Р. Фейнман, Р. Лейтон, М. Сэндс
Фейнмановские лекции по физике
Том 3. Квантовая механика
От редактора
«Фейнмановские лекции по физике» подходят к концу. Настоящий, восьмой, и следующий, девятый, выпуски, составляющие третий том американского издания, завершают курс и приводят читателя к идеям и задачам современной квантовой механики.
Квантовая механика считается трудной наукой. И это правда: ее методы и понятия еще очень далеки от наглядности. Чтобы рассказать о ней понятно и увлекательно, надо совмещать талант педагога и большой опыт исследователя. Обычно барьером к изучению квантовой механики служит ее математический аппарат. Чтобы научиться решать квантовомеханические задачи, надо знать дифференциальные уравнения в частных производных, свободно обращаться со специальными функциями и уметь делать многое другое
Но, в действительности трудность квантовой механики связана не только с математикой. Более того, с нее даже не обязательно начинать. В лекциях Фейнмана изучение квантовой механики начинается с физики, а уравнение Шредингера появляется лишь в конце. При этом оказывается, что о многих задачах — от рассеяния электронов до сверхпроводимости — можно рассказать, не прибегая к исследованию сложных уравнений. Однако это вовсе не означает, что квантовая механика простая наука. В действительности выучить формулы и уравнения, пожалуй, легче, чем следовать физическим рассуждениям и понимать логику явлений природы, которая часто выглядит весьма странной. Поэтому надо потратить много времени и труда, чтобы постичь красоту и величие того, о чем рассказано в этом курсе. Если читатель с успехом преодолеет первый этап долгого пути, то будет полностью вознагражден за свои усилия. К счастью, этот путь не имеет конца. Те, кто захочет пойти дальше, должны, конечно, изучить еще многое другое и, разумеется, довольно сложную (и также очень красивую) математику. Однако и для них то, что они узнали из лекций, будет хорошей школой: полезно с самого начала научиться отделять математический язык науки от ее физического содержания.
Квантовая механика — наука не изолированная. Ее нельзя понять без знания классической физики. Поэтому, читая последние выпуски, полезно время от времени возвращаться к предыдущим. Кстати, то, что в них рассказано, будет теперь выглядеть по-новому.
При подготовке перевода настоящих лекций было обнаружено и исправлено довольно много опечаток и мелких ошибок. Наверное, кое-что и осталось. Многие читатели писали нам об этом, за что мы им весьма признательны. В предстоящем новом издании первых четырех выпусков все правильные замечания учтены. Мы просим читателей сообщать нам обо всем, что еще будет ими замечено. Мы пользуемся случаем поблагодарить одного из соавторов книги проф. Мэтью Сэндса за исправления, присланные им специально для русского издания.
Июль 1966 г.
Предисловие
Со времени величайшего триумфа физики XX века — рождения квантовой механики — прошло уже 40 лет, но до сих пор, читая студентам вводный (а для многих из них и последний) курс физики, мы ограничиваемся, как правило, не более чем случайными намеками на эту центральную область наших знаний о физическом мире. Считая, что так поступать со студентами нехорошо, мы сделали в настоящем курсе попытку изложить им основные, самые существенные идеи квантовой механики и сделать это так, чтобы это им было понятно. Курс был построен совершенно по-новому, особенно если учесть, что он был рассчитан на второкурсников, и все происшедшее можно было в значительной степени рассматривать как эксперимент. Впрочем, после того как выяснилось, насколько легко многие студенты усваивают предмет, я считаю, что эксперимент удался. Конечно, здесь есть что улучшать, и улучшения последуют, как только у нас появится опыт преподавания. Пока же перед вами лишь отчет о первом эксперименте.
В двухгодичном курсе «Фейнмановских лекций по физике», который читался с сентября 1961 г. по май 1963 г. в качестве вводного курса физики в КАЛТЕХе, понятия квантовой механики вводились всюду, где они были необходимы для понимания описываемых явлений. Кроме того, последние двенадцать лекций второго года были целиком посвящены более связному введению в некоторые понятия квантовой механики. Но по мере того, как лекции близились к концу, становилось ясно, что на квантовую механику мы оставили слишком мало времени. По мере подготовки материала постепенно выяснялось, что с помощью уже развитых элементарных подходов можно рассмотреть и другие важные и интересные темы. Кроме того, еще было опасение, что, чересчур мало поработав с волновой функцией Шредингера, введенной в двенадцатой лекции, студент не сможет ориентироваться в изложении, принятом в других книгах, которые ему придется читать. Поэтому было решено расширить курс еще на семь лекций; они и были прочитаны второкурсникам в мае 1964 г.. Эти лекции завершают и несколько расширяют материал, развитый в предыдущих лекциях.
С самого начала в этом томе делается попытка пролить свет на основные и самые общие черты квантовой механики. Первые главы обращаются к представлениям об амплитуде вероятности, интерференции амплитуд, абстрактному определению состояния и к наложению и разложению состояний, причем с самого начала используются обозначения Дирака. В каждом случае введение нового представления сопровождается подробным разбором некоторых частных примеров, чтобы эти физические идеи приобрели как можно большую реальность. Затем следует зависимость состояний от времени, включая состояния с определенной энергией, и эти идеи немедленно применяются к изучению двухуровневых систем — систем, имеющих только два возможных значения энергии. Подробное изучение аммиачного мазера подготавливает почву для введения поглощения света и индуцированных переходов. Затем лекции продолжают рассмотрение более сложных систем, подводя к изучению распространения электронов в кристалле и к довольно полному изложению квантовомеханической теории момента количества движения. Наше введение в квантовую механику заканчивается обсуждением свойств шредингеровской волновой функции, ее дифференциального уравнения и решений для атома водорода.
Последнюю главу этого тома не следует считать частью «курса». Это «семинар» по сверхпроводимости, проведенный в духе тех лекций из первых двух томов, которые были прочитаны «для развлечения», чтобы помочь студентам шире взглянуть на связь того, чему их учили, с общей физической культурой. «Эпилог» Фейнмана ставит точку на этом курсе.
Как уже объяснялось в предисловии к первому тому (см. вып. 1—4), эти лекции являются лишь частью программы по разработке нового вступительного курса, проводимой в КАЛТЕХе под руководством Комитета по пересмотру курса физики (Роберт Лейтон, Виктор Неер и Мэтью Сэндс). Осуществление этой программы стало возможным благодаря помощи Фонда Форда. Техническую помощь при подготовке этого тома оказали Мэрилу Клейтон, Юлия Курцио, Джеймс Хартл, Том Харвей, Мартин Израэль, Патриция Прейс, Фанни Уоррен, Барбара Циммерман и многие другие. Проф. Джерри Нойгебауер и проф. Чарльз Уилтс внимательно прочли рукопись и во многом способствовали четкости и ясности изложения материала.
Но сама повесть о квантовой механике, которую вы здесь найдете, принадлежит Ричарду Фейнману. Наши труды не были напрасными, если нам удалось донести до других хоть долю восторга, который мы испытывали сами, следя, как в его полных жизни лекциях по физике перед нами разворачиваются все новые и новые идеи.
Декабрь 1964
Выпуск 8. Квантовая механика. Часть 1
Глава 1 АМПЛИТУДЫ ВЕРОЯТНОСТИ[1]
§ 1. Законы композиции амплитуд
Когда Шредингер впервые открыл правильные законы квантовой механики, он написал уравнение, которое описывало амплитуду вероятности обнаружения частицы в различных местах. Это уравнение было очень похоже на уравнения, которые были уже известны классическим физикам, они ими пользовались, чтобы описать движение воздуха в звуковой волне, распространение света и т. д. Так что в начале развития квантовой механики большую часть времени люди занимались решением этого уравнения. Но в то же время началось (в частности, благодаря Борну и Дираку) понимание тех фундаментально новых идей, которые лежали в основе квантовой механики. По мере дальнейшего ее развития выяснилось, что в ней есть много такого, что прямо в уравнении Шредингера не содержится, — таких вещей, как спин электрона и различные релятивистские явления. Все курсы квантовой механики по традиции начинают с того же самого, повторяя путь, пройденный в историческом развитии предмета. Сперва долго изучают классическую механику, чтобы потом понять, как решается уравнение Шредингера. Затем столь же долго получают различные решения. И лишь после детального изучения этого уравнения переходят к «высшим» вопросам, таким, как спин электрона.
Сначала мы тоже считали, что лучше всего закончить эти лекции, показав, как решаются уравнения классической физики в различных сложных случаях, таких, как описание звуковых волн в замкнутом пространстве, типы электромагнитного излучения в цилиндрических полостях и т. д. Таков был первоначальный план этого курса. Но затем мы решили отказаться от этого плана и вместо этого дать введение в квантовую механику. Мы пришли к заключению, что то, что обычно именуют «высшими» разделами квантовой механики, на самом деле совсем простая вещь. Нужная для этого математика чрезвычайно проста — требуются лишь несложные алгебраические операции, никаких дифференциальных уравнений не нужно (или в крайнем случае нужны самые простые). Проблема только в том, чтобы перепрыгнуть через одно препятствие: усвоить, что мы больше не имеем права
Конечно, здесь есть своя трудность: квантовомеханическое поведение вещей чрезвычайно странно. Никто не может полагаться на то, что его ежедневный опыт даст ему интуитивное, грубое представление о том, что должно произойти. Так что этот предмет можно представить двояким образом: можно либо довольно грубо описать, что происходит — сообщать более или менее подробно, что случится, но не формулировать точных законов, либо же можно приводить и точные законы в их абстрактном виде. Но тогда эта абстракция приведет к тому, что вы не будете знать, к чему физически она относится. Этот способ не годится, потому что он совершенно отвлеченный, а от первого способа будет оставаться неприятный осадок, потому что никогда не будет точно известно, что верно, а что нет. И мы не знаем, как эту трудность обойти. С этой проблемой мы уже сталкивались раньше [гл. 37 и 38 (вып. 3)1. В гл. 37 изложение относительно строгое, а в гл. 38 дано лишь грубое описание различных явлений. Теперь мы попытаемся найти золотую середину.
Мы начнем эту главу с некоторых общих квантовомеханических представлений. Кое-какие из этих утверждений будут совершенно точными, иные же точны лишь частично. При изложении нам будет трудно отмечать, которые из них какие, но к тому времени, когда вы дочитаете книжку до конца, вы уже сами будете понимать, оглядываясь назад, какие части устояли, а какие оказались только грубым объяснением. Главы, которые последуют за этой, не будут столь неточными. Одна из причин, почему мы пытаемся в последующих главах быть как можно более точными, состоит в том, что таким образом мы сможем продемонстрировать одно из самых прекрасных свойств квантовой механики — как много в ней удается вывести из столь малого.
Мы опять начинаем с выяснения свойств суперпозиции, наложения,
Имеется источник частиц
Иными словами, две скобки < > — это знак, эквивалентный словам «амплитуда (вероятности) того, что»; выражение
Надо подчеркнуть, что подобная амплитуда — это, конечно, всего-навсего число —
В гл. 37 (вып. 3) мы уже видели, что, когда частица может достичь детектора двумя путями, итоговая вероятность не есть сумма двух вероятностей, а должна быть записана в виде квадрата модуля суммы двух амплитуд. Мы обнаружили, что вероятность того, что электрон достигнет детектора при обеих открытых амбразурах, есть
Теперь мы этот результат собираемся записать в наших новых обозначениях. Сначала сформулируем наш
При этом мы предполагаем, что щели 1 и 2 достаточно малы, так что, когда мы говорим, что электрон прошел сквозь щель, не встает вопрос, через какую часть щели он прошел. Конечно, можно разбить каждую щель на участки с конечной амплитудой того, что электрон прошел через верх щели или через низ и т. д. Мы допустим, что щель достаточно мала, так что нам не надо думать об этой детали. Это одна из тех неточностей, о которых мы говорили; суть дела можно уточнить, но мы покамест не будем этого делать.
Теперь мы хотим подробнее расписать, что можно сказать об амплитуде процесса, в котором электрон достигает детектора в точке
Для установки, показанной на фиг. 1.1, амплитуда перехода от s к
Опять-таки, это утверждение не совсем точно. Нужно добавить еще один множитель — амплитуду того, что электрон пройдет щель в точке 1; но пока это у нас просто щель, и мы положим упомянутый множитель равным единице.
Заметьте, что уравнение (1.5) кажется написанным задом наперед. Его надо читать справа налево: электрон переходит от s к 1 и затем от 1 к
А теперь мы покажем, что, используя одни только эти принципы, уже можно решать и более трудные задачи, наподобие показанной на фиг. 1.2.
Тут изображены две стенки: одна с двумя щелями 1 и 2, другая с тремя —
Можно сэкономить место, использовав знак суммы:
Чтобы, пользуясь этим методом, проводить какие-то вычисления, надо, естественно, знать амплитуду перехода из одного места в другое. Я приведу пример типичной амплитуды. В ней не учтены некоторые детали, такие, как поляризация света или спин электрона, а в остальном она абсолютно точна. С ее помощью вы сможете решать задачи, куда входят различные сочетания щелей. Предположим, что частица с определенной энергией переходит в пустом пространстве из положения r1 в положение r2. Иными словами, это свободная частица: на нее не действуют никакие силы. Отбрасывая численный множитель впереди, амплитуду перехода от r1 к r2 можно записать так:
где r12=r2-r1 а р — импульс частицы, связанный с ее энергией
или нерелятивистским уравнением
Уравнение (1.7) в итоге утверждает, что у частицы есть волновые свойства, что амплитуда распространяется как волна с волновым числом, равным импульсу, деленному на
В общем случае в амплитуду и в соответствующую вероятность входит также и время. В большинстве наших первоначальных рассуждений будет предполагаться, что источник испускает частицы с данной энергией беспрерывно, так что о времени не нужно будет думать. Но, вообще-то говоря, мы вправе заинтересоваться и другими вопросами. Допустим, что частица испущена в некотором месте
Хотя, имея дело с одной частицей, можно начать пытаться мыслить на языке «корпускулярных волн», но ничего в этом хорошего нет, потому что если, скажем, частиц не одна, а две, то амплитуда обнаружить одну из них в r1 а другую в r2 не есть обычная волна в трехмерном пространстве, а зависит от
И еще одну вещь надо подчеркнуть. Предположим, нам неизвестно, откуда появляются частицы на фиг. 1.2, прежде чем они пройдут через щели 1 и 2 в первой стенке. Несмотря на это, мы все равно можем предсказать, что произойдет за стенкой (скажем, вычислить амплитуду попасть в
§ 2. Картина интерференции от двух щелей
Рассмотрим еще раз вопрос, который мы довольно подробно обсудили раньше, в гл. 37 (вып. 3). Сейчас мы используем идею об амплитуде во всей ее мощи, чтобы показать вам, как она работает. Вернемся к старому опыту, изображенному на фиг. 1.1, добавив к нему еще источник света и поместив его за щелями (ср. фиг. 37.4 гл. 37). В гл. 37 мы обнаружили следующий примечательный результат. Если мы заглядывали за щель 1 и замечали фотоны, рассеивавшиеся где-то за ней, то распределение вероятности того, что электрон попадал в
Посмотрим теперь, что здесь происходит, используя наши новые обозначения и принципы композиции амплитуд. Чтобы упростить запись, можно через φ1 опять обозначить амплитуду того, что электрон придет в
Сходным же образом φ2 будет обозначать амплитуду того, что электрон достигнет детектора через щель 2:
Это — амплитуды проникновения электрона через щель и появления в
Тогда можно говорить об амплитуде появления фотона в счетчике
Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда <1|s> того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик
Или в наших прежних обозначениях это просто
Имеется также некоторая амплитуда того, что электрон, проходя сквозь щель 2, рассеет фотон в счетчик
Амплитуда обнаружения электрона в х и фотона в счетчике
Аналогичное выражение можно получить и для случая, когда фотон будет обнаружен другим счетчиком
Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой вероятностью будут получаться отсчеты в счетчике
С другой стороны, если длина волны велика, рассеяние за щелью 2 в счетчик
Нам хотелось бы подчеркнуть очень важное обстоятельство и предостеречь от часто допускаемой ошибки. Пусть вас интересует только амплитуда того, что электрон попадает в
§ 3. Рассеяние на кристалле
Следующий пример — это явление, в котором интерференцию амплитуд вероятности следует проанализировать тщательнее. Речь идет о процессе рассеяния нейтронов на кристалле. Пусть имеется кристалл, в котором много атомов, а в центре каждого атома — ядро; ядра расположены периодически, и откуда-то издалека на них налетает пучок нейтронов. Различные ядра в кристалле можно пронумеровать индексом
Для каждого отдельного атома
Написав это, мы предположили, что амплитуда рассеяния а — одна и та же для всех атомов. Здесь у нас есть множество, по-видимому, неразличимых путей. Они неразличимы оттого, что нейтрон с небольшой энергией рассеивается на ядре, не выбивая при этом самого атома с его места в кристалле — никакой «отметки» о рассеянии не остается. Согласно нашим прежним рассуждениям, полная амплитуда того, что нейтрон попал в