луча на составляющие с помощью трехгранной призмы (рис. 2). Излучения с различной длиной волны, а следовательно, и различной окраской, проходя через призму, отклоняются на разные углы, в результате чего на белом экране можно наблюдать цветной спектр от красного до фиолетового с массой промежуточных тонов.


Рис. 2. Разложение луча белого света трехгранной призмой

Если цвет излучений зависит от их длины волны, то от чего зависит окраска несамосветящихся предметов, которые в основном и служат объектами фотографирования?

Известно, что любое тело какую-то часть падающего на него светового потока поглощает, а какую-то часть — отражает. Именно этой избирательностью поглощения и отражения разных излучений определяется физическое свойство той или иной поверхности, которое мы называем ее окраской. Зеленая трава в яркий солнечный день воспринимается нами зеленой потому, что из спектра белого солнечного света, являющегося суммой всех цветных излучений, она отражает только зеленые лучи, тогда как все остальные ею поглощаются и становятся нами невидимыми. Однако естественную окраску предметов мы можем воспринимать только в том случае, если они освещаются белым светом, имеющим непрерывный спектр и содержащим все цветные излучения в соответствующей пропорции. В тех случаях, когда источник света излучает не белый, а окрашенный свет, то есть такой, в котором доминируют излучения какой-то одной длины волны, цвет предметов, освещаемых этим источником, будет восприниматься нами с искажением. Например, белый лист бумаги при красном свете лабораторного фонаря кажется нам красным, а если же его осветить синим светом, то он будет восприниматься нами как синий.

В повседневной жизни нам редко приходится встречаться со светом, содержащим излучения какого-либо одного цвета. Свет обычных источников освещения имеет всегда сложный спектральный состав, то есть состоит из суммы различных цветных излучений; причем отличаются источники света — один от другого не только интенсивностью общего излучения, но и распределением энергии по спектру, которое можно выразить графически. На таких графиках хорошо видно, какой длины волны, а следовательно, и цвета преобладают в свете того или иного источника (рис. 3).


Рис. 3. Спектральное распределение энергии источников с непрерывным спектром

Помимо источников света с непрерывным спектром, существуют источники с прерывистым или, как иногда его называют, линейчатым спектром. Результат освещения предметов светом таких источников может иногда оказаться неожиданным. Если, например, освещать красную поверхность светом ртутной лампы, спектральный состав которого представлен на рис. 4, то она будет казаться черной, так как в спектре ртутной лампы полностью отсутствуют красные лучи.


Рис. 4. Спектральное распределение энергии источника света с линейчатым спектром

Помимо источников с непрерывным и линейчатым спектром, существуют источники со смешанным спектром (рис. 5). К ним в основном относятся газоразрядные и люминесцентные лампы. Цвет предметов, освещаемых такими источниками, искажается, так как в нем будут подчеркиваться те цвета, которые преобладают в свете этого источника.


Рис. 5. Спектральное распределение энергии источника света со смешанным спектром

Из всего сказанного можно сделать вывод, что видимый нами или воспроизводимый на цветной фотографии цвет предметов зависит от двух факторов: от физических свойств самого тела — его окраски и от спектрального состава света, которым освещается этот предмет.

Понимание этого положения имеет очень большое значение для грамотного решения чисто практических вопросов в цветной фотографии.

Цветовая температура источников света

Поскольку спектральный состав света непосредственно влияет на характер воспроизведения цветов при фотосъемках, возникает необходимость в его качественной оценке. Графическое изображение спектрального состава света источников, как это показано на рис. 3, 4 и 5, несмотря на точность и наглядность, не очень удобно для практического использования. Поэтому принят еще один, более простой и удобный, способ выражения спектрального состава света через его цветовую температуру. Большинство источников света представляют собой нагретые тела, причем спектральный состав излучаемого ими света зависит от температуры их нагрева: чем она выше, тем больше в излучаемом ими свете синих лучей. Вспомним, что при разогреве металлического предмета его цвет меняется от вишнево-красного к оранжевому, желтому, белому и даже голубоватому. Таким образом, если известна температура нагрева тела, излучающего свет, легко указать и спектральный состав этого излучения. Цветовую температуру источников света можно менять, не изменяя температуры светящегося тела. Для этого на пути светового потока достаточно установить цветной светофильтр. Если, к примеру, свет лампы накаливания хотят приблизить к белому, пропускают ее свет через голубой светофильтр, который поглотит избыток красных лучей в спектре лампы. И хотя температура нагрева нити лампы останется при этом неизменной, цветовая температура прошедшего через светофильтр излучения «повысится».

Хотя понятие «цветовая температура» применительно только к температурным источникам света, которые имеют в качестве излучателя раскаленное тело, в некоторых случаях можно с достаточной точностью характеризовать цветовой температурой и нетемпературные источники света, например, свет небосвода, люминесцентных источников и др.

Цветовую температуру принято измерять либо по шкале абсолютных температур Кельвина, либо, что удобнее, в специальных единицах — майредах или декамайредах. Декамайред (ДМ) — это обратная величина цветовой температуры в градусах Кельвина, увеличенная в 105 раз. Знание цветовой температуры источника света при цветной фотосъемке дает возможность оценить качественные условия освещения и в случае необходимости как бы приблизить спектральный состав света к наиболее благоприятному с помощью специальных светофильтров, надеваемых на объектив фотоаппарата. Это помогает получать на снимках правильную цветопередачу даже в тех случаях, когда спектр источника света сильно отличается от спектрального баланса используемой фотопленки. Измеряют цветовую температуру с помощью специальных приборов, но поскольку для большинства источников света она известна, её с достаточной степенью точности удается определить по таблицам, которые составлены специально для этой цели. Значения цветовых температур наиболее часто встречающихся в фотографической практике источников освещения приведены в табл. 1.


Воспроизведение цвета в фотографии

Как уже упоминалось, любой цвет или цветовой оттенок несложно получить смешением в соответствующей пропорции трех излучений первичных цветов: синего, зеленого и красного. Хотя кажется невероятным, что в результате смешения синего, зеленого и красного излучений можно получить даже белый цвет, это все же так! Посмотрите через лупу на экран цветного телевизора и увидите, что участки экрана, воспринимаемые нами как белые или серые, состоят из ячеек светящихся точек синего, зеленого и красного цветов. Парадоксальность этого явления объясняется тем, что мы в жизни очень редко имеем дело с цветообразованием в результате сложения цветных излучений, которое называется аддитивным. В повседневной практике мы чаще всего имеем дело с другим способом, который называется субтрактивным (вычитательным). Этот способ иногда еще называют способом смешения красок. Здесь белый цвет получают сложением не трех основных излучений, а только двух: одного основного и одного дополнительного. Дополнительными цветами к основным являются желтый, пурпурный и голубой. Образование цветного многокрасочного изображения по этому способу происходит в результате последовательного нанесения желтого, пурпурного и голубого красителей на белую или прозрачную поверхность Поскольку субтрактивный способ получения цветных фотографий имеет ряд преимуществ по сравнению с аддитивным, он получил наибольшее распространение во всем мире. К его достоинствам относят:

• использование при съемках обычных фотоаппаратов, применяемых в черно-белой фотографии;

• возможность получения цветных изображений как на прозрачной, так и на непрозрачной основе;

• простоту тиражирования цветных изображений.

Недостаток субтрактивного способа — несколько худшее качество воспроизведения цветов по сравнению с аддитивным.

Любой из способов получения цветных изображений фотографическим путем состоит из трех этапов.

1-й этап — цветоделение. Здесь осуществляется разделение цветного изображения на три составляющих: синюю, зеленую и красную. В результате получается три самостоятельных цветоделенных изображения, которые называют частичными.

2-й этап — градационный. На этом этапе, который еще называют промежуточным, происходит регистрация оптических плотностей каждого цветоделенного частичного изображения. Цель этого этапа — получить в каждом частичном изображении строго определенное число красителей, которые при наложении их друга на друга дадут в сумме изображение в прямых или дополнительных цветах объекта съемки. Прямые, или натуральные, цвета получаются на слайдах, если пленку обрабатывают методом обращения. При обычном цветном проявлении пленки на ней получают цветной негатив, то есть изображение в дополнительных цветах, что дает возможность печатать с них любое количество фотографий на цветной фотобумаге. В последние годы негативные цветные пленки стали выпускать с дополнительным, маскирующим слоем, поэтому на таких пленках можно получать только негативы.

3-й этап — синтез цветного изображения. Он заключается в совмещении трех частичных цветоделенных изображений желтого, пурпурного и голубого цветов в единое многокрасочное, воспроизводящее объект съемки в натуральных цветах.

При съемке по субтрактивному способу все эти три этапа происходят совмещенно и одновременно в трех слоях, чувствительных раздельно к синему, зеленому и красному излучениям, в результате нанесения этих слоев на одну основу цветного фотографического материала. Поэтому сам процесс цветной фотосъемки не отличается от фотосъемки черно-белой, ведь и в том и в другом случае происходит однократное экспонирование заряженного в фотоаппарат светочувствительного материала. Существенной разницы в получении диапозитива (слайда) и негатива нет, поскольку цветное изображение и в первом и во втором случае строится из трех цветоделенных, окрашенных в дополнительные цвета изображений: желтого, пурпурного и голубого. Различие в цветах изображения на негативе (обратные цвета) и на слайде (прямые цвета) получается только в результате разной технологии обработки фотопленки. Если обработать немаскированную цветную негативную фотопленку методом обращения, то получают изображение в прямых цветах.

Слайдовая пленка, обработанная по негативному методу, даст цветной негатив, с которого можно печатать позитивные изображения на цветной фотобумаге. Изменять режим обработки слайдовых и негативных пленок все же не рекомендуется, так как у них есть различия в контрастности слоев.

В дальнейшем мы будем рассматривать только те вопросы, которые относятся к слайдовой фотографии.

Схема образования цветного фотоизображения

Для получения хороших результатов при съемке слайдов необходимо иметь ясное представление о тех процессах, которые происходят как при съемке, так и при химической обработке цветных обращаемых пленок, поскольку этими процессами определяется качество воспроизведения цветов на готовых слайдах. Для этого сначала рассмотрим строение цветной обращаемой фотопленки (рис. 6).


Рис. 6. Строение цветной обращаемой пленки

На прозрачную триацетатную основу нанесены три эмульсионных светочувствительных слоя и один вспомогательный, несветочувствительный — фильтровый слой, имеющий желтую окраску. Каждый эмульсионный слой имеет избирательную чувствительность к одной из зон спектра: к синей, зеленой и красной. Помимо этого, на подложку (основу) наносится противоореольный слой. В связи с тем что желтый фильтровый и противоореольный слои в ходе химической обработки обесцвечиваются, они в построении окончательного цветного изображения не участвуют. Избирательная спектральная чувствительность слоев достигается их сенсибилизацией — введением в эмульсию специальных веществ, повышающих ее чувствительность к определенным цветным излучениям. В результате избирательной цветочувствительности слоев осуществляется этап цветоделения, которое происходит в момент экспонирования фотопленки.

Схема цветоделения показана на рис. 7.


Рис. 7. Схема цветоделения в трехслойной цветной пленке

При экспонировании в первом несенсибилизированном слое образуется скрытое частичное изображение тех элементов объекта съемки, которые имели в своем составе излучения синего цвета. Далее из всего воздействующего на пленку светового потока лучи синей зоны полностью задерживаются Желтым фильтровым слоем, в результате чего на нижележащие слои могут воздействовать только зеленые и красные его составляющие. Во втором слое образуется частичное изображение элементов, отражающих только зеленые лучи, так как к лучам красной зоны этот слой не чувствителен. Поскольку третий, самый нижний, слой чувствителен только к лучам красной зоны, в нем образуется скрытое частичное изображение красных составляющих объекта съемки.

Помимо светочувствительного галогенида серебра, каждый эмульсионный слой имеет в своем составе цветную компоненту — специальные красители, которые в результате экспонирования и последующего цветного проявления вступают в химическую реакцию с продуктами окисления серебра и окрашивают эмульсионный слой в тот или иной цвет. В соответствии с принципом субтрактивного синтеза цвета слои окрашиваются в дополнительные цвета: синечувствительный слой — в желтый, зеленочувствительный — в пурпурный и красночувствительный — в голубой цвет.

Химическая обработка цветных обращаемых фотопленок состоит из шести операций. Между ваннами производится водная промывка для удаления обрабатывающих растворов.

1-я операция — черно-белое проявление

При черно-белом проявлении в каждом слое происходит восстановление скрытого изображения в видимое, состоящее из металлического серебра. Плотность каждого частичного серебряного изображения пропорциональна при этом количеству света, воздействовавшего на каждый слой. Черно-белое проявление производится с таким расчетом, чтобы в слоях все экспонированное галогенное серебро было восстановлено полностью и в то же время не образовывалось вуали неэкспонированных участков.

2-я операция — останавливающая ванна

Ее назначение — прервать действие первого проявителя путем нейтрализации его щелочных свойств. В кислой среде проявление всех слоев мгновенно прекращается, что дает возможность получить необходимое их проявление и не допустить появления вуали, которая в дальнейшем приведет к падению насыщенности цветов и нарушению правильности цветопередачи.



Поделиться книгой:

На главную
Назад