Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Невероятный иммунитет. Как работает естественная защита вашего организма - Дэниэл М. Дэвис на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Из полутора миллионов известных биологических видов на Земле примерно 98 % — беспозвоночные, и они сопротивляются болезням, располагая лишь такой обороной. Их иммунная система применяет лишь те рецепторы, которые откликаются на характерные особенности микробов. У нас же это лишь один из способов, какими наше тело борется с недугами. Система (или подсистема), о которой идет речь, — врожденный иммунитет, — составляет первую линию обороны, мгновенный отклик на присутствие микробов[89]. С оппортунистическими грибковыми инфекциями или бактериями, попадающими в порез или рану, наша иммунная система обычно разбирается быстро. А вот когда врожденный иммунный отклик неспособен полностью устранить инфекцию, важным становится иммунитет приобретенный — действие Т- и В-клеток, и они подключаются через несколько дней после того, как тело оказывается заражено. Подавление инфекций за два-три дня обычно сводится к тому, что образ-распознающие рецепторы засекают микробное вторжение и происходит соответствующий отклик. По оценкам — хотя рассчитать это довольно сложно, — около 95 % нашей защиты от микробов есть врожденный иммунитет[90]. Со времен первой прививки от оспы, которую 220 лет назад сделал Дженнер восьмилетнему мальчику, мы пытались понять устройство иммунитета, но вплоть до 1989 года человечество исследовало лишь часть — может, всего 5 % — того, что составляет нашу иммунную защиту.

Поначалу первопроходцы исследований врожденного иммунитета не думали о возможных медицинских применениях своих открытий, а лишь пытались разгадать тайну того, как иммунная система работает. Офман считает важным подчеркивать, что это исследование подогревается любопытством, и соглашается с подходом Луи Пастера: «Нет такого понятия — прикладная наука, есть приложения науки»[91]. И действительно, существует множество примеров громадных прорывов в медицине, состоявшихся нечаянно. Едва ли не самый блистательный — рентгеновское излучение. Как сказал космолог Мартин Рис: «Тему исследования „как добиться прозрачности плоти“ никто не стал бы финансировать, и даже если бы такое финансирование нашлось, исследование не привело бы к рентгеновскому излучению»[92]. Впрочем, вскоре стало ясно, что у исследований врожденного иммунитета все же есть значимые медицинские следствия, и самое важное оказалось связано с вакцинацией — с тем, с чего вообще все началось.

Остается невыясненным, как соли алюминия помогают действию вакцины, хотя с 1932 года их успешно применили к сотням миллионов людей[93]. Однако разобрались, что адъюванты значимы, потому что включают врожденный иммунитет. Как следствие, вместо солей алюминия можно применять адъюванты, созданные специально для включения врожденного иммунного ответа, — применив молекулы, о которых известно, что именно с ними связываются образ-распознающие рецепторы. Вот так и получилось, что фармацевтические компании изменили свои взгляды на исследование вакцин: когда-то это была область с довольно невзрачными перспективами финансовой отдачи, теперь же она может оказаться доходной. Вдобавок к усилиям благотворителей вроде Фонда Билла и Мелинды Гейтс, финансировавших исследования новых адъювантов для малярийной вакцины, к примеру, такая перспективность сохраняет за врожденным иммунитетом место животрепещущей темы со времен первооткрывателей 1990-х. Один из первых успехов в медицине — молекула, похожая на ЛПС, которую в США в 2009 году одобрили для использования в вакцинах от вируса папилломы человека, из-за которого возникает рак шейки матки[94]. (Не исключено — хотя это мои досужие измышления, — что Нобелевский комитет ждал прояснения пользы для медицины и только после этого присудил премию за внутренний иммунитет, но ценой ожидания, оказавшегося для Джейнуэя слишком долгим. Как ни крути, то, что для развития замыслов Джейнуэя до хоть какого-то их медицинского применения потребовалось целых двадцать лет, подчеркивает одну из причин, почему большинство исследований, движимых любопытством, финансируются из общественных источников, а не из коммерческих.)

Очень вероятны и другие медицинские применения. Бётлер и прочие считают, что в ближайшем будущем станет возможным помочь пациентам с аутоиммунными заболеваниями — новыми лекарствами, блокирующими действие толл-подобных рецепторов[95]. Ингибиторы толл-подобных рецепторов могут помочь и устранению осложнений при трансплантациях, тоже возникающих из-за нежелательного иммунного отклика: иммунная система человека сопротивляется пересаженному органу[96]. Медицинские вмешательства с воздействием на врожденный иммунитет уже происходят, но новые открытия являют нам такие пространства, где можно применять новые лекарства — используя взаимосвязь врожденного и приобретенного иммунитетов. И вот на это мы обратим внимание далее.

Я как-то раз спросил Меджитова, не кажется ли ему, что у Джейнуэя была некая особая черта, определившая его мощный дар провидения — за столько лет до всех остальных[97]. Меджитов уверенно ответил, что у многих ученых есть какая-нибудь одна большая мысль, и они держатся ее всю свою жизнь в науке. Джейнуэй же, как все творческие люди, располагал множеством соображений, но самое главное — он никогда не боялся заблуждаться.

2. Клетка пожарной тревоги

Мозг человека сосредоточен на движениях или изменениях, и из-за какого-нибудь малейшего шевеления рядом с собой человек, бывает, вздрагивает. Подобные отклики развились в нас эволюционно: лучше несоразмерно отозваться на дуновение ветерка, чем проморгать настоящую угрозу. Мимолетный испуг, подумаешь. Однако иммунной системе приходится быть осмотрительнее. Ее мощь нельзя пускать в ход в порядке простой предосторожности. Чересчур рьяные иммунные клетки способны легко уничтожить здоровые клетки и ткани — как случается при аутоиммунных заболеваниях, например, при рассеянном склерозе или детском диабете, а также при септическом шоке.

Как Чарлз Джейнуэй, его современник, канадский иммунолог Ралф Стайнман ломал голову над тем, как зарождается иммунный отклик. Но у Стайнмана оказался несколько иной ход мыслей. Вопрос, ответ на который он считал важнейшим, был таков: как организм принимает решение об иммунном ответе сообразной осторожности? Таков был ключевой вопрос, поскольку, как считал Стайнман, если бы мы знали, как иммунная система решает, когда и как следует откликаться, мы бы поняли, как регулировать иммунитет и устранять неприятности, если он идет вразнос — как при аутоиммунных заболеваниях. Писатель Артур Кёстлер в своей книге «Акт творения» утверждал: «В истории открытий то и дело добираются до неожиданных гаваней, а также до гаваней желанных, но не тем судном»[98]. Гаванью назначения Стайнмана, взявшегося разрешать эту важную загадку — как работает иммунная система, — стало монументальное научное открытие: новый тип клеток.

Родители Стайнмана хотели, чтобы он изучал религию и принял управление семейным делом — магазином, торговавшим всем подряд, от бытовых приборов до одежды, но Стайнман влюбился в на- уку[99]. В ту пору ученые лишь недавно выяснили, как выделять различные клетки крови или тканей. Открылся новый фронт науки: предстояло выяснить, как действует иммунная система, — смешать клетки в лабораторной посуде, в различных комбинациях, и изучить их поведение. Решив работать в этой области и вдохновившись циклом лекцией по «новой клеточной иммунологии», прочитанной во время его медицинской подготовки в Массачусетской больнице общего профиля в Бостоне, Стайнман в 1970 году подключился к исследованиям лаборатории Зэнвила Кона при Рокфеллеровском университете, Нью-Йорк; в исследованиях иммунных клеток у этой лаборатории уже была грандиозная репутация[100].

Первые пару лет Стайнман трудился в рамках тогдашней главной темы лаборатории — как иммунные клетки поглощают собой молекулы в своем непосредственном окружении[101], — однако в 1972 году он обратил внимание на другой вопрос, и тот оказался необычайно благодатным: речь о загадке вспомогательных клеток. В те времена вспомогательная клетка оставалась скорее чистой идеей, нежели действительностью — ее придумали, чтобы как-то объяснить наблюдение, которое иначе никак не удавалось истолковать: если смешать выделенные иммунные клетки (в частности, Т- и В-) с чем-то, что способно вызвать иммунный ответ, ничего не происходит[102]. Предположительно, чтобы иммунные клетки откликались, необходимо что-то еще, но никто не понимал, что именно — и почему. «Вспомогательной клеткой» назвали это самое дополнительное нечто, чем бы оно ни оказалось.

Было известно, что иммунные реакции живее всего зарождаются в селезенке. Применив Т- и В-клетки селезенки, взятые у мыши, Стайнман обнаружил, как и многие до него, что спровоцировать иммунный ответ в чашке Петри ему не удается, если не добавить «вспомогательные» клетки, а на практике это означало добавить в чашку то, что успело налипнуть на стекло из взятого в селезенке. Стай- нман решил приглядеться к тому, что же все-таки на стекло налипло. В мешанине клеток, размазанной под линзой микроскопа, он обратил внимание на некоторые — из-за их силуэта: они походили на звездочки, были покрыты шипами. С многочисленными тонкими выпуклостями, торчавшими подобно ветвям дерева, эти клетки довольно сильно отличались от тех, что похожи на плюхи яичницы-глазуньи, какие рисуют в школьных учебниках. Более того, они отличались от всего, что Стайнману доводилось видеть до сих пор.

Хотя в то время ему это известно не было, кое-кто такие клетки уже, вообще-то, видел — на сто лет раньше, в 1868 году: немецкий биолог Пауль Лангерханс. Лангерхансу тогда был двадцать один год, и звездчатые клетки он увидел в пробе кожи. Счел их нервными — из-за их необычной формы, — и опубликовал статью с описанием этих клеток: «О нервах в человеческой коже»; в ту пору он еще был студентом[103]. Стайнман разглядел, как эти странные клетки двигаются, и заметил, что они способны, говоря его словами, «принимать самые разнообразные ветвистые очертания и постоянно то выбрасывать, то втягивать многочисленные тонкие клеточные придатки»[104]. Ни разу не доводилось ему наблюдать такое движение клеток. То ли никто раньше не замечал, как двигаются эти клетки, то ли замечал, но не обратил внимания. Не «эврика!», конечно: Стайнману было невдомек, ни что это за движение, ни что означает такая необычная форма клетки. То было, скорее, переживание «ух ты, ну и ну», однако чутье подсказало Стайнману, что клетки эти очень важны.

Научное открытие, сделанное вот так, благодаря взгляду на клетки под микроскопом, не происходит запросто, как это могло бы показаться. Двое гарвардских психологов, Кристофер Чэбрис и Дэниэл Саймонз, предложили добровольцам посмотреть видеозапись, в которой шесть бейсболистов — трое в белых футболках, трое в черных — перебрасывают друг другу мяч, и так продемонстрировали, почему такие открытия даются трудно. Чэбрис и Саймонз попросили зрителей посчитать, сколько раз мяч перешел из рук в руки между игроками в белых футболках, — а эта задача требует от наблюдающих некоторой сосредоточенности[105]. На середине записи, которую вы и сами можете посмотреть онлайн[106], в кадре появляется женщина в костюме гориллы, встает среди игроков, колотит себя по груди, глядя в камеру, и уходит из кадра. По окончании просмотра зрителей спросили, заметили ли они что-нибудь необычное. Вопреки тому, что приборы, следившие за движениями глаз, показали, что все зрители смотрели на гориллу соизмеримо долго, заметила ее лишь половина участников эксперимента. Эта «слепота восприятия» оказалась даже хуже, когда эксперимент поставили на группе экспертов-радиологов, которых попросили изучить снимки легких, сделанные на компьютерном томографе, и поискать новообразования — они на снимках выглядят как ярко-белые круги. На некоторых снимках имелись изображения гориллы — в сорок восемь раз более крупные, чем узелки, которые экспертам было поручено высматривать — и этому же их в свое время обучили; 83 % радиологов не заметили гориллу, хотя смотрели прямо на нее[107].

Эти эксперименты подчеркивают важную истину: мы видим в первую очередь мозгами, а не глазами. Мозг человека фильтрует и толкует все, что засекают органы чувств, и поэтому мы зачастую видим лишь то, что выискиваем, и не замечаем неожиданного — даже если оно бросается в глаза, как горилла, что бродит среди людей, играющих с баскетбольным мячом. Чтобы даже просто увидеть эти новые клетки, Стайнману пришлось преодолеть такую человеческую особенность. Возможно, сыграло на руку то, что Стайнман взялся смотреть в микроскоп без всякого отчетливого желания изучить вспомогательные клетки: он просто решил поглядеть — и эксперимент с незримой гориллой подсказывает, что легче заметить нечто новое, если не высматривать ничего прицельно. В затемненной комнате между исследователем, вперяющимся в окуляр микроскопа, и кусочком живой природы почти ничего не стоит. В таком одиночестве — и при сосредоточенном восприятии — мы, вероятно, делаемся более открытыми новому.

Однако слепота восприятия — не единственная и даже не самая мощная преграда, какая могла встать у него на пути, окажись Стайнман в меньшей мере ученым, чем был. Всевозможные толкования увиденного могли привести к тому, что Стайнман попросту отмахнулся бы от замеченного. Знаменит случай с Галилеем, когда в ноябре 1609 года он глянул на Луну в свежеизобретенный телескоп и увидел светлые и темные пятна на лунной поверхности: Галилей осознал, что Луна — не гладкая, как прежде считалось, а покрыта горами и глубокими долинами; английский же астроном Уильям Лоуэр, глядевший на Луну в телескоп всего на несколько недель раньше, лишь заметил, что поверхность Луны похожа на пирог с патокой, недавно испеченный его поваром[108]. Стайнман мог бы решить, что клетки причудливых очертаний, которые он заметил, — варианты уже известных, или же это странно нездоровые клетки — вероятно, поврежденные в ходе их выделения из живой ткани. Необычные движения клеток можно было отнести на счет того, что все дело в стекле, к которому они прилипли. (Понадобилось примерно три десятилетия, чтобы техника позволила наблюдать за движениями этих клеток в живом организме животного[109].) Как сказал ученый Альберт Сент-Дьердьи, открывший витамин С, штука в том, чтобы «увидеть то, на что смотрели все остальные, но при этом подумать о том, что не пришло в голову никому другому»[110].

Помогла Стайнману и его рабочая обстановка. Глава лаборатории Зэнвил Кон всегда очень поддерживал своего коллегу. У «Рокфеллер Юниверсити Пресс» был свое научное издание, «Джорнел оф Экспериментал Медисин», и, вероятно, оказалось кстати, что Стайнман мог опубликовать свои первые открытия в таком престижном родственном журнале. Однако самое главное заключалось в том, кто работал в лаборатории этажом выше. На пятом этаже здания, как писал сам Стайнман, находилось, «вероятно, самое крупное скопление специалистов по биологии клетки из всех, что когда-либо трудились вместе, бок о бок», а среди них — Джордж Паладе[111].

Гюнтер Блобель, еще один нобелевский лауреат, говорил о Паладе, что это самый влиятельный специалист по клеточной биологии[112]; именно Паладе разработал метод, благодаря которому ученые получили возможность рассматривать клетки под электронным микроскопом — это прибор, в котором применяется не обычный свет, а поток электронов, и с его помощью можно увеличивать предметы в тысячи раз лучше, чем обычным микроскопом. Более того, первые фотоснимки клеток, сделанные электронным микроскопом, были опубликованы в 1945 году исследовательской группой Кита Портера, Альбера Клода и Эрнста Фуллэма — там же, в Рокфеллеровском университете[113]. Паладе подключился к этой группе и применил электронный микроскоп в исследовании митохондрий — внутренних отделов клетки, где происходят химические реакции, производящие энергию для нужд клетки. Паладе затем открыл, например, где клетки производят белковые молекулы, что исключительно важно для нашего понимания процессов, лежащих в основе большинства процессов биотехнологической промышленности — производства инсулина и тому подобного. Эти открытия состоялись благодаря микроскопу и оказались революционными — как замечает историк и ученый Кароль Моберг: «На рубеже ХХ века… анатомы, гистологи, патологоанатомы и биохимики нередко спорили о подлинности существования компонентов клетки. Многие считали клетку просто кульком с ферментами, залитыми бесформенной протоплазмой, без всякого порядка»[114]. Рокфеллеровский университет, тогда все еще некрупное заведение, прославился на весь мир как источник нашего современного понимания того, что происходит внутри клетки.

Стайнман применил микроскопы Паладе и с их помощью вгляделся внутрь шипастых клеток. Самое главное: он перестал сомневаться, что эти клетки действительно отличаются от иммунных клеток других разновидностей. В них оказалось, например, гораздо больше цитоплазмы — густой жидкости, заполняющей пространство клетки вокруг ядра, — чем в других клетках. Убедившись, что это новые клетки, Стайнман задумался, как бы их назвать. Придумывать новое научное название — редкая привилегия. Стайнман решил присвоить им имя «клодиациты» — в честь своей супруги Клодии, без чьей любви и поддержки, как часто говорил сам ученый, он таких исследовательских успехов не добился бы[115]. (Клодия, хоть и преуспевала в торговле недвижимости, большую часть времени посвящала их

со Стайнманом сыну и дочерям-двойняшкам, сам же Стайнман дома бывал редко[116].) В конце концов Стайнман остановился на названии «дендритные клетки» — от греческого слова «дендрон», что означает «дерево», — поскольку самая яркая отличительная черта этих клеток была именно в многочисленных отростках, похожих на древесные ветви, торчащих из основного клеточного тела.

Хотя дендритные клетки есть в теле повсюду — в крови, в коже и едва ли не во всех внутренних органах, — их везде довольно немного. И вот к чему свелся следующий шаг в трудах Стайнмана, которым он посвятил сорок лет: выяснить, каковы задачи таких клеток, а для этого попытаться выделить их, чтобы подробно изучить. Задача оказалась непростая — потребовалось пять лет, чтобы выработать действенную процедуру, и в этом, опять-таки, ключевую роль сыграли люди, трудившиеся на верхних этажах.

На седьмом этаже группа под управлением Кристиана де Дюва вскрывала клетки при помощи мыльных растворов и других препаратов и так выделяла клеточные составляющие для дальнейшего анализа. Разделить компоненты клетки удавалось, применяя центрифугу — прибор, вращающий предметы (в данном случае — пробирки со взломанными клетками), как это происходит в стиральной машине, только гораздо быстрее, на сотнях оборотов в секунду[117]. Этот метод действен, потому что различные компоненты клетки имеют разную плотность, и более плотные части клетки скапливаются под действием центробежной силы ближе ко дну пробирки, тогда как компоненты полегче собираются («оседают») ближе к верху. Далее довольно просто откачать фрагменты клеток и изучать их раздельно. Таким способом группа де Дюва смогла выявить удивительный мир органелл — буквально «маленьких органов» — внутри клетки. Ядро — крупнейшая клеточная органелла, его довольно легко увидеть, однако де Дюва обнаружил, что внутренность клетки заполнена множеством других малюсеньких составляющих — крошечных мешочков, заключенных в мембраны, изолирующие различные реакции и процессы. «Я много перевидал всякого в живой клетке, но с помощью центрифуги, нежели микроскопа», — говорил де Дюва, принимая Нобелевскую премию вместе с Паладе в 1974 году[118].

Стайнман позаимствовал методы у де Дюве и приспособил центрифугу, чтобы отделять друг от друга разные клетки, а не их компоненты. Клетки с разной плотностью запросто отделялись за несколько минут вращения центрифуги — красные кровяные тельца очень отличаются от иммунных клеток, например, и их таким способом устранить легко. Однако, чтобы отделить дендритные клетки от всех остальных иммунных, даже с похожей плотностью, Стайнману пришлось разработать особый метод. По сути, путем проб и ошибок, он не один год пытался понять, как этого добиться. В конце концов разработанный процесс состоял из нескольких этапов. На первой стадии очистки иммунные клетки (включая и дендритные) поднимались к верхней части пробирки, прокрученной в центрифуге, а клетки помельче и поплотнее опускались на дно. Далее иммунные клетки откачивались из пробирки, и их оставляли на стекле на час. Поскольку клетки по-разному «прилипают» к стек- лу в зависимости от того, какие белковые молекулы покрывают их поверхность, некоторые клетки, в том числе и дендритные, за этот час приставали к стеклу, а остальные можно было смыть. За ночь оставшиеся клетки сами отлипали от стекла, и Стайнман мог подвергать их реакции, которая скучивает иммунные клетки, отличные от дендритных, вокруг красных кровяных телец. Затем следовал второй раунд центрифугирования, и благодаря ему красные кровяные тельца отделялись, забирая с собой прочие иммунные клетки; так оставались лишь дендритные.

Замысловатость этой процедуры и то, что она требовала знания специфических нюансов, — в той же мере, в какой не сразу учишься ездить на велосипеде, лишь прочитав о том, как это делается, — вероятно, в конечном счете помогли Стайнману: дендритные клетки были целиком и полностью в его власти, без явных внешних соперников в этой области знания, по крайней мере лет на десять[119]. Впрочем, была и другая причина, почему ученые не рвались изучать дендритные клетки: многие не считали, что это новая разновидность. Большинство ученых думало, что Стайнман выделил подвид клетки, которую уже открыл — в 1882 году — украинский зоолог Илья Мечников; за это открытие он удостоился в 1908 году Нобелевской премии[120].

Темпераментный, однако повсеместно признанный творческий гений Мечников рассуждал, что «болезнь — не прерогатива человека», животные тоже болеют, а потому было бы познавательно понаблюдать, что происходит в животных при столкно-вении с угрозой[121]. Мечников изучил, помимо многих других биологических видов, личинки морской звезды, которые, что важно, достаточно прозрачны, чтобы рассматривать их под микроскопом вживую. В своей частной лаборатории на Сицилии он наблюдал, что происходит с личинками морской звезды, если уколоть их острой щепочкой. (По легенде, ученый протыкал их шипом розы.) Увиденное Мечниковым породило целое новое направление в знании об иммунитете: некоторые клетки личинки двинулись к ранке.

Вероятно, отчасти потому, что из курса патологии он недавно узнал, что иногда внутри белых кровяных телец обнаруживаются микробы, Мечников подумал, что клетки должны двигаться к месту поражения прицельно для того, чтобы обволочь — или съесть — болезнетворных микробов, которые могут попасть в рану[122]. «Меня осенило, — говорил Мечников, согласно биографии, которую его супруга опубликовала после его смерти, — что подобные клетки, возможно, служат защитой организму против внешних вторжений… Я так воодушевился, что принялся расхаживать туда и сюда по комнате и даже вышел на берег, чтобы собраться с мыслями»[123]. Не с точки зрения пострадавшего организма размышлял Мечников — он осознал, что болезнь или во всяком случае некоторые разновидности недугов есть битва двух биологических видов, битва, выражаясь его словами, между «микробом снаружи и подвижными клетками самого организма»[124]. Он обнаружил, иначе говоря, что у некоторых клеток есть особая задача — защищать организм от болезни, и эти клетки — иммунные. 23 августа 1883 года он публично заявил, что «животные обезоруживают бактерии, поедая и переваривая их»[125]. Позднее Мечников с помощью коллег назвал открытые им клетки фагоцитами, а их работу по перевариванию вредоносных микроорганизмов — фагоцитозом, от греческих слов, означающих «процесс поедания клетки»[126]. Клетки, лучше прочих способные поглощать микробов, получили название макрофагов — «больших едоков».

Вообще-то, ученые сообщили об этом процессе на несколько лет раньше, но на их работу в истории иммунологии почти не обратили внимания[127]. Мечников, тем не менее, во всех подробностях развил мысль, как именно иммунные клетки способны обволакивать микробов: он сравнивал клетки разных биологических видов, из разных органов, при различных температурах и применял разнообразные окрашивающие средства — и наблюдал, что происходит с различными типами бактерий. Он изучил даже воздействие наркотиков. И смиренно признавался, что такое взаимодействие иммунных клеток с микробами обнаружил не первым. Первенство Мечникова в этом исследовании заслуженно, в основном, не потому, что он взял и открыл иммунные клетки, наблюдая личинки морской звезды, проколотые розовым шипом, а потому что он заметил отклик этих организмов и сформулировал соображение о том, что именно происходит, и затем настойчиво пытался разобраться в этом процессе досконально.

Так же и со Стайнманом: он не определил дендритные клетки, когда впервые увидел их под микроскопом. Тот миг стал лишь началом пути — и ученые отнеслись к заявкам Стайнмана, мягко говоря, скептически[128]. Один студент Стайнмана вспоминает отношение к разговорам Стайнмана о дендритных клетках на некоем международном съезде как попросту «оскорбительное»[129]. Большинство ученых решили, что клетки, которые Стайнман выделил, — макрофаги, поскольку макрофаги, как уже было известно, тоже липнут к стеклу и их больше, чем дендритных клеток. Чтобы убедить научное сообщество, Стайнману пришлось не только предъявить доказательства, но и немало полетать самолетом. Авиа- сообщение в то время сделалось дешевле, и ученые уже не могли полагаться на одни лишь публикации, чтобы их работу заметили: если нужно было предложить и обсудить свои соображения с другими, все важнее становились личные поездки на встречи. В результате семья Стайнманов частенько выбирала место отпуска с привязкой к иммунологическим конференциям[130].

Эксперименты, которые проводила группа Стайнмана в начале 1980-х, были необходимы для того, чтобы убедить научное сообщество: дендритные клетки — самостоятельная разновидность. Учащийся в лаборатории Стайнмана по имени Мишель Нуссенцвайг сравнил отклик Т-клеток в присутствии других иммунных клеток и обнаружил исключительную способность дендритных клеток инициировать ответ Т-клеток. Иными словами, работа Нуссенцвайга предоставила мощное доказательство того, что дендритные клетки и есть те самые загадочные вспомогательные[131]. Развивались приборы, накапливались знания, различные типы иммунных клеток изучать стало проще; были разработаны реагенты, позволяющие подкрашивать дендритные клетки и так выделять их среди прочих[132], и лаборатория Стайнмана смогла доказать, что дендритные клетки действительно способны стимулировать иммунный ответ по меньшей мере в сто раз лучше, чем макрофаги или клетки любых других разновидностей[133]. В 1982 году еще один студент из этой лаборатории, Уэзли ван Вурис, обнаружил дендритные клетки человека — все первые изыскания проводились на клетках мышей — и показал, что и они наделены мощной способностью вызывать иммунный ответ[134].

Даже после того, как Стайнман и его коллеги убедили большинство ученых, что действительно открыли клетку новой разновидности, годы усилий не слишком-то продвинули Стайнмана к отчетливому ответу на его исходный вопрос: как тело решает произвести иммунный ответ с сообразной осторожностью? Стайнман обнаружил, что дендритные клетки способны инициировать иммунный отклик, но не понимал, почему, как и что именно это означало для работы иммунной системы в целом. Путь к настоящему пониманию функции дендритных клеток открылся, лишь когда Стайнман и его команда выяснили, что способность дендритных клеток запускать иммунный ответ изменчива.

Важную роль в этом открытии сыграл дерматолог по имени Герольд Шулер, присоединившийся к группе в 1984 году[135]. Другие ученые в команде Стайнмана разобрались, что дендритные клетки, выделенные из кожи, куда менее способны вызывать иммунный ответ, чем дендритные клетки, выделенные из селезенки, однако никто не понимал, ни почему это так, ни какое это имеет значение для работы дендритных клеток в организме в целом. Шулер же выяснил, что, когда дендритные клетки только что извлекли из кожи, они действительно довольно слабо вызывали иммунный отклик, однако если те же клетки подержать в лабораторных условиях два-три дня, они набирали силу[136]. Это означало, что дендритные клетки существуют не в одном-единственном состоянии — у них их два, «вкл.» и «выкл.». Процесс, при котором они переходят в состояние «вкл.», Стайнман назвал созреванием, и вот так были определены два состояния дендритной клетки, названные зрелым и незрелым.

Как и подсказывает их название, зрелые дендритные клетки находятся в состоянии «вкл.» и вызывают иммунный ответ. Незрелые дендритные клетки «выключены» — вызывать иммунный отклик у них получается плохо, однако стало ясно и то, что незрелые дендритные клетки вовсе не бездействуют. У них на поверхности располагается множество образ-распознающих рецепторов — тех самых, чье существование предсказал Джейнуэй, например, толл-подобные рецепторы, а также другие, наделяющие их врожденной способностью замечать и ловить бактерии, вирусные частицы и фрагменты зараженных мертвых клеток в прилегающем пространстве. Иначе говоря, незрелые дендритные клетки — хорошие фагоциты, у них получается поедать. Вот так сложилось представление о двух состояниях дендритных клеток: незрелые дендритные клетки качественно чуют и ловят инородные тела в организме, а зрелые успешно включают в действие другие иммунные клетки. И все же знание о двух состояниях дендритных клеток само по себе не проясняло, что происходит в организме; понадобилось еще одно значимое открытие, после которого все наконец стало проясняться.

К концу 1980-х и в начале 1990-х дендритные клетки уже изучало внушительное международное научное сообщество, и Стайнман был его бесспорным вожаком. Целая череда тематических симпозиумов началась в 1990 году и продолжается по сей день; исследователи, занятые в этой области, встречаются раз в два года[137]. К началу этих встреч в нескольких лабораториях был разработан инструментарий, с помощью которого можно выявлять расположение дендритных клеток и определять каждую по отдельности, зрелая она или нет. Так дендритные клетки были обнаружены в коже, легких и кишечнике, а также в селезенке и лимфоузлах — маленьких, похожих на фасолины органах на шее, подмышками, под коленями и так далее; эти органы наполнены иммунными клетками. (На шее они набухают, если человек подцепил инфекцию и заболел; их часто именуют железами, хотя вообще-то это неверно.) Важнейшее открытие в этой области исследований состоит в том, что дендритные клетки тканей кожи, легких и кишечника, — незрелые, а клетки в селезенке и лимфоузлах — наоборот.

Тогда же наконец сложилось и понимание, чем заняты дендритные клетки в теле. Незрелые дендритные клетки следят почти за всеми нашими органами и тканями, но особенно — за местами в организме, открытыми для внешней среды: за кожей, желудком и легкими. Эти дендритные клетки специализируются на выявлении микробов, что удается им благодаря многочисленным образ-распознающим рецепторам на их поверхности. Наткнувшись на микроба, незрелая дендритная клетка обволакивает его и уничтожает. Проделав это, она переходит в другое состояние — зрелое. Зрелая дендритная клетка устремляется к ближайшему лимфатическому узлу или к селезенке — складам, битком забитым другими иммунными клетками. Там, в лимфоузле, другие иммунные клетки получают доступ к фрагментам микроба, которого поглотила дендритная клетка. Иммунные клетки нужной разновидности отправляются из лимфоузла к месту поражения и там разбираются с возникшей неприятностью. Все эти движения осуществляются через кровеносную и лимфатическую системы, последняя — особая разветвленная сеть тонких цилиндрических сосудов, по которым иммунные клетки добираются до лимфоузлов в жидкости под названием лимфа — она похожа на кровь, но в ней нет красных кровяных клеток. Дендритные клетки перемещаются к лимфоузлам по лимфатическим сосудам, тогда как Т-клетки, например, покидают лимфоузел и направляются к тканям тела через кровь.

Отклик тела на порез или ранение, очевидно, изумителен и сложен. Сперва иммунные клетки движутся к месту поражения, и это место краснеет и отекает: таков отклик нашего врожденного иммунитета, первой линии обороны — иммунные клетки предупреждены о беде благодаря тому, что на поверхности этих клеток есть рецепторы, засекающие молекулы вирусов, бактерий, грибков или поврежденных клеток. Однако, помимо мгновенного отклика, начинается и сложная хореография иммунных клеток — возникает следующий уровень отклика, в точности соответствующий профилю микробов, проникших в тело: это ответ нашего приобретенного иммунитета. Такой вот точный и продолжительный иммунный отклик возникает, когда дендритные клетки достигают лимфоузла и показывают тамошним Т-клеткам образцы молекул микробов, которых удалось поглотить.

У звездчатых очертаний дендритной клетки — у ее многочисленных отростков — есть очевидная задача: они позволяют дендритным клеткам соединяться одновременно со множеством Т-клеток. Вспомним, что у Т-клеток есть рецепторы со случайно сформированными концами, что позволяет им соединяться со всевозможными другими молекулами[138]. У большинства Т-клеток не найдется рецептора подходящей формы, чтобы сомкнуться с чем бы то ни было на поверхности дендритной клетки. Однако у некоторых Т-клеток найдется нужный рецептор, и смыкание с молекулой из поглощенного микроба состоится. Раз у этих Т-клеток есть правильный рецептор для распознания такого микроба, они подходят для прицельного иммунного ответа. Соприкоснувшись с дендритной клеткой, поглотившей микроба, который эта Т-клетка способна распознать, она принимается размножаться.

Одна Т-клетка продолжит делиться, пока ее количество в лимфоузле не возрастет по крайней мере в сто или тысячу раз. (Этим повышением концентрации клеток объясняется ощутимое увеличение лимфоузлов у вас на шее, когда вы подцепили заразу.) Т-киллеры — слово «киллер» здесь вполне формальное научное название, а не моя попытка оживить рассказ — покидают лимфоузел и устремляются к месту неполадки, чтобы убить больные клетки (например, зараженные вирусом). Тем временем другие Т-клетки, именуемые Т-хелперами[139], побуждают прочие иммунные клетки к действию. Ныне нам известно, что существует несколько разных типов Т-хелперов. Те, что называются Т-хелперами типа 1, например, помогают побеждать бактерии, а Т-хелперы типа 2 поддерживают устранение червей-паразитов[140]. Благодаря Т-хелперам типа 1 мобилизуются макрофаги — большие едоки, и те разбираются с бактериями. Клетки типа 2 же включают реакцию типа «вымыть и выгнать»: стараясь не вдаваться в живописные подробности, скажу, что клетки кишечника выделяют слизь, а мышечные сокращения выталкивают живых червей-паразитов наружу[141].

Не вполне понятно, как включается подходящий отклик Т-клеток — первого или второго типа (есть и другие). Это сейчас передовое знание[142]. Есть вот такой важный процесс: дендритные клетки привлекают к действию Т-клетки определенного типа в соответствии с разновидностью сигнала созревания. Черви-паразиты, например, вызывают у дендритных клеток созревание определенного вида, не такого, каким вызывают бактерии. Это происходит, в частности, потому, что разные образ-распознающие рецепторы в обширном арсенале дендритной клетки сцепляются с разными патогенными организмами: один распознает бактерии, другой — вирусы, третий — грибки, четвертый — червей и так далее. Эти образ-распознающие рецепторы задают вариант созревания дендритной клетки — меняют репертуар белковых молекул, которые зрелая дендритная клетка показывает на своей поверхности, например, — а это, в свою очередь, вызывает тот или иной отклик Т-клетки.

Короче говоря, дендритные клетки засекают неполадку и запускают иммунный ответ, подходящий для данной неполадки. Выражаясь строже, они связывают ответ нашего врожденного иммунитета, мгновенную реакцию нашего тела на микробов, с откликом иммунитета приобретенного, который длится дольше, действует точнее и привлекает к работе Т- и В-клетки. Другие клетки человеческого организма, включая микрофаги, тоже способны на такие действия, но только если организму нужно запустить иммунный ответ против микробов, с которыми оно уже сталкивалось. Дендритные клетки необходимы для запуска точного иммунного ответа, когда тот или иной микроб впервые попадает в организм[143]. Они — наши клетки пожарной тревоги.

Если бы история этим и завершалась, дендритных клеток и исследований Стайнмана хватило бы для привлечения всеобщего внимания. Однако это лишь начало. Роль дендритных клеток в организме оказалась страннее — и куда менее очевидной, — чем то, что явили нам результаты первых экспериментов.

* * *

«Мои ученики считают, будто почтенные писатели, усаживаясь сочинять книгу, более-менее представляют, что у них там будет происходить, поскольку сюжет они прописывают, и потому книги получаются такие ладные, жизнь у писателей такая легкая и приятная, самооценка замечательная, а доверие и способность изумляться — ну прямо как у детей. Н-да. Ничего из всего этого мне незнакомо. Все мои приятели, нащупывая сюжет и подходящую структуру, мечутся, ноют и отчаиваются»[144].

Такое описание того, как романисты ищут свои сюжеты, предложенное Энн Ламотт, вполне применимо и к тому, как нащупывают свои повествования ученые.

Поиск бозона Хиггса, секвенирование генома человека или отправка космического корабля к Марсу требуют громадного долгосрочного планирования и бумажной возни. Однако, чтобы разобраться, чем вновь открытые клетки заняты в живом организме, нужен совсем другой подход. Такого рода передовые исследования — не точная наука. Во всяком случае поначалу никаких внятных теорий, которые нужно было бы подтверждать или опровергать, нет, как нет и международных сообществ или многодисциплинарных исследовательских групп, которые можно было бы координировать. Прогресс происходит благодаря нескольким отдельным людям, которые держат нос по ветру. В этой точке творчество художника и ученого очень похожи. Ученые и творцы в равной мере мечутся, ноют и отчаиваются — в поисках подходящего сюжета.

Стайнман открыл дендритные клетки без всякой великой теории о том, как они способны вызывать иммунный ответ: у него не было повествования, которое могло бы направлять дальнейшие эксперименты. Мячик Стайнману выдали, а что это за игра, предстояло выяснить самостоятельно. Ему и его группе нужно было разобраться, что произойдет, если дендритные клетки смешать с такими и сякими другими клетками, в различных сочетаниях: станут ли они размножаться, перемрут или же начнут выделять те или иные белковые молекулы? Значимо ли то, что их оставили на час — или на сутки? Меняют ли они форму, притягиваются друг к дружке или отталкиваются, движутся быстрее или медленнее, укрупняются или мельчают, выпускают больше или меньше отростков, включают или выключают тот или иной ген?

Сперва все эксперименты подводили Стайнмана и остальных к пониманию, что дендритные клетки исключительно важны для запуска точного иммунного отклика. Но затем, когда удалось опробовать разнообразные условия и обстоятельства, некоторые эксперименты показали, что верно полностью противоположное: присутствие дендритных клеток способно остановить иммунный ответ. Не успел Стайнман решить, что разобрался в этой игре, как выяснилось, что он лишь на первом ее уровне, и никто не понимал, сколько там еще этих уровней. Сколько б ни было нам известно, всегда гораздо больше того, чего мы не знаем.

В одном из экспериментов, который, казалось, противоречит предыдущим исследованиям, дендритные клетки подверглись воздействию белковых молекул, чужеродных для человека, а не целых микроорганизмов. Вроде бы дендритные клетки в таких условиях не должны вызывать иммунный отклик: их образ-распознающие рецепторы не засекут микробов, и клетка должна остаться незрелой. Дендритные клетки действительно не пробудили отклика в других иммунных клетках, но кое-что все же произошло. Другие иммунные клетки, приведенные в соприкосновение с этими дендритными, сделались неспособны позже участвовать в иммунном отклике даже в присутствии микробов. Иначе говоря, эти дендритные клетки вызвали состояние бездействия — или толерантности — у других иммунных клеток, сделали их невосприимчивыми.

Когда возникала вот такая невнятица, Стайнмана питало то же, что поддерживает любого ученого: вера в то, что природа все устроила сообразно, и ответы существуют. Мы не сдаемся, мы вглядываемся пристальнее: чтобы понять, как одни и те же клетки в одних случаях инициируют ответ, а в других пресекают его, нужно разобраться, как именно устроен механизм взаимодействия дендритных клеток с другими иммунными. Вспомним, что дендритная клетка обволакивает микроба на месте заражения, а затем, в лимфоузле, показывает Т-клеткам образцы молекул, произведенных микробом. Теперь мы знаем, что этот процесс требует белков, кодируемых горсткой чрезвычайно важных генов — эта группа генов называется главным комплексом гистосовместимости (ГКГС) или, попроще, генами совместимости[145]. Белки, закодированные этими конкретными генами, торчат на поверхности дендритных клеток. Они цепляют мелкие образцы других белковых молекул изнутри дендритной клетки, в том числе и молекулы любых микробов, которые дендритной клетке удалось поглотить, и выставляют их у себя на поверхности. Т-клетки проверяют эти образцы белков, которые им предложили, и ищут среди них те, которых в теле прежде не бывало.

Кроме того, что на них лежит выполнение этой важной задачи, такие белки — особенные, потому что гены, которые их кодируют, — а значит, и сами белки, — у разных людей разные. В общем и целом, у нас один и тот же набор генов — 23 000 единиц человеческого генома, — но примерно 1 % нашего генома у каждого человека свой: эти гены влияют на цвет волос, глаз, кожи и так далее. Что важно: те гены, которые сильнее всего отличаются от человека к человеку, никак не отвечают за нашу внешность — они часть нашей иммунной системы. Вариации в этих генах придают белкам, выпирающим с поверхности наших дендритных клеток и предъявляющим образцы того, что в данный момент находится у этих клеток внутри, несколько отличающиеся очертания. Это означает, что каждый из нас предъявляет особый состав белков, находящихся внутри наших дендритных клеток. Такова одна, но не единственная, причина, почему все мы справляемся с одной и той же инфекцией несколько по-разному.

Стоит отметить, что, в пределах моего понимания, в целом, никому не достается худший или лучший состав этих конкретных генов. Вариант, соотносимый с откликом лучше среднего на инфекции при наличии ВИЧ, одновременно соотносится с большей подверженностью другим болезнями — аутоиммунным, например. В этой системе нет иерархии. Генетическое многообразие в пределах нашего вида необходимо для нашей способности противостоять всевозможным потенциальным инфекциям, что, на мой взгляд, мощная глубинная причина радоваться этому самому многообразию[146].

Нюанс, благодаря которому удалось разрешить загадку способности дендритной клетки и вызывать отклик, и предотвращать его, таков: если Т-клетка сцепляется с чем-то, чего в теле прежде никогда не было, — применительно к привычному диапазону белка гена совместимости, — одного этого недостаточно, чтобы запустить иммунный отклик. Т-клетке нужно больше доказательств, что иммунный ответ уместен. По сути, любой Т-клетке нужно два показателя возникшей неполадки. Первый — сигнал номер один, как его называют, — поступает при распознании образца белковой молекулы, которой прежде в теле не имелось. Сигнал номер два приходит от так называемых костимулирующих белков[147]. Костимулирующие белки содержатся внутри дендритных клеток, они перемещаются к поверхности клетки, когда образ-распознающие рецепторы дендритной клетки соединились с микробом (и дендритная клетка при этом переходит из незрелого состояния в зрелое). В результате эти белки присутствуют в заметных концентрациях на поверхности лишь тех дендритных клеток, которые соприкоснулись с микробом[148], и это оставляет действенный молекулярный след, означающий, что та или иная дендритная клетка соприкоснулась с микробом[149].

Иначе говоря, дендритная клетка применяет образ-распознающие рецепторы, чтобы засечь микроба или какой-либо еще признак неполадки — фрагмент зараженной мертвой клетки, например, — а затем дендритная клетка созревает (или включается) и предоставляет образцы микроба Т-клетке. Т-клетка, у которой есть рецептор подходящих очертаний, способный соединиться с тем, что представила дендритная клетка, — нечто чужое, — требует присутствия костимулирующего белка у той же самой дендритной клетки — как сигнал к тому, что это самое чужое есть часть микроба и что отклик необходим. Если Т-клетка сцепляется с тем, что представила дендритная клетка, но костимулирующих белков нет, Т-клетка понимает, что откликается на что-то не микробное. Возможно, это молекула, которой прежде в теле не было почему-либо еще: может, это пища или новые белки, произведенные во время беременности или в подростковый период. В таком случае Т-клетка не просто пресекает иммунный отклик: она переходит в другое состояние и превращается в толерантную Т-клетку. Такая Т-клетка более не способна вызывать иммунный отклик — ни сейчас, ни даже позднее. Вот так дендритные клетки способны выключать Т-клетки, которые в противном случае нападали бы на здоровые клетки и ткани.

Ученые, исследующие иммунную систему, часто заявляют, что участок, на котором они трудятся, — важнейшая часть системы. Действительно, система настолько сложна и многослойна, что в равной мере правомочно утверждать, будто Т-клетки важны необычайно — или В-клетки, или макрофаги, или образ-распознающие рецепторы и так далее. Однако дендритные клетки в самом деле занимают во всем этом устройстве особое место. У них есть способность включать и выключать иммунную систему — и управлять нашим иммунитетом и его борьбой с микробами и вирусами, и не давать ему атаковать здоровые клетки и ткани. Открытие механизма действия дендритных клеток — начинание Стайнмана, а позднее эту работу продолжили тысячи других ученых — в конце концов ответило на исходный вопрос этого ученого, как тело запускает иммунный отклик вдумчиво: ей для этого нужен не один сигнал.

* * *

Стайнмана неизменно поддерживала вера, что его исследование можно будет применить при разработке новых лечебных препаратов[150]. Поскольку дендритные клетки совершенно необходимы, чтобы возник иммунный отклик, когда микроб впервые обнаружен в теле, они, по сути, — природный адъювант, вырабатываемый самим телом. Мы все еще не знаем точно, как внешние вещества, подобно солям алюминия, выполняют задачи адъюванта, но, похоже, они воздействуют на дендритные клетки и тем самым вынуждают их переходить из незрелого состояния в зрелое, словно в присутствии настоящего микроба[151]. Само собой, полагал Стайнман, мы, следовательно, сможем применять дендритные клетки при создании вакцин нового поколения — против ВИЧ, туберкулеза или рака.

Японская исследовательница Кайо Инаба в 1990 году провела в лаборатории эксперимент, показавший, что вакцина на основе дендритных клеток могла бы оказаться действенной. В то время эта область изучения была, несомненно, в мужских руках: по словам Инабы, «женщины в иммунологии не работают», и ее это пугало[152]. (На самом деле в иммунологии в то время все же работало несколько женщин, но, да, немного.) Эксперимент, который она провела, ныне широко признан революционным[153]. Сперва она выделила дендритные клетки мыши. Затем обработала эти клетки в лабораторной чашке вытяжками из клеток опухоли или белками, которых в организме мыши нет. Обработанные таким образом дендритные клетки затем вводили животным. Мыши, которым ввели такие дендритные клетки, далее производили иммунный отклик против тех же молекул, с которыми соприкоснулись дендритные клетки[154]. Иначе говоря, Инаба установила, что дендритные клетки можно включить вне исходного организма, а затем ввести их обратно, и они подготовят ответ иммунной системы. Так обнаружился новый способ подталкивать иммунный отклик и, потенциально, — вакцина нового типа. В 1992 году Инаба вернулась в Японию, где совершила еще один прорыв: стала первой женщиной-доцентом на факультете естественных наук в Киотском университете, а ко времени публикации этой книги заняла пост вице-президента этого университета и деятельно включилась в укрепление гендерного равноправия[155].

Цель вакцины на основе дендритных клеток, следовательно, состоит в том, чтобы применять эти клетки для активации защит организма против, скажем, вирусов, подобных ВИЧ, туберкулезных бактерий или раковых клеток. Эксперименты Инабы доказали, что этот подход применим к мышам. Но, как частенько острят иммунологи, везет же мышам. Проверка этой процедуры на людях многократно сложнее. В случае с раковым пациентом, например, дендритные клетки нужно выделить или добыть из пробы крови, а затем обработать в лабораторной посуде белковыми молекулами, взятыми из раковых клеток пациента. В ту же посуду потребуется добавить адъювант (компоненты бактерий, допустим), чтобы дендритные клетки созрели и были готовы активировать другие иммунные клетки. Зрелые дендритные клетки — вобравшие в себя молекулы раковых клеток пациента — нужно ввести пациенту же. Если все пойдет как надо, дендритные клетки отправятся в лимфоузел и покажут Т-клеткам образцы молекул из раковых клеток самого пациента. Вот так подходящие Т-клетки — способные засекать рак — включатся, и начнется иммунный отклик на рак[156].

Замысел медицинской процедуры такой сложности обычно проверяется пошагово, много лет, если не десятилетий. Исследования клеток в лабораторной посуде ведут к изучению на животных, затем к более обширной работе, возможно, на других животных, а затем — к небольшим проверкам на безопасность с участием людей — так отшлифовывается протокол лечения, поэтапно, — и лишь потом все это допускается к клиническим испытаниям. В марте 2007 года у Стайнмана внезапно не осталось на это времени. Рак на серьезной стадии — скопление клеток размером с плод киви — обнаружился у него в поджелудочной железе. Ученому сообщили, что жить ему осталось несколько месяцев. Выкладывая новость детям, он сказал: «Не надо это гуглить»[157].

Все мы этого опасаемся, однако и размышляем над этим время от времени: что предпримем, если окажется, что жить нам осталось недолго? Некоторые бросят работу и отправятся в широкий мир — посмотреть на то, что всегда хотели увидеть, но пока не получалось. Однако Стайнман оказался не из тех, кто меняет свои планы. Он не оставил свою научную миссию, хотя кое-что поменялось: теперь он мог экспериментировать на себе.

Взявшись применять дендритные клетки для излечения собственного рака, Стайнман надеялся, что работа всей его жизни ее же и спасет. За это новое начинание он взялся не в одиночку. Друзья и коллеги со всего мира вместе взялись придумывать, как именно можно устранить опухоль у Стайнмана. Ожидались масштабные испытания на одном человеке — непомерное усилие спасти жизнь, и усилие это питали любовь и почтение к Стайнману и его достижениям. В ход пошли все накопленные идеи.

Стайнман не готов был подвергать себя закулисным тайным экспериментам и накачивать себя бурлящими снадобьями. Все продолжало происходить по правилам, а они означали громадную бумажную волокиту — для всех участников. Однако в попытке спасти Стайнману жизнь были заново рассмотрены все потенциальные опасности и риски. Обычно, к примеру, во всех лабораториях, где работают с человеческой кровью, исследователям строго-настрого не велят применять собственную кровь[158]. Ради Стайнмана в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) были поданы на утверждение особые протоколы гуманного применения в данной конкретной ситуации. Чиновники оказались отзывчивыми, и утверждения, какие обычно длятся месяцами, удавалось протолкнуть за несколько дней[159].

Первый аспирант Стайнмана Мишель Нуссенцвайг в ту пору уже был профессором Рокфеллеровского университета, Нью-Йорк. Он взял у Стайнмана пробу опухоли, удаленной хирургически, и вырастил ее в мышах — для дальнейшего исследования. Тем временем Айра Меллмен, вице-президент отдела онкологических исследований в компании «Дженетек», работавший со Стайнманом после защиты диссертации, поручил своей группе вырастить клетки из опухоли Стайнмана, а затем испытал на них несколько лекарств, к которым имел доступ, но их пока не опробовали в клинических условиях[160]. Еще один друг Стайнмана, в Торонто, анализировал особые генные мутации, происходившие в опухоли. В Тюбингене, Германия, другие коллеги выделяли из опухоли белковые молекулы — для применения в экспериментальных вакцинах[161]. Одна исследовательница из той группы знала Стайнмана еще с тех пор, когда проходила летнюю вузовскую практику у него в лаборатории[162]. Меллмен вспоминает, как встретился со Стайнманом у него в кабинете — выяснить, что имеет смысл пробовать, а что нет: «Состоялась совершенно непринужденная научная беседа — с той лишь поправкой, что обсуждали мы его опухоль»[163].

В общей сложности Стайнман попробовал восемь различных экспериментальных методов лечения, включая и три вакцины на основе дендритных клеток. Для двух таких вакцин были выделены дендритные клетки из тела самого Стайнмана, и их модифицировали — по-разному, — чтобы в них оказались молекулы из опухоли. Для одной вакцины дендритные клетки Стайнмана накачали ДНК из раковых клеток его опухоли. В каждом случае дендритные клетки вводили Стайнману в кровь — много раз за несколько месяцев — в надежде, что те смогут подтолкнуть иммунный отклик на рак.

Третья вакцина была другого действия. Для нее раковые клетки из тела Стайнмана выделили и генетически модифицировали, чтобы те производили белковую молекулу (с неуклюжим названием гранулоцитарно-макрофагальный колониестимулирующий фактор), которая побуждает к действию дендритные и другие иммунные клетки. Затем генетически модифицированные клетки опухоли подвергали облучению в больших дозах, что предотвращало их размножение, какое происходит при активном раке. Следом раковые клетки вводили обратно в кровь Стайнману. В этом случае соображения были такие же: облученные клетки опухоли привлекут внимание дендритных клеток в организме Стайнмана, те обволокут их и покажут Т-клеткам в лимфоузле, чтобы иммунная система поняла, что́ ей устранять.

Стайнман применил и более традиционные подходы, которые проходили в то время клинические испытания, — обычно в сочетании с вакцинами на основе дендритных клеток. Нашлось одно комбинированное лечение, показавшееся Стайнману особенно многообещающим, но его так и не опробовали — не получили разрешения от FDA. Вопреки этому препятствию Стайнман сохранял оптимизм — верил, что излечится[164]. До самого последнего дня вне больницы он был полностью поглощен исследованиями, пытался разобраться, как же можно применять дендритные клетки в борьбе с раком. Лишь отчасти в шутку он желал опубликовать статью в «Нью-Ингленд Джорнел оф Медисин»: «Моя опухоль и как я ее устранил»[165]. Однако 25 сентября 2011 года, отужинав накануне с женой, тремя детьми и тремя внуками, он отправился в больницу — в последний раз.

Никак не узнать, продлили ли все те эксперименты ему жизнь: единичный случай не имеет статистического значения. Но Стайнман несгибаемо верил, что примененные методы сработали. Исходный диагноз предсказывал ему остаток жизни длиной от нескольких недель до нескольких месяцев, вероятность прожить год — меньше 5 %[166]. В итоге он прожил четыре с половиной года, до 30 сентября, и умер в шестьдесят восемь лет. Скорее всего, рак у Стайнмана был уже в той стадии, что даже если экспериментальное лечение и поддержало его иммунную систему, раковые клетки, видимо, нашли способ избегать атаки. «То был лабораторный эксперимент, он некоторое время действовал, как нам кажется, но вернуться и повторить его мы не можем, а потому никогда не узнаем наверняка», — говорил Меллмен[167].

Через три дня после смерти Стайнмана его жена Клодия встала до рассвета попить воды и увидела, что «блэкберри» покойного супруга мигает в вазе рядом с его ключами. Телефон не трогали несколько дней, но Клодия увидела сообщение с временной отметкой 5:23 утра: «Дорогой доктор Стайнман, у меня для вас хорошая новость…» Клодия позвала дочь, та еще спала: «Папа получил Нобеля!»[168] Размышляя о том событии, Клодия вспоминает, что мужа «не было рядом, чтобы разделить это счастье… [вышло] горько и радостно»[169]. Когда объявили присуждение премии, вряд ли кто-то знал, что Стайнмана больше нет. Один знакомый — наверняка не единственный — попал в неловкое положение, отправив поздравительное письмо[170]. Разумеется, знай Нобелевский комитет о кончине Стайнмана, премию ему присудить не смогли бы. Сложилось так, что эта новость добралась до комитета через час после объявления лауреатов. Нобелевский комитет назначил собрание — обсудить сложившуюся ситуацию. Если бы решили, что премию Стайнману давать нельзя, его доля денег — почти полмиллиона фунтов — скорее всего досталась бы Бётлеру и Офману, разделившим с ним премию. В конце концов постановили, что в этих исключительных обстоятельствах отменять ничего не следует. В тот же год, когда Джейнуэю отказали в премии на основании того, что ученого уже не было в живых, Стайнман ее получил — вопреки своей смерти.

Стайнман остается единственным человеком в истории, получившим Нобелевскую премию и не узнавшим об этом. Он мог бы — и большинство ученых согласно, что так и должно было случиться, — получить премию раньше. Вглядываясь в кроличью нору, Стайнман открыл страну чудес иммунитета, мир, полный причудливых персонажей со странными силуэтами, взаимодействующих по сложным правилам, согласно которым клетки многочисленных разновидностей делятся данными и координируют свою деятельность, сражаясь с болезнью. По словам Меллмена: «Он — тот, кто единолично породил целое поле исследования и занимался им и после того, как мы, все остальные, сдались, чтобы не портить себе карьеру»[171].

К концу жизни Стайнмана чтило огромное сообщество ученых, исследующих дендритные клетки. Дерево познается по плодам его: имя Стайнмана теперь уже навеки связано с дендритной клеткой. Но, как и все ученые, он умер, а некоторые его устремления так и не достигли цели. Он всегда желал, чтобы его исследования оказались полезными в медицине. В этом успех он обрел лишь отчасти. Одна вакцина на основе дендритных клеток увеличивает вероятность выживания у пациентов с раком простаты — примерно на четыре месяца, и FDA утвердило ее для использования в США[172]. Однако вакцины на основе дендритных клеток в лечении рака пока еще не применяются широко. Клинические испытания других подобных вакцин идут непрерывно, и этот тип лечения в будущем может получить большее распространение, однако трудностей пока хватает.

Одна из причин, почему такие вакцины не имеют большей действенности, заключается в том, что у опухолей появились способы противодействовать иммунной системе. Некоторые опухоли, например, выделяют собственные белковые молекулы, мешающие дендритным клеткам поднимать костимулирующие белки к своей поверхности. Пораженные таким путем дендритные клетки не только бесполезны — они деятельно отключают иммунную защиту тела, превращая Т-клетки в толерантные по отношению к раку, что потенциально ухудшает положение пациента.

Вторая неувязка: дендритные клетки активируются вне тела, их оснащают всем необходимым для включения иммунного отклика, но, когда их вводят в тело, они зачастую теряют способность перемещаться внутри организма. Дендритные клетки, введенные обратно в тело пациента, лишь иногда добираются до лимфоузла, где им нужно столкнуться с Т-клетками и включить иммунный ответ[173]. Третья незадача с вакцинами на основе дендритных клеток состоит в том, что, как показывают недавние открытия, существует много разных типов дендритных клеток. В коже они, например, отличаются от тех, что находятся в кишечнике, а те, в свою очередь, не похожи на кровяные, и даже в пределах одного места в теле дендритные клетки отличаются друг от друга. До некоторой степени это придает иммунной системе сходство с экосистемой: клетки в разных местах обитания имеют много родственных черт, однако и отличаются друг от друга и способны приспосабливаться при перемещении. Передовой край исследований — попытки понять это многообразие дендритных клеток. Более того, вероятно, мы не завершили и исходный эксперимент Стайнмана: не выяснили, какова же она, самая успешная клетка — вспомогательная — в деле включения иммунного отклика. Возможно, в смысле вакцины существует подтип дендритной клетки, способный включать иммунные отклики особенно мощно[174].

В пределах жизни самого Стайнмана его дар человечеству — не новые лекарства, а новое осознание человеческого тела. Не одно столетие мы знали, что кровь циркулирует в организме, распределяя кислород и питательные вещества. Стайнман и тысячи ученых по всему миру, так или иначе исследовавших дендритные клетки вместе с ним, явили нам особенности другой большой жизни в человеческом теле: различные типы иммунных клеток снуют между нашими органами и тканями, в лимфоузлы и прочь из них, и так предоставляют нам постоянную и совершенно необходимую защиту.

Оставив за скобками вакцины на основе дендритных клеток, можно сказать, что широкий взгляд Стайнмана на новые лекарства, способные задействовать мощь иммунной системы, все еще в моде. Однако прежде, чем этот взгляд укоренился, необходимо разобраться с целым отдельным слоем взаимодействий внутри иммунной системы.

3. Укрощение и власть

Летом 1956 года двое ученых встретились в Милл-Хилле на окраине Лондона, в Национальном институте медицинских исследований — семиэтажном здании, где в 1933 году[175] открыли вирус гриппа и которое позднее, в 2005-м, задействовали в фильме «Бэтмен: Начало» как вымышленную психиатрическую лечебницу Аркэм. Тридцатиоднолетний Жан Линденманн — швейцарец, относительный новичок в науке. Британский ученый Алик Айзекс — на три года старше, он уже заработал международную репутацию за эксперименты с вирусами; три года он провел в Австралии, работая под началом у нобелевского лауреата Макфарлейна Бёрнета[176]. Линденманн поначалу изучал физику в Университете Цюриха, но переключился на медицину — после того, как применение атомной бомбы изменило его взгляды на то, что следует делать со своей жизнью[177]. Еще подростком он страдал от туберкулеза и много лет жил отдельно от родителей. Вероятно, поэтому Линденманн был тихим и застенчивым. Айзекс, напротив, любил насвистывать арии, чтобы его коллеги определяли, из какой они оперы[178]. Научное обсуждение частенько складывается удачно, когда один ее участник пытлив и склонен порассуждать, а второй более сдержан и способен преобразовывать воодушевление в конкретные разработки экспериментов. В нашем случае сотрудничество этих двоих людей с очень разными личными историями и темпераментами привело к одному из величайших прорывов в науке ХХ века[179].

До встречи с Линденманном Айзекс много лет пытался решить давно возникшую загадку, связанную с вирусами[180]. По меньшей мере в XIX веке было замечено, что вероятность одновременного заражения сразу двумя вирусами довольно мала. Дед Чарлза Дарвина Эразм Дарвин говорил, что никогда не попадался ему пациент с корью, у которого была бы и оспа[181]. Эту загадку — почему присутствие одного вируса вроде бы пресекает развитие другого — систематически не изучали вплоть до 1937 года, когда было установлено, что обезьяны, зараженные вирусом одного типа, лихорадкой Рифт-Валли, оказывались защищены от заражения другим вирусом — желтой лихорадки[182]. Даже если к клеткам, выращенным в лабораторных условиях, добавить два разных вируса, часто качественно растет лишь один.

Сколь бы таинственно это ни было, в то время, когда познакомились Айзекс и Линденманн, как о насущном о нем думал мало кто. Горячей темой, особенно в Милл-Хилле, считалось изучение того, как возникают эпидемии гриппа. Исследовательская группа Айзекса сосредоточилась как раз на этом — работу над личным проектом самого Айзекса пришлось ужать и освободить ресурсы для этой главной темы, — и так обнаружили, например, что грипп, бушевавший в Великобритании в 1951 году, был вызван двумя разновидностями вируса. Это и другие исследования в Милл-Хилле оказались революционными: благодаря им развилось наше современное применение компьютеров для предсказания развития и мирового распространения гриппа, а это важнейшее знание, на основе которого Всемирная организация здравоохранения подбирает штаммы для ежегодной вакцинации против гриппа.

Понимание того, как распространяются эпидемии, было и остается очевидно важным. Куда менее очевидно, заслуживает ли всемирных усилий исследование, почему один вирус препятствует росту другого. Однако выбор того, что именно необычайно важно и потому заслуживает досконального изучения, — а это может означать годы работы, — величайший в жизни любого ученого. Некоторым подсказывает чутье, но многие анализируют возможные причины полученных данных и задаются вопросом, окажутся ли эти причины прорывом в науке, если подтвердятся. Скажем, у вашего компьютера возник сбой — станет ли понимание, почему это произошло, крупным открытием? Вероятно, нет, а потому лучше просто выключить и включить компьютер и не тратить время на беспокойство, что же с ним на самом деле стряслось.

Познакомившись, Айзекс с Линденманном вскоре уже увлеклись обсуждением, почему вирус одного вида препятствует росту другого: Линденманн наткнулся на это явление в своих неопубликованных экспериментах, которые проводил в Цюрихе. Когда Линденманн, выхлопотав себе швейцарскую стипендию на год, прибыл в Лондон, Айзекс уже разобрался, сколько нужно одного вируса, чтобы остановить другой, и показал, что один вирус способен подавить рост всевозможных других, однако суть загадки — как один вирус подавляет второй — осталась нераскрытой. Ученые порассуждали о возможных причинах. С одной стороны, белковые молекулы, от которых, как было известно, зависит проникновение вируса в клетку, расходовались подчистую или устранялись, когда вирус проникал в клетку, а значит, второму вирусу хода в эту же клетку нет. С другой стороны, молекула, нужная вирусу для размножения, тоже могла израсходоваться, а значит, второй вирус проникнуть в клетку, допустим, мог, но размножаться у него бы не получилось. Айзекс и Линденманн осознали, что, если окажется верным, любой из этих двух ответов может стать крупным открытием: удастся выяснить, не только как вирусы действуют, но и в чем их уязвимость. Обоим ученым казалось, что эта задача заслуживает больше внимания, чем получает. И вот так, поговорив на эту тему за чаем, они взялись за эксперименты — 4 сентября 1956 года. Их открытия навсегда изменили и медицину, и сами их жизни.

Ныне прославленные эксперименты Айзекса и Линденманна состояли в заражении фрагментов клеточной мембраны, взятой из скорлупы оплодотворенных куриных яиц вирусом гриппа. Однако заражение проводили не напрямую вирусом, а смесью вируса с красными кровяными тельцами[183]. Линденманн и Айзекс знали, что вирус прицепится к красным кровяным тельцам, которые примерно в 10 000 раз крупнее, однако рассудили, что это не помешает вирусу заразить клетки мембраны куриного яйца своим генетическим материалом (вирус гриппа размножается, вбрасывая свой генетический материал в клетки). Однако, как только вирус исторгал свой генетический материал, внешняя оболочка вируса не отлипала от красных кровяных клеток. Их можно было смыть с мембраны, а вместе с ними — и оболочки вирусов. Красные кровяные тельца с вирусными оболочками, приставшими к ним, далее можно исследовать и выяснить, способны ли они предотвращать заражение вирусом, если ввести их в клеточные мембраны другого яйца. Если способны, рассуждали ученые, значит, внешняя оболочка и есть то самое, что пресекает второе заражение — в отличие от генетического материала вируса. Эксперимент занимал целые часы — мембраны и красные кровяные тельца оставляли во вращавшихся пробирках, — а пока ученые ждали, Айзекс любил порассуждать о своих замыслах следующих экспериментов или же о политике.

Выяснилось, что красные кровяные тельца, покрытые вирусом и смытые с клеток куриной мембраны, действительно все еще способны не допустить заражения вторым вирусом. Это вроде бы соответствовало соображению, что внешняя оболочка вируса — важный фактор предотвращения другой вирусной инфекции. Но такое толкование полностью полагалось на допущение, что внешняя оболочка вируса не отлипает от красных кровяных телец. Чтобы удостовериться в этом, ученые глянули на клетки, задействованные в эксперименте, через электронный микроскоп (того же типа, какой применил Стайнман, когда пристально рассматривал дендритные клетки). Изображения были смазанные, и Айзекс с Линденманном не смогли разобрать, остались оболочки вируса на красных кровяных клетках или же нет. Хуже того, снимки с электронного микроскопа показали, что сколько-то вирусных организмов отцепилось от красных кровяных телец — возможно, пока клетки и вирус болтались в пробирках. Это обеспокоило ученых. Казалось возможным, что полностью нетронутый вирус мог отлипнуть от красной кровяной клетки, и как раз это не позволило случиться второму заражению. Если так, значит, их эксперимент вообще ничего нового не выявил. Разбираясь с этой невнятицей в новом эксперименте, ученые наткнулись на золотую жилу — вообще-то, на жилу куда ценнее, чем золото.

Чтобы проверить, действительно ли в экспериментальной смеси есть свободные целые вирусы, Айзекс и Линденманн тщательно слили жидкость из пробирок и отделили ее не только от мембран клеток куриного яйца, но и от покрытых вирусом красных кровяных телец. Затем они добавили оставшуюся жидкость к свежим клеткам мембраны куриного яйца и обнаружили, что есть и в самих этих клетках нечто, способное предотвращать заражение клеток. Но когда ученые проверили состав жидкости, они выявили, что в ней содержится очень мало — или совсем нисколько — отлипших вирусов, а значит, что никакого объяснения происходящему у них нет.

Они решили повторить эксперименты, не усложняя их добавлением красных кровяных телец. Обнаружилось, что жидкость, взятая из пробирки, содержащей вирус и клетки мембраны, тоже способна не позволить вирусу заразить свежие клетки. Нечто в самой жидкости — просто жидкости — препятствовало вирусной инфекции. Вот это наблюдение подтолкнуло их на верный путь к важному открытию, однако в то время им это совсем не показалось «эврикой» — они попросту не могли взять в толк, что тут к чему. Растерялись.

Айзекс предположил: нечто, способное вмешиваться в жизнь вирусов, возможно, производится в жидкости, но оба ученых понимали и то, что, вероятно, происходит нечто не столь уж поразительное. Если у жидкости повысилась кислотность, например, могло это воспрепятствовать вирусам? Или, может, один вирус израсходовал все питательные вещества, и второе заражение не состоялось поэтому? В рассуждениях, что делать дальше, Линденманн придумал назвать неведомого вмешивавшегося агента интерфероном[184] — чтобы получилось похоже на фундаментальную частицу во Вселенной, на манер электрона, нейтрона или бозона. Он счел, что биологам самое время начать исследование фундаментальной частицы — вон их сколько у физиков. 6 ноября 1956 года, всего через два с небольшим месяца после начала их совместной работы, Айзекс назвал новый раздел в своем лабораторном журнале «В поисках интерферона»[185]. Началась упорная работа.

Уже не имело значения, что Айзекс располагал бо́льшим, чем у Линденманна, опытом в науке: в неведомых водах кто угодно — «чайник». Как сыщики, прибывшие на место преступления, они не очень понимали, что именно ищут, и выискивали в той жидкости какие угодно свойства и улики. Обнаружили, что нагрев устраняет антивирусное свойство, а хранение в холодильнике не влияет никак. Эти результаты намекали, что pH[186] среды не имеет значения — нагрев на него не влияет, — однако некий чувствительный к температуре показатель тут явно замешан. Попробовали центрифугировать — никаких перемен не заметили, а значит, и вероятности того, что происходит вмешательство в жизнь вирусов со стороны какой-нибудь крупной частицы, нет (все крупное осело бы на дне пробирки). Проверили и способность жидкости предотвращать заражение разными вирусами — и такую способность нашли. Постепенно они отмели неинтересные и частные объяснения и укрепились в уверенности, что тут дело в чем-то, пока не определенном, и оно наделено силой предотвращать вирусное заражение — и действует; иными словами, интерферон в этой жидкости явно был.

Вспоминая о тех временах, Линденманн писал: «Исследования привлекают потому, что истинное воодушевление от них — как раз на этапах блуждания в потемках, которое внешнему наблюдателю представляется однообразным и скучным. Немногие тщеславные мгновения торжества быстро блекнут; удовлетворение от интеллектуально искренних попыток держится дольше. Но, вероятно, и к лучшему, что эта сторона научной работы редко мелькает в популярных описаниях. Должны существовать тайные радости, которые наука приберегает исключительно для тех, кто достаточно смел — или наивен, — чтобы отозваться на ее призыв»[187].

К концу февраля 1957 года они решили, что собрали достаточно подтверждений, чтобы опубликовать свои соображения о новом факторе клеточного происхождения, порожденном вирусом, способном вмешиваться в размножение вируса. Глава института в Милл-Хилле, где они работали, Кристофер Эндрюс, уже прославился открытием вируса гриппа в 1933 году, и как член Королевского общества помог им обнародовать результаты экспериментов в двух статьях на страницах «Докладов» общества[188]. Нам известно, что предположения в тех статьях оказались верны, однако в ту пору согласились с ними немногие.

Неприятности начались, когда Линденманн впервые сообщил об интерфероне на научном съезде в Швейцарии в июне 1957 года. После его доклада один швейцарский вирусолог заметил, что эта мысль противоречит всему, что он читал, а потому наверняка чепуха[189]. Когда в октябре увидели свет официальные статьи Айзекса и Линденманна, несколько маститых ученых, особенно в США, усомнились, действительно ли эти двое открыли новую молекулу[190]. Скептики говорили, что наверняка в экспериментальные образцы попала часть вируса и спровоцировала результаты, которые Айзекс с Линденманном приписали новой молекуле. Поползли слухи, что их работа — бредни, а интерферону присвоили другие названия: misinterpreton [заблуждон] и imaginon [вообразон][191]. Как это часто случается с чем-либо новым, скептицизм не был в чистом виде злопыхательством. Ранние эксперименты были громоздкими — клетки и вирусы проходили инкубацию вместе, жидкость откачивали и применяли заново, — и потому вопрос о природе фактора вмешательства оставался открытым. К тому же сложность экспериментов означала, что другим ученым непросто воспроизвести их результаты.

Любой ученый страшится, что его эксперименту не поверят. Того хуже — что усомнятся в их порядочности и честности. Порядочность Линденманна попала под перекрестный огонь, когда он вернулся в Швейцарию после года, проведенного в Лондоне. Его бывший начальник Херманн Моозер решил, что ему полагается быть обозначенным в статьях об интерфероне наравне с Айзексом, потому что, как заявлял Моозер, работа основана на неопубликованных экспериментах, которые Линденманн проделал в лаборатории Моозера в 1955 году, еще до сотрудничества с Айзексом. Моозера очень чтили (за его труды, посвященные тифозной бактерии), и его обвинения оказались настолько разрушительными для карьеры Линденманна, что тому пришлось покинуть Швейцарию. Он менял работы — пара лет в Берне, три года во Флориде, — после чего вернулся в Цюрих, когда Моозер ушел на пенсию[192].

Моозер умер, убежденный, что участвовал в открытии интерферона и что обошлись с ним несправедливо[193]. По правде говоря, многие лаборатории ставили эксперименты, приводившие к интерферону, — таков едва ли не любой эксперимент, связанный с живыми вирусами и клетками, — однако не осознавали этого. Когда Айзекс с Линденманном доложили об интерфероне, в анналах науки уже бытовали многочисленные намеки, что есть факторы, так или иначе воздействующие на отклик иммунных клеток[194]. Любое исследование происходит параллельно с другими, а Моозер не приложил достаточно усилий, чтобы его признали как участника открытия интерферона.

Айзекс уверенно отбил его притязания, однако критика окружающих основательно его разочаровала. Он маялся депрессией, которая иногда требовала даже госпитализации и лекарственного лечения[195]. Как заметил один его друг, Айзекс был «ученым с воображением, он видел масштабную картину… [был] полон идей, однако в депрессии ладить с ним давалось нелегко»[196]. Айзекс иногда разговаривал со своими ближайшими коллегами, могло ли открытие, которое они с Линденманном сделали, действительно оказаться следствием вирусов, в едва заметных количествах присутствовавших в жидкости, а они просто не смогли их засечь. Вероятно, скептики правы, может, интерферона и впрямь не существует.

В идеале это должно было послужить поводом для исследования, для новых экспериментов, а не для сомнений в себе, однако вопреки объективному тону научных статей, поиск нового знания — очень сокровенное предприятие. В 1958 году Айзекс пережил нервный срыв. Большинству ученых в Милл-Хилле он казался жизнерадостным и пылким, исполненным энтузиазма и сил, однако втайне от чужих глаз жизнь его складывалась сложно. Еще юным врачом он в 1949 году женился на психиатре Сюзанне Гордон. Брак сложился счастливо[197], но поскольку Сюзанна не была еврейкой, Айзекс утратил поддержку своей ортодоксальной семьи, а отец отказался от него[198]. Научное сообщество стало для Айзекса суррогатной семьей, а это значило, что поддержка его работы была Айзексу чрезвычайно нужна.

Давление нарастало: интерферон обсуждался не только на научных конференциях, но и в обычных газетах и телепрограммах. Нельзя сказать, конечно, что к попыткам Линденманна и Айзекса найти ответ на давний вопрос о взаимных вмешательствах вирусов публика проявляла бешеный интерес, но все осознавали, что, если интерферон способен пресекать вирусную инфекцию, из него могло бы получиться новое чудо-лекарство. Этот сюжет в 1957 году освещала «Дейли Экспресс», а затем вести распространились еще шире, в том числе и посредством телевидения Би-би-си — после того, как Айзекс представил интерферон на приеме в Королевском обществе в мае 1958 года[199]. Интерферон даже вошел в язык поп-культуры: в 1960 году в комиксе «Флэш Гордон» художника Дэна Барри космонавт, зараженный смертельным внеземным вирусом, спасен своевременной инъекцией интерферона. (Вообще-то в этом комиксе есть незаметная ошибка: действие интерферона сведено к понижению температуры у больного космонавта, тогда как в действительности интерферон, действуя, усиливает жар.)

Правительство тоже приглядывало за интерфероном. Парламент и Совет по медицинским исследованиям, финансировавший институт в Милл-Хилле, все еще горевали о том, что пенициллин, открытый в 1928 году в Лондоне Александром Флемингом, начали производить и запатентовали в Штатах. Правительство насупилось, прошляпив доходы с пенициллина, и, наткнись вдруг кто-то на что-нибудь грандиозное, это открытие уж точно не упустили бы, как в прошлый раз. Помещая интерферон аккурат в такую категорию открытий, кто-то — не очень ясно, кто именно, возможно, сам Айзекс — назвал это средство «антивирусным пенициллином».

На Айзекса очень давили — и правительство, и научное сообщество, и обычная публика: пусть докажет, что интерферон действительно существует, что его можно применять как лекарство и запатентовать. Айзекс глубоко страдал от такого нажима и, при полном неведении коллег, по крайней мере дважды пытался покончить с собой[200].

Тем временем в лаборатории Айзекса двадцативосьмилетнему химику Дереку Бёрку поручили выделить молекулы интерферона и очистить препарат так, чтобы удалось точнее установить его химическую природу и действие. «Необходимо знать, что́ интерферон представляет собой химически, — тогда удастся понять, как он получается и как действует в клетке», — писали Бёрк с Айзексом в журнале «Нью Сайентист» в июне 1958 года[201]. Айзекс считал, что Бёрку на это потребуется примерно полгода, и тогда его соображения будут подтверждены. Однако очистка интерферона оказалась геркулесовой задачей. Жидкость, отделенная от клеток и вируса, содержала микроскопические количества интерферона, и в попытке выделить это вещество Бёрк, копаясь в химических процессах, исписал двенадцать лабораторных журналов[202]. Теперь-то понятно, до чего безнадежно наивно было полагать, что эта очистка займет полгода. На это ушло пятнадцать лет.

В первый день нового 1964 года, задолго до того, как работа была завершена, с Айзексом случилось кровоизлияние в мозг. Вероятнее всего, оно было связано с аномально вздутым кровеносным сосудом, обнаруженным на ангиограмме, однако добраться до него хирургически не представлялось возможным[203]. Айзекс вернулся к работе через три месяца, однако его освободили от должности главы отделения и назначили руководить маленькой исследовательской группой, состоявшей, помимо него самого, еще из двух ученых. Вернувшись к работе, он пережил, по словам его коллеги, «несколько приступов глубокого умственного разлада»[204]. Второе кровоизлияние произошло в январе 1967 года и оказалось смертельным. Ему было сорок пять лет. За год до кончины он стал членом Королевского общества, а после смерти в его честь провели симпозиум в Лондоне, с участием двух нобелевских лауреатов — Эрнста Чейна (он работал с пенициллином) и Фрэнсиса Крика (участника открытия структуры ДНК)[205]. «Эта область исследований утратила своего святого покровителя», — сокрушался один коллега Айзекса[206]. Научное наследие этого ученого ждало широкого признания, но, когда он умирал, оно все еще оставалось под сомнением.

В последние годы его жизни состоялось несколько небольших клинических испытаний интерферона, все они оказались разочаровывающими, и фармацевтические компании утратили интерес. Однако вскоре после смерти Айзекса надежды на интерферон воскресли — благодаря исследованиям рака. Большинство разновидностей рака не имеет ничего общего с вирусной инфекцией, однако есть несколько вирусов, которые связаны с онкологическими заболеваниями[207]. Айон Грессер, ньюйоркец, работавший в Париже, проверил на мышах, воздействует ли интерферон на развитие рака, вызванного вирусом, как влияет он на другие вирусные инфекции. Его эксперименты показали: да, воздействует. Однако более масштабное открытие проистекло из его контрольного эксперимента, в котором ничего не должно было происходить, — то есть в том варианте эксперимента, который проводят все ученые параллельно с основным: он в точности такой же во всех отношениях — за вычетом одного фактора, который и есть предмет исследования, — и этот эксперимент проводят в надежде, что в нем ничего не произойдет, а это подтвердит результат основного эксперимента. В своем случае Грессер выполнил тот же самый опыт на раковом материале другого происхождения, который не имел никакого отношения к вирусам, и полагал, что с теми более распространенными вариантами рака ничего не про- изойдет. Против ожиданий оказалось, что животные, которым вводили раковые клетки всевозможных разновидностей, выживали, если им дать препарат интерферона. В 1969 году Грессер сообщил, что интерферон способен лечить рак по крайней мере у мышей[208].

Пусть лекарство от рака и Священный Грааль науки, это средство встретили скорее скептически, чем радостно. Главная неувязка: Грессер не применял интерферон как таковой. Никто его к тому времени не выделил, а потому Грессеру оставалось использовать неочищенную биологическую жидкость, из которой клетки и вирусы изъяты так, как снимают с молока сливки, и это дало ученому сообществу повод, как и в случае с Айзексом, задавать вопрос, каков же на самом деле ключевой ингредиент. Грессер вспоминает, как один коллега, пытаясь его утешить, говорил, что однажды другие ученые повторят его открытие — и забудут, что первым этого добился Грессер[209].

Отдельно от этих провокационных экспериментов одно случайное наблюдение Грессера тоже повлияло на развитие нашего понимания интерферона. В одной из проходных исследовательских статей, опубликованной в декабре 1961 года, Грессер отметил, что, как и другие клетки, белые кровяные тельца человека, смешанные с вирусами, тоже приводят к производству интерферона[210]. Он рассудил, что это может играть некую роль в иммунной защите организма, и предположил, что производство интерферона можно использовать как диагностический тест на присутствие вирусной инфекции. От этого замечания разыгралось воображение финского ученого Кори Кантелля. Одиночка, обходивший стороной популярные исследовательские области, Кантелль рассудил, что, хотя большинство человеческих клеток при смешивании с вирусами приводит к производству интерферона, вероятно, белые кровяные тельца в этом смысле особенно действенны, а если так, эти клетки можно применять для производства интерферона в больших количествах, лабораторно. Хорошая мысль, но она ни к чему не привела бы, если бы не вмешалась удача.

Кантелль проверял свою мысль на вирусе, который оказался у него в холодильнике, — то был вирус Сендай, он, в общем, похож на вирус гриппа и назван в честь японского города, где его открыли. Теперь нам известно, что вирус Сендай особенно действенно подталкивает белые кровяные тельца производить интерферон. Примени Кантелль какой-нибудь другой вирус или даже другой штамм того же самого вируса, его первый эксперимент провалился бы, и Кантелль, возможно, бросил бы это дело[211]. Но так уж вышло, что в первом же эксперименте, начавшемся 8 мая 1963 года, белые кровяные тельца произвели в десять раз больше интерферона, чем клетки любой другой разновидности, с которыми Кантелль работал. Это не значит, что все свелось к удаче. Кантелль настаивает, что важна была и его предыдущая постоянная работа, иначе это исследование не получало бы финансирования все то время, которое в итоге понадобилось, чтобы выделить и очистить интерферон после тех первых проб, — девять лет[212].



Поделиться книгой:

На главную
Назад